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The stringent response is a stress signalling system mediated by the alarmones 14 

(pp)pGpp in response to nutrient deprivation. Research into the stringent 15 

response has exploded in recent years, with new insights highlighting the 16 

complexity and broad range of functions that these alarmones control. This review 17 

will provide an update on our current understanding of the enzymes involved in 18 

(pp)pGpp nucleotide turnover, including those shown to produce pGpp and its 19 

analogue (pp)pApp. Many studies to date have examined the impact of (p)ppGpp 20 

interacting with the RNAP to alter cellular processes. Here, we will describe a 21 

broader range of target pathways controlled by (pp)pGpp in the bacterial cell and 22 

the impact of this on multiple cellular processes, including DNA replication, 23 

transcription, nucleotide synthesis, ribosome biogenesis and function, as well as 24 

lipid metabolism. Finally, we will review the role of (p)ppGpp in bacterial 25 

pathogenesis, providing examples of how these nucleotides are involved in 26 

regulating many aspects of virulence and chronic infection. 27 

 28 

Bacteria encounter numerous environmental stresses during their lifecycle and need to 29 

respond quickly and efficiently in order to survive. There are several stress signalling 30 

pathways that enable bacterial adaptation, including some that rely on small nucleotide 31 

messengers. The stringent response is a ubiquitous stress signalling pathway that allows 32 

bacteria to respond to nutrient starvation1,2. During the stringent response, there is an 33 

accumulation of the alarmones guanosine tetra- (ppGpp) and pentaphosphate 34 

(pppGpp). These guanosine-based nucleotides are produced by members of the RSH 35 

(RelA/SpoT homologue) protein superfamily3 and are formed from GDP or GTP, 36 

respectively. More recently, the presence of a third member of this family, pGpp, has 37 

been confirmed in numerous species4-8. When discussing alarmone synthesis and 38 
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functions known to involve pGpp, we will refer to all three nucleotides as (pp)pGpp, 39 

otherwise (p)ppGpp will be used for ppGpp and pppGpp. (pp)pGpp have many 40 

intracellular targets including both protein and RNA molecules, allowing several 41 

aspects of bacterial metabolism and physiology to be activated or inhibited during the 42 

stringent response. Some (pp)pGpp-binding targets are common across the Bacteria, 43 

whereas others are specific to the lifestyle and niche of a species.  44 

As (pp)pGpp is such a widespread signalling nucleotide, it has been the focus of 45 

intense study in recent years. In this review, we discuss the latest advances in (pp)pGpp 46 

signalling. An update on our current understanding of the enzymes that synthesise and 47 

degrade all three alarmones, as well as the similar nucleotide (pp)pApp, is provided. 48 

We then highlight the broad range of metabolic pathways that (pp)pGpp regulates. This 49 

includes, but extends beyond, well-known interactions with the RNA polymerase 50 

(RNAP), to emphasise the importance of these alarmones in regulating diverse 51 

metabolic processes. (pp)pGpp is also an important player in bacterial pathogenicity. 52 

Here, we examine the contribution of these alarmones to virulence and chronic 53 

infection, using selected examples from different pathogens. Although a number of 54 

signals that trigger alarmone synthesis are referred to throughout, the mechanisms of 55 

how most of the stress signals are sensed by RSH enzymes have been comprehensively 56 

reviewed elsewhere9,10 and so will not be discussed in detail. 57 

 58 

Overview of (pp)pGpp synthesising enzymes 59 

The discovery of phosphorylated nucleotides is by no means recent, with both 60 

(p)ppGpp and (p)ppApp discovered over 50 years ago11-13. In the case of (p)ppGpp, 61 

work by Cashel and Gallant identified two unusual phosphorylated compounds after 62 

depriving Escherichia coli of amino acids11. These nucleotides controlled a decrease in 63 
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synthesis of stable RNAs such as tRNA and rRNA during starvation, commencing 64 

research into the stringent response. It is now well known that enzymes from the RSH 65 

superfamily are responsible for the synthesis and hydrolysis of (pp)pGpp3,4,14. Synthesis 66 

requires the transfer of a pyrophosphate (PPi) group from ATP to the 3′-OH group of 67 

the ribose moiety of GTP, GDP or GMP, achieved by nucleophilic attack of the β-68 

phosphate of ATP by the 3′-OH of GTP/GDP/GMP15 (FIG. 1a). RSH enzymes with 69 

catalytically active hydrolase (HD) domains are also able to hydrolyse (pp)pGpp by 70 

removing a PPi group to produce GTP/GDP/GMP16. The RSH superfamily is divided 71 

into three groups: long RSHs; small alarmone synthetases (SASs); and small alarmone 72 

hydrolases (SAHs)3.  73 

 74 

Long RSH enzymes 75 

The first RSH enzyme characterised was a long RSH termed RelA from E. coli, so 76 

named as relA mutant strains display a ‘relaxed’ phenotype, with stable RNA synthesis 77 

continuing in the absence of amino acids required for growth17. Long RSH proteins 78 

have now been identified from across the Bacteria, green algae and in plant 79 

chloroplasts3,14. These enzymes contain multiple domains divided between an 80 

enzymatic N-terminal region and a regulatory C-terminal region (FIG. 1b). The HD 81 

(Pfam accession PF13328) and synthetase domains (SYNTH: PF04607) comprise the 82 

enzymatic region. The SYNTH and HD domains work in concert to maintain an 83 

optimum level of (pp)pGpp depending on the environmental conditions18-20, with a 84 

functional HD domain required to avoid toxic accumulation of (pp)pGpp21. The switch 85 

between enzymatic activities is controlled by binding of the C-terminal region with 86 

interaction partners such as the starved ribosome22-26, as well as by substrate 87 

interactions27. Here, the binding of GDP and ATP to the SYNTH domain opens the 88 



 5 

structure of the enzyme, activating synthetase activity and inhibiting hydrolase 89 

activity27. The binding of ppGpp to the HD domain, on the other hand, induces 90 

conformational changes that occlude the SYNTH domain and permit hydrolysis27. The 91 

identity of the domains present in the C-terminal region of long RSH proteins is 92 

described differently throughout the literature but generally are considered to comprise 93 

a TGS region (ThrRS, GTPase and SpoT: PF02824), a ZFD or CC domain (zinc finger 94 

domain/conserved cysteine), an alpha-helical domain and an ACT or RRM domain 95 

(aspartate kinase, chorismate and TyrA/RNA recognition motif: PF13291) (FIG. 1b). 96 

Using a Hidden Markov Model-based approach, 24,072 genomes were searched 97 

for RSH enzymes based on the presence of a SYNTH or a HD domain and classified 98 

into subfamilies based on phylogeny14. Long RSH enzymes were classified into 13 99 

different subfamilies, with most species possessing one long bifunctional enzyme, in 100 

addition to one other enzyme (monofunctional long RSH or SAS)3,14. E. coli, like most 101 

organisms in the Beta- and Gammaproteobacteria, contains two long RSH enzymes: 102 

the monofunctional RelA, which has a catalytically inactive pseudo-HD domain due to 103 

active site mutations; and the bifunctional enzyme SpoT28. Interestingly, the pseudo-104 

HD domain is structurally and evolutionarily conserved in the Beta- and 105 

Gammaproteobacteria, suggesting an additional role in stability or regulation of 106 

enzymatic activity3. Aside from the pseudo-HD domain in RelA, there are also 107 

differences in the catalytic sites of the SYNTH domains between RelA and SpoT from 108 

E. coli. RelA contains the acidic residues EFDD, whereas SpoT has basic residues 109 

RFKD29. This difference may be responsible for the preference of RelA for GDP and 110 

of SpoT for GTP as a substrate, as the motif is located near the GDP/GTP binding 111 

pocket30. It could also explain why SpoT has weaker synthetase activity than RelA31,32. 112 

E. coli also encodes a third enzyme involved in (p)ppGpp metabolism called GppA33 113 
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(FIG. 1a). Although it does not have a HD or SYNTH domain (and is therefore not a 114 

member of the RSH superfamily), it does convert pppGpp to ppGpp through its 115 

guanosine pentaphosphate phosphohydrolase activity so that ppGpp is the dominant 116 

nucleotide produced in E. coli33. Most bacteria outside of the Beta - and 117 

Gammaproteobacteria contain one bifunctional long RSH protein termed Rel, which 118 

can be accompanied by one or two SAS proteins3,14.  119 

Several interaction partners have been shown to regulate the enzymatic activity 120 

of long RSH proteins. For example, SpoT from E. coli interacts with the uncharged acyl 121 

carrier protein (ACP)34 and YtfK35 to respond to fatty acid starvation, as well as the E. 122 

coli 70-binding protein Rsd to sense carbon starvation36, while Rel/RelA proteins are 123 

regulated by stalled ribosomes37-39 (for recent reviews on regulation of synthetase 124 

activity see references9,10). The way in which Rel and RelA sense starved ribosomes 125 

has long been disputed, with theories suggesting that RelA from E. coli could ‘hop’ 126 

between different ribosomes to sense the charged status of tRNAs38 or that (p)ppGpp 127 

was produced following dissociation of active RelA from the ribosome40, as opposed 128 

to only when bound41. In recent years, much of how long RSH enzymes sense amino 129 

acid starvation was clarified, with publications of biochemical studies and a number of 130 

cryo-EM structures of RelA from E. coli in complex with the stalled ribosome22-25 (FIG. 131 

1c). When not bound to the ribosome, RelA/Rel enzymes adopt a closed conformation 132 

that favours (p)ppGpp hydrolysis25,42. Cryo-EM structures reveal that upon ribosome 133 

binding, RelA adopts an open conformation where (p)ppGpp synthesis is favoured23-25. 134 

Uncharged tRNA is not required for this initial RelA/Rel binding event, but it does 135 

stabilise the interaction and promotes synthesis22,25,26. When bound, the TGS, 136 

ACT/RRM and ZFD/CC domains of the C-terminal region of RelA interact with the A-137 

site finger element and the uncharged tRNA, while the enzymatic region extends away 138 



 7 

from the ribosome producing (p)ppGpp23-26 (FIG. 1c). pppGpp can also allosterically 139 

bind to the N-terminal domain and positively influence its own synthesis, ensuring that 140 

production is fully induced in response to amino acid starvation22,43.  141 

 142 

Small alarmone synthetases 143 

SAS proteins only contain SYNTH domains and divide into 30 subfamilies spread 144 

across a diverse range of bacteria14. The best characterised of these are the RelP and 145 

RelQ families, which are found in the Firmicutes and share approximately 30% 146 

sequence identity10. Both RelP and RelQ lack regulatory sensory domains and 147 

expression is controlled at the transcriptional level, where alkaline shock44,45, ethanol 148 

stress46 and exposure to cell wall-targeting antibiotics44,47 can increase transcription (for 149 

recent reviews on regulation of synthetase activity see references9,10). Aside from RelP 150 

and RelQ, a number of additional SAS enzymes have now been characterised, such as 151 

RelV from the Proteobacterium Vibrio cholerae48, and RelS and RelZ from the actRel 152 

subgroup present in the Actinobacteria7. RelZ, is a unique SAS, in that it is the only 153 

RSH superfamily member characterised thus far that contains an additional enzymatic 154 

domain not involved in the metabolism of (pp)pGpp49. The enzyme, found in 155 

Mycobacterium smegmatis, has a SYNTH domain fused to an RNase HII domain that 156 

is involved in separating RNA-DNA hybrid structures termed R-loops, suggesting that 157 

(pp)pGpp has a role in resolving DNA damage49,50.  158 

 159 

Small alarmone hydrolases 160 

The presence of active HD-domain-containing SAH enzymes in bacteria was 161 

confirmed as recently as 201851 and 11 subfamilies have now been predicted based on 162 

phylogenetic analysis14. RelH from the Actinobacterium Corynebacterium glutamicum 163 
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is a member of the Mesh1-L (metazoan SpoT homologue-1 L) subgroup and is capable 164 

of hydrolysing (pp)pGpp in vitro, in an Mn2+ and pH-dependent manner51. An SAH 165 

protein called MESH1 is present in eukaryotes such as humans and Drosophila 166 

melanogaster, with both homologues able to hydrolyse (p)ppGpp and ppApp14,52. 167 

Mesh1-deficient Drosophila displayed slowed body growth and impaired revival upon 168 

amino acid depletion, suggesting a role in starvation responses52. However, these 169 

organisms do not appear to have homologues of (pp)pGpp synthetases52. Biochemical 170 

analysis has demonstrated that human MESH1 is instead, a cytosolic NADPH 171 

phosphatase that is able to cleave NADPH to NADH and inorganic phosphate to control 172 

cellular ferroptosis53. Structurally, NADPH has similarity to ppGpp, which together 173 

with the ability of MESH1 to degrade ppApp14, suggests that this enzyme has broad 174 

substrate specificity and is not specifically involved in alarmone signalling53. 175 

 176 

Expanding the nucleotide pool: pGpp and (pp)pApp  177 

pGpp 178 

Although first identified in Actinobacteria and Bacillus subtilis cells in response to 179 

amino acid starvation in the 1970s12,54, the characterisation of pGpp and its role in the 180 

stringent response is a topic of recent investigation. In 2015, the SAS RelQ from E. 181 

faecalis was shown to produce pGpp from GMP and ATP4, which could then be 182 

degraded by the HD domain of long RSH enzymes6. Like both pppGpp and ppGpp, 183 

pGpp from E. faecalis is capable of inhibiting enzymes involved in the GTP synthesis 184 

pathway (outlined below), as well as the transcription of rrnB by the E. coli RNAP, 185 

suggesting that it is a third nucleotide that functions in modulating the stringent 186 

response4. pGpp synthesis has now been detected from multiple long and short RSH 187 
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enzymes, including M. smegmatis6, Staphylococcus aureus5 and C. glutamicum7, as 188 

well as from RelA in E. coli30. 189 

 Interestingly, in B. subtilis and Bacillus anthracis cells, pGpp is also 190 

synthesised by the enzymatic degradation of pppGpp and ppGpp by a NuDiX 191 

(nucleoside diphosphate linked moiety X) hydrolase termed NahA8 (FIG. 1a). Here, 192 

NahA can hydrolyse between the 5′- and 5′- phosphate groups to produce pGpp both 193 

in vitro and in vivo. Similarly to (p)ppGpp, pGpp is capable of binding to a number of 194 

enzymes in the purine synthesis pathway, but unlike (p)ppGpp, does not interact with 195 

ribosome-associated GTPases8. NahA is not the only NuDiX hydrolase capable of 196 

cleaving (p)ppGpp, with MutT, NudG and RppH from E. coli55,56, and Ndx8 from 197 

Thermus thermophilis57, able to degrade (p)ppGpp to pGp. This highlights that the 198 

regulation of the alarmone pool composition is much more complex than previously 199 

appreciated. 200 

 201 

(pp)pApp 202 

Phosphorylated purine molecules are not limited to guanosine variants. Enzymes 203 

capable of synthesising (p)ppApp have been identified in the actinomycetes12 and high 204 

levels of (p)ppApp accumulate in sporulating B. subtilis cells in a ribosome-dependent 205 

fashion13. A putative function for this nucleotide was identified in the 1970s, where 206 

ppApp was shown to positively affect transcription of rRNA in vitro, in contrast to the 207 

actions of (pp)pGpp58. In the last few years there has been a resurgence in interest in 208 

(p)ppApp. A crystal structure of ppApp in complex with the RNAP from E. coli has 209 

been solved, revealing that the nucleotide binds at a site distinct from the two (p)ppGpp 210 

binding sites that is near the catalytic centre59. This work also observed that in vitro 211 
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(p)ppApp functions in an opposite way to (pp)pGpp and activates transcription of rrn 212 

promoters by enhancing promoter binding and stabilising open complex formation59. 213 

Importantly, a number of RSH enzymes have now been shown capable of 214 

producing (pp)pApp in vivo. Of the 30 identified SAS subtypes, 5 are encoded in 215 

bicistronic toxin-antitoxin-like operons (toxSAS) that are widespread throughout the 216 

Bacteria14. While expression of members of the well-known RelP and RelQ groups in 217 

E. coli were nontoxic, expression of SAS enzymes from these 5 subfamilies inhibited 218 

cell growth unless co-expressed with their cognate antitoxin14. Inhibition of bacterial 219 

growth was mediated by the production of ppApp and ppGpp, and resulted in a 220 

downregulation of transcription, translation and DNA replication14. In each case, toxin 221 

activity could be controlled by the production of a proteinaceous antitoxin that binds to 222 

and inactivates the toxin, as for type II toxin-antitoxin systems. The activity of one 223 

tested toxin was also inhibited by a second antitoxin. This antitoxin had hydrolase 224 

activity (SAH) and cleaved the produced alarmones, similar to type IV toxin-antitoxin 225 

systems14.  226 

Pseudomonas aeruginosa encodes an enzyme that is structurally similar to RSH 227 

enzymes, however it cannot synthesise (p)ppGpp, instead producing (pp)pApp60. This 228 

enzyme, Tas1, acts as an interbacterial toxin, as it is injected by a type VI secretion 229 

system into neighbouring cells where it produces (pp)pApp60. The net result of this is a 230 

rapid depletion of cellular ATP, leading to wide-reaching rearrangements in metabolic 231 

processes. In addition, (pp)pApp is able to bind to (pp)pGpp target proteins such as 232 

PurF and directly inhibit purine biosynthesis60. Tas1 and toxSAS enzymes are by no 233 

means alone in their synthesis of alarmones as toxins. Genes encoding (p)ppGpp 234 

synthetases have been identified in a number of prophages, with suggested roles in viral 235 
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defence61-63. Here, (p)ppGpp is produced to shut down protein synthesis and arrest 236 

growth, thereby impeding lytic phage attack. 237 

It is interesting to note that unchecked production of (pp)pApp is toxic, just like 238 

unchecked production of (pp)pGpp in mutants without any hydrolase activity47. It may 239 

be that in addition to acting as a toxin, (pp)pApp is also a regulatory molecule and can 240 

positively influence transcription in certain species, as the in vitro data suggests58,59. 241 

This function would require the presence of a dedicated hydrolase and presumably a 242 

mechanism for controlling the rate of synthesis. As discussed above, there is a non-243 

toxic accumulation of (p)ppApp in sporulating B. subtilis cells13 and the role this plays 244 

in successful sporulation is unclear. Further research into regulation by (pp)pApp and 245 

its connection with the (pp)pGpp regulon will be essential for a complete view of 246 

nucleotide signalling in bacteria. 247 

 248 

Diverse metabolic pathways are controlled by (pp)pGpp 249 

The accumulation of (pp)pGpp via RSH enzymes has a diverse range of consequences 250 

in the cell by binding to a plethora of targets. Advances in binding-target identification 251 

techniques, including the use of DRaCALA-based interaction screens8,55,64 and 252 

biotinylated capture-compounds65, have revealed the widespread range of (pp)pGpp-253 

interacting targets. This diversity of function allows bacteria to respond to stress in 254 

different ways that are relevant to their life cycles or niches. Interestingly, there does 255 

not seem to be a consensus (pp)pGpp binding site shared by targets, with this nucleotide 256 

capable of interacting with members from varied protein families to both activate or 257 

inhibit enzyme function. This promiscuity may arise from a degree of conformational 258 

flexibility that (pp)pGpp possesses, where the 5′ and 3′ phosphate moieties can adopt 259 

either a ring-like or elongated conformation66.  260 
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 261 

DNA replication  262 

DnaG is a DNA primase that synthesises the RNA primers needed for DNA 263 

replication67. In E. coli and B. subtilis, the priming activity of DnaG is inhibited by 264 

direct binding of (p)ppGpp to the enzyme active site, reducing DNA replication68-70. 265 

Interestingly, ppGpp is a more potent inhibitor of DnaG in E. coli, whilst in B. subtilis 266 

pppGpp is the more potent inhibitor68,69. This may reflect the higher ratio of ppGpp to 267 

pppGpp in E. coli, while the opposite occurs in B. subtilis71-73. 268 

The stringent response is also responsible for decreasing the initiation of DNA 269 

replication in E. coli, with replication rates inversely correlated with ppGpp levels74,75. 270 

This is due, in part, to a reduction in the transcription of the replication initiation 271 

ATPase DnaA during the stringent response76, with expression of DnaA from a ppGpp-272 

insensitive promoter sufficient to overcome inhibition77. Interestingly, over-producing 273 

DnaA prior to (p)ppGpp accumulation does not rescue initiation78, whereas concurrent 274 

production does77, suggesting it is vital that DnaA is in the ATP-bound active state in 275 

order to compensate for the effects of (p)ppGpp. (p)ppGpp further impacts DNA 276 

replication by indirectly controlling the binding of DnaA to oriC via the lowering of 277 

negative supercoiling78. During normal growth, transcription induces negative 278 

supercoils in the oriC origin, thus promoting replication initiation79. When produced, 279 

(p)ppGpp binds to the RNAP and decreases cellular transcription, resulting in fewer 280 

negative supercoils near oriC, thereby decreasing the occupancy of DnaA78. It is 281 

currently unclear whether it is a general reduction in transcription or of specific key 282 

genes, for instance the DNA gyrase gene gyrA or topoisomerase IV, which acts to lower 283 

negative supercoiling78,80. However, the combined effect on negative supercoiling 284 
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together with the decrease in dnaA transcription, allows for more nuanced control of 285 

DNA replication. 286 

Control of DNA replication by (p)ppGpp is by no means limited to E. coli. In 287 

the Alphaproteobacterium Caulobacter crescentus, the differentiation of motile, 288 

scavenger swarmer cells into stalk cells requires the activation of DNA replication, 289 

which is inhibited in the swarmer cells81. This is reciprocally regulated by DnaA and 290 

the cell cycle transcriptional regulator CtrA, which controls promoter reprogramming 291 

during growth transitions82,83. The production of (p)ppGpp by this organism impacts 292 

cell cycle progression by activating the degradation of DnaA, stopping the synthesis of 293 

DnaA and inhibiting the proteolysis of CtrA84-86, all of which ensures that DNA 294 

replication does not occur. This prevents a premature switch from swarmer to stalk cell 295 

before the swarmer cell has found a nutrient rich environment. 296 

 297 

Nucleotide synthesis  298 

As (pp)pGpp accumulates in the cell, the GTP/GDP/GMP pools are lowered following 299 

substrate depletion87. However, it is now well established that (pp)pGpp also actively 300 

inhibits the synthesis of purine nucleotides88 (FIG. 2a), and that this regulation is 301 

essential for the survival of B. subtilis cells during starvation88,89. Here, synthesis begins 302 

with 5-phosphoribosyl-1-pyrophosphate (PRPP) leading to the production of inosine 303 

5′-monophosphate (IMP), which serves as the branch point between adenosine and 304 

guanosine nucleotide synthesis. In E. coli, both ppGpp and (p)ppApp can inhibit PurF, 305 

responsible for the first step in the conversion of PRPP to IMP, thus halting de novo 306 

biosynthesis of all purine nucleotides60,65. Two molecules of ppGpp bind to the PurF 307 

tetramer at an allosteric site, disrupting the formation of the catalytic centre and 308 

competitively inhibiting enzyme activity65 (FIG. 2b). (p)ppGpp can also inhibit the 309 
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ATP biosynthesis enzyme PurA, which converts IMP to adenylosuccinate8,65,90 (FIG. 310 

2a). Crystallisation of PurA soaked with ppGpp revealed guanosine 5′-diphosphate 311 

2′:3′-cyclic monophosphate (ppG2′:3′p) in the binding pocket (FIG. 2b), suggesting that 312 

the enzyme either has cyclase activity, or was able to extract the cyclic derivative from 313 

the soaking buffer91. The inhibition of these enzymes leads to a 65% decrease in ATP 314 

synthesis in the cell, a decrease which is balanced by less ATP being consumed in cells 315 

upon induction of the stringent response65. 316 

In addition to PurF, a number of enzymes specifically involved in the GTP 317 

biosynthetic pathway are targeted by (pp)pGpp (FIG. 2a), including the IMP 318 

dehydrogenase GuaB and the guanylate kinase Gmk8,88,92. GuaB is common to both the 319 

de novo and salvage nucleotide synthesis pathways and catalyses the formation of 320 

xanthosine monophosphate (XMP) from IMP, a reaction that is weakly inhibited by 321 

(p)ppGpp in B. subtilis88. In the same pathway, Gmk converts GMP to GDP, which is 322 

strongly inhibited by all three alarmones4,64,88. This inhibition is not conserved across 323 

bacteria however, as it does not occur in most Proteobacteria93,94. This is due to the lid 324 

domain of Gmk either being in a closed conformation (ppGpp insensitive – E. coli) or 325 

an open conformation (ppGpp sensitive – S. aureus) upon dimerisation of Gmk (FIG. 326 

2b)94,95.   327 

Components of the salvage nucleotide synthesis pathway are also inhibited by 328 

(pp)pGpp. Both HprT and XprT use PRPP as a phosphoribose donor to convert the 329 

purine bases hypoxanthine and guanine to IMP and GMP (HprT) or xanthine to XMP 330 

(XprT) (FIG. 2a)4,64,88,96. XprT is most potently inhibited by pGpp and ppGpp, which 331 

bind at the PRPP binding site (FIG. 2b) and protect cells from excess environmental 332 

xanthine96. The (pp)pGpp-bound form of HprT exists as an apo-tetramer (FIG. 2b), 333 

where it prevents dissociation of HprT into two active PRPP-bound dimers95. (pp)pGpp 334 
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binding not only competitively blocks the PRPP binding site but also the interaction at 335 

the dimer-dimer interface, which further potentiates (pp)pGpp inhibition95. Inhibition 336 

of HprT appears to be widespread across bacteria95, suggesting that the regulation of 337 

this enzyme by (pp)pGpp is important for GTP homeostasis as well as a stress response 338 

mechanism.  339 

Interestingly, PpnN, the enzyme which catalyses the reverse reactions to HprT 340 

and XprT is activated by (p)ppGpp (FIG. 2a)97. PpnN exists as a tetramer and ppGpp 341 

binds to allosteric sites at the monomer interfaces (FIG. 2b)55,97. This binding results in 342 

a conformational change that opens up the active site, thus increasing PpnN activity97 343 

and further directs metabolism away from GTP biosynthesis upon induction of the 344 

stringent response. 345 

 346 

Transcription 347 

One of the key consequences of (pp)pGpp accumulation during the stringent response 348 

is a change in transcriptional profile. There is general repression of rRNA synthesis and 349 

genes involved in metabolism of macromolecules such as DNA and phospholipids, 350 

with a concurrent increase in transcription of amino acid biosynthesis-encoding 351 

enzymes and nutrient transporters to overcome nutrient limitations. The transcriptional 352 

changes that occur during the stringent response are key to producing the slow growing 353 

phenotype characteristic of this response.  354 

In Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria, (p)ppGpp binds 355 

directly to RNAP to alter the transcription of genes both positively and negatively, with 356 

ppGpp being a more potent effector nucleotide than pppGpp94,98. There are two ppGpp 357 

binding sites on RNAP (FIG. 3a), and these are generally conserved across 358 

Proteobacteria99. Site 1 is found at the interface between the ω and β′ subunits100 (FIG. 359 
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3b, 3c). Site 2 is located at the interface between the β′ subunit and the transcription 360 

factor DksA101 (FIG. 3b, 3d), where the binding of ppGpp is thought to allosterically 361 

potentiate the inhibition of transcription by DksA102. The ability of RNAP from a given 362 

species to bind to (p)ppGpp at site 1 can be predicted by the presence of a MAR motif 363 

at the N-terminal end of the ω subunit103. The MAR motif is conserved in Alpha-, Beta-364 

, Gamma-, Deltaproteobacteria but is absent in other classes103. In E. coli, when 365 

(p)ppGpp binds to site 1, transcription is inhibited approximately 2-fold, whereas when 366 

both sites are bound, along with DksA, there is 20-fold inhibition101,104,105.  367 

A recent study has revealed the extent to which transcription is modulated upon 368 

activation of the stringent response in E. coli, with altered expression of 757 genes 5 369 

minutes, and 1224 genes 10 minutes after inducing expression of RelA from a 370 

plasmid106. Intriguingly, in an E. coli strain expressing a mutant RNAP that cannot bind 371 

to ppGpp, there were almost no changes in transcription following ppGpp 372 

accumulation106. This suggests that in E. coli, there are few, if any, genes that are 373 

regulated by ppGpp in an RNAP-independent manner. Comparing the transcriptional 374 

profiles through accumulation of ppGpp by recombinant expression of RelA106, rather 375 

than by nutritional limitation107, reveals large differences. 75% of the genes that are 376 

differentially expressed through recombinant expression of RelA are different to those 377 

seen upon stringent induction by serine hydroxamate106. This is likely due to metabolic 378 

changes or other stress responses being triggered during starvation conditions with 379 

confounding effects.  380 

In Firmicutes, Actinobacteria and Deinococcus-Thermus, (p)ppGpp does not 381 

interact with the RNAP94,108, and has no effect on the stability of the DNA-RNAP open 382 

complex. Therefore, any transcriptional changes observed during the stringent response 383 

are indirect108 or by (p)ppGpp interacting with riboswitches109 (BOX 1). During the 384 
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stringent response the level of GTP in the cell decreases due to its consumption in the 385 

production of pppGpp and through the direct inhibition of GTP biosynthesis enzymes 386 

by (pp)pGpp as described above8,21,88,95,96,108. This has an impact on transcription 387 

through two mechanisms. Firstly, in B. subtilis, σA-dependent promoters that are 388 

sensitive to iNTP levels and have a GTP as the initiating nucleotide at the +1 position, 389 

e.g. rRNA promoters, are transcribed at a lower frequency due to a slower initiation 390 

rate, while those that begin with an ATP tend to be upregulated108,110. Indeed, GTP 391 

nucleotides at positions +1 to +4 play a role in gene expression in S. aureus during the 392 

stringent response, suggesting that initial mRNA elongation is also sensitive to 393 

nucleotide levels in some species111. Secondly, GTP along with branched chain amino 394 

acids (BCAAs), are cofactors of the transcription repressor CodY, which is present in 395 

low G+C Gram-positive bacteria112. When GTP levels are low, CodY repression is 396 

relieved, allowing transcription of a variety of genes including those involved in amino 397 

acid biosynthesis and transport113. In S. aureus, 150 genes are upregulated when the 398 

stringent response is activated by leucine and valine starvation, with 143 of these 399 

increases due to CodY derepression114. On the other hand, 161 genes are downregulated 400 

independently of CodY, highlighting that CodY is an important factor for gene 401 

upregulation but not downregulation during the stringent response in S. aureus. 402 

 403 

Box 1: Riboswitches 404 

The repertoire of (p)ppGpp binding targets has now been expanded with the discovery 405 

that (p)ppGpp can target RNA molecules through interacting with riboswitches. 406 

Riboswitches are non-coding sections of mRNAs that bind to various ligands to allow 407 

regulation of gene expression. (p)ppGpp selectively binds to subtype 2a variants of the 408 

ykkC riboswitch, where it increases transcription of downstream genes109. Although not 409 
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widespread, this riboswitch is associated with BCAA biosynthesis and transporter 410 

genes, as well as ABC transporters and glutamate synthases and is mostly present in a 411 

subset of organisms within the Firmicutes109. Interestingly, ~40% of (p)ppGpp 412 

riboswitches in the 5′ untranslated region of BCAA biosynthesis genes are 413 

accompanied by a leucine T box RNA109. This element regulates gene expression by 414 

binding to uncharged leucine tRNA115. This suggests that when (p)ppGpp riboswitches 415 

and leucine T box RNA are found together, the presence of both (p)ppGpp and 416 

uncharged leucine tRNA is required for full gene expression109. This adds further 417 

complexity to the regulation of BCAA biosynthesis genes during the stringent response 418 

beyond CodY. Furthermore, there are no examples of a canonical CodY binding site 419 

consensus sequence116 upstream of a (p)ppGpp riboswitch, despite the fact that most 420 

species with (p)ppGpp riboswitches do have a codY gene, so the interplay between these 421 

regulatory mechanisms is unknown109. 422 

 423 

Ribosome maturation and function  424 

In addition to the effect on rRNA transcription, the stringent response also plays a role 425 

in inhibiting ribosome maturation and protein translation. Upon stringent response 426 

induction, it is generally accepted that mature ribosomes have a reduced rate of 427 

translation due to the inhibitory action of (p)ppGpp on several key enzymes (FIG. 4a). 428 

The initiation factor IF2 for instance, is inhibited by ppGpp, preventing the formation 429 

of the 30S initiation complex (30S IC), thus reducing translation117. However, 430 

translation of a subset of proteins is still required during the stringent response. Recent 431 

work indicates that 30S-bound IF2 has different tolerances for ppGpp depending on the 432 

mRNA present in the 30S pre-IC118 (FIG. 4b). Two consecutive hairpins known as a 433 

structured enhancer of translation initiation (SETI) next to the translation initiation 434 
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region mediate ppGpp tolerance for tufA and rnr mRNA (encoding elongation factor 435 

EF-Tu and RNase R, respectively) in E. coli118. Binding of SETI-containing mRNA to 436 

the pre-IC complexed with ppGpp allows for the exchange of ppGpp for GTP and the 437 

continuation of translation. pppGpp regulates translation slightly differently when 438 

bound to IF2, where it permits 30S IC formation in E. coli, but requires higher 439 

concentrations of IF2 to do so118. Whilst the utilisation of this mechanism throughout 440 

the Bacteria has yet to be demonstrated, in E. coli this allows permissive synthesis of a 441 

subset of proteins118. In addition to IF2, (p)ppGpp also acts to halt translation through 442 

inhibition of the elongation factors EF-Tu and EF-G (FIG. 4a), which are required for 443 

charged tRNA delivery and translocation of the peptide chain during synthesis119. 444 

During termination, RF3, which is required for recycling RF1 and RF2 from the 445 

ribosome, is inhibited by ppGpp120, whilst the inhibition of EF-G could also impact the  446 

recycling of the post-termination complex (FIG. 4a).  447 

In addition to halting translation, (p)ppGpp also inhibits active 70S formation 448 

in a number of ways. (p)ppGpp reduces mature 50S and 30S formation by inhibiting 449 

small GTPases involved in ribosome maturation64,121. Here, (p)ppGpp binds to the 450 

GTPases RsgA, RbgA, Era and Obg in a number of species8,55,64,122 and inhibits their 451 

GTPase activities64,122 as a way of reducing the 70S ribosome pool. Once formed, 452 

(p)ppGpp can also promote the sequestration of ribosomes. Overexpression of the 453 

synthetase RelP in a strain of B. subtilis that does not produce (p)ppGpp results in the 454 

formation of inactive 70S ribosome dimers termed 100S ribosomes, in a hibernation 455 

promoting factor (Hpf)-dependent manner123. (p)ppGpp also induces the transcription 456 

of hpf, rmf (ribosome modulation factor) and raiA (ribosome-associated inhibitor), all 457 

factors important for ribosome inactivation and dimerisation in E. coli124,125. As such, 458 

the stringent response controls 100S ribosome formation through transcriptional 459 
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regulation in multiple species123-125. Furthermore, the GTPase HflX in S. aureus can 460 

dissociate 100S ribosomes in a GTPase-dependent manner126. This activity is inhibited 461 

by (p)ppGpp, thus maintaining the inactive 100S ribosomes126. In E. coli, the 462 

transcription of hflX is under the control of a heat sensitive promoter127, implying that 463 

HflX functions during stress as a ribosome splitting factor and not in subunit 464 

maturation. However, it is unlikely that HflX is the main splitting factor in bacteria128 465 

and so it will be interesting to see if novel splitting factors are also regulated by 466 

(p)ppGpp. From all of the above, it is clear that (p)ppGpp can act to halt protein 467 

production at several key stages, ensuring slowed growth under stress. 468 

 469 

Lipid metabolism 470 

Fatty acid starvation is a well-known trigger of the stringent response129. (p)ppGpp 471 

production during fatty acid starvation inhibits many metabolic activities, ensuring that 472 

the cell volume does not outstrip the cell envelope capacity, thus maintaining the 473 

integrity of the envelope130. In E. coli, ACP is charged with a fatty acid chain during 474 

fatty acid biosynthesis. When fatty acid levels are low, an uncharged ACP binds to the 475 

TGS/RRM domain of SpoT, inducing (p)ppGpp production and thus triggering the 476 

stringent response34,131,132. (p)ppGpp synthesis by RelA is also triggered during fatty 477 

acid starvation, and to a greater extent than SpoT133. When fatty acid levels are low 478 

there is a reduction in cellular lysine, resulting in an accumulation of uncharged lysine 479 

tRNA that directly activates RelA133. This reduction in lysine is likely the result of a 480 

depletion of its precursor pyruvate, brought about during  fatty acid starvation133. The 481 

interaction between ACP and the long RSH does not occur with the Rel enzymes from 482 

B. subtilis or Streptococcus pneumoniae due to differences in the isoelectric points134. 483 

However, Rel from B. subtilis is still required for surviving fatty acid starvation, which 484 
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may be more related to cellular GTP/ATP levels, rather than to production of 485 

(p)ppGpp130,135. It is possible that fatty acid starvation triggers the stringent response in 486 

the Firmicutes through depletion of lysine or other amino acids which use pyruvate as 487 

a precursor (such as valine, isoleucine and leucine) but this has not yet been 488 

investigated.  489 

A second protein that can trigger the stringent response during fatty acid or 490 

phosphate depletion is YtfK35. YtfK is a protein of unknown function present in 491 

Gammaproteobacteria, where it interacts with the N-terminal region of SpoT to trigger 492 

(p)ppGpp production and cell survival35. Internal imbalances in central metabolism can 493 

also trigger the stringent response. Repression of plsC, lptA and lpxA through CRISPRi 494 

results in (p)ppGpp accumulation in E. coli136. PlsC is involved in phospholipid 495 

biosynthesis, whilst lptA and lpxA encode key components of the outer membrane 496 

biogenesis pathway. Disrupting these aspects of lipid and cell envelope metabolism in 497 

a (p)ppGpp-null mutant causes unregulated growth and cell lysis136. Phospholipid 498 

metabolism is also regulated by (p)ppGpp binding to and inhibiting the enzymes 499 

responsible for the first and second steps of lipid and phospholipid biosynthesis (PlsB 500 

and PgsA, respectively)137,138.  501 

Additionally, (p)ppGpp inhibits the activity of several enzymes involved in the 502 

bacterial type-II fatty acid biosynthesis (FAS-II) pathway139. AccA and AccD are 503 

protein subunits of the heterotetrameric acetyl-CoA carboxytransferase which transfers 504 

a carbonyl group to acetyl-CoA, forming malonyl-CoA. The activity of the 505 

carboxytransferase complex (AccA2AccD2) is inhibited by (p)ppGpp139. Furthermore, 506 

FabA and FabZ, homologous β-hydroxyacyl-ACP dehydratases involved in fatty acid 507 

elongation, are inhibited by ppGpp at biologically significant levels140, highlighting that 508 

(p)ppGpp impacts lipid metabolism in multiple ways.  509 
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 510 

Impact of the stringent response on bacterial pathogenicity  511 

The impact of the stringent response on virulence and pathogenesis is most commonly 512 

mediated through changes in transcriptional profile rather than through direct binding 513 

of (p)ppGpp to an effector protein. Even horizontally acquired virulence genes can be 514 

incorporated into the native stringent regulon, demonstrating the elasticity of the 515 

response141. While also impacting steady-state growth (BOX 2), the stringent response 516 

has been implicated in each stage of an infection, including adhesion, invasion, immune 517 

evasion, dissemination, biofilm formation and chronic infection, by many pathogens. 518 

While reviewed extensively by Dalebroux et al.,142,143, here we use examples from 519 

various pathogens, including E. coli, Salmonella species and S. aureus, to illustrate the 520 

role of the stringent response throughout an infection. 521 

 522 

Box 2: (p)ppGpp – indirect controller of steady-state growth rates in E. coli 523 

Altered cell growth is perhaps one of the most important aspects of bacterial survival 524 

and adaption to new environments. During the stringent response, (p)ppGpp is central 525 

to reorganising cellular processes, the effect of which is a reduction in growth2. Indeed, 526 

E. coli (p)ppGpp mutant strains lack growth rate control144, highlighting the important 527 

contribution (p)ppGpp makes to growth rate through its inhibition of numerous cellular 528 

processes, including DNA replication, ribosome synthesis and translation.  529 

During exponential growth of E. coli, the initiation of DNA replication 530 

increases, resulting in a high ori/ter ratio. In the absence of (p)ppGpp however, cells 531 

contain a constantly high ori/ter ratio despite changes in growth rate80, illustrating how 532 

(p)ppGpp-mediated inhibition of DNA replication can impact growth. The effects of 533 

(p)ppGpp on steady-state growth of E. coli were quantitatively explored by altering the 534 
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expression of either the RelA synthetase from E. coli or the Mesh1 hydrolase from D. 535 

melanogaster in amino acid-free minimal media145. Increasing (p)ppGpp levels during 536 

steady-state growth decreased the number of ribosomes in the cell, while lowering 537 

(p)ppGpp levels had the opposite affect145. A global resource allocation model146 was 538 

utilised, wherein the proteome was divided into three fractions: metabolic proteins and 539 

those constitutively expressed; ribosome-associated proteins; and growth rate-540 

independent proteins. This model revealed that increased levels of (p)ppGpp decreased 541 

growth by reducing ribosome-associated protein expression145. Interestingly, decreased 542 

amounts of (p)ppGpp also reduced growth as a result of lower expression of metabolic 543 

proteins. From this, it was apparent that (p)ppGpp indirectly impacts growth through 544 

finely balancing resource allocation to match the cellular growth rate.  545 

 546 

Adhesion 547 

As enterohemorrhagic E. coli (EHEC) moves from the nutrient-rich upper intestine to 548 

the nutrient-poor lower intestine, the expression of the horizontally-acquired locus of 549 

enterocyte effacement (LEE) pathogenicity island is triggered. This locus encodes 550 

factors involved in attachment and colonisation of the gut, including the type III 551 

secretion system (T3SS) and effector proteins needed for intimate adhesion147. In 552 

addition to a number of other transcriptional regulators, the expression of this locus is 553 

triggered by an accumulation of (p)ppGpp via RelA, resulting in an increase in 554 

adherence to epithelial cells during the stringent response141 (FIG. 5). Together with 555 

DksA, (p)ppGpp is essential for the activation of ler and pch transcription, two 556 

regulators required for the expression of the LEE regulon141. (p)ppGpp is also required 557 

for the downregulation of the flagella regulon in E. coli. Here, (p)ppGpp can inhibit the 558 

transcription of fhlDC, a master regulator of flagella synthesis genes106,148. 559 
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Fimbriae are crucial factors for bacterial attachment to host cells. The expression 560 

of type 1 fimbrial genes in uropathogenic E. coli (UPEC) is activated by (p)ppGpp 561 

through transcriptional activation of the fimB gene149. FimB is a recombinase that flips 562 

the promoter of the fimAICDFGH operon into the ‘on’ orientation, allowing 563 

transcription of these fimbriae-encoding genes. (p)ppGpp-null UPEC mutants display 564 

no fimbriae on their surface149. In contrast to this, mutants of the transcription factor 565 

dksA are hyperfimbriated, revealing that DksA and (p)ppGpp can function 566 

independently, as well as codependently150. Control of fimbriae expression by 567 

(p)ppGpp is also observed in Bordetella pertussis, where the expression of fim3, which 568 

encodes a subunit of the long filamentous structure, was decreased in a relA spoT 569 

double mutant151. 570 

 571 

Invasion  572 

During an infection, many bacterial species use the stringent response to aid in invading 573 

host tissues. A (p)ppGpp-null mutant of Salmonella enterica serovar Typhimurium 574 

shows reduced invasion of intestinal epithelial cells and is attenuated in the BALB/c 575 

mouse model (FIG. 5)152. The (p)ppGpp mutant strain had reduced expression of hilA 576 

and invF, two transcriptional activators of the Salmonella pathogenicity island 1 577 

(SPI1)152. SPI1 encodes a T3SS which secretes factors enabling bacterial uptake and 578 

invasion upon contact with specialised M cells in the intestinal epithelium153. 579 

Furthermore, the SlyA transcriptional activator in S. Typhimurium directly binds to 580 

(p)ppGpp, allowing the formation of SlyA dimers154. These dimers then bind to 581 

promoter DNA resulting in the transcription of many virulence genes154, such as pagC 582 

which encodes a membrane surface protein that aids survival in serum155.  583 
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The use of an iron overload murine model for S. Typhi infection revealed that 584 

mice infected with (p)ppGpp-null mutants were able to outlive their wild-type-infected 585 

counterparts, with decreased numbers of the mutant recovered from visceral organs, 586 

highlighting a role for (p)ppGpp in systemic infection156. (p)ppGpp was crucial for the 587 

production of flagella, with the null strain displaying decreased adhesion to, and uptake 588 

by, THP-1 phagocytes in vitro. (p)ppGpp mutants were reduced in their ability to 589 

invade epithelial cells, to survive in human serum and to survive within 590 

macrophages156. All of this ties in with observations from S. Typhimurium, where 591 

strains with C-terminal domain mutants of SpoT had defects in producing (p)ppGpp in 592 

response to acid stress, resulting in reduced metal cation uptake and reduced activation 593 

of SPI2 genes, producing an attenuated phenotype in a mouse model157. The 594 

requirement of (p)ppGpp for invasion of host cells is by no means limited to Salmonella 595 

species, with the stringent response important for the invasion and virulence of a 596 

number of intracellular pathogens, including Campylobacter jejuni158, Streptococcus 597 

suis159, Legionella pneumophila160 and E. faecalis161.  598 

 599 

Immune evasion and dissemination 600 

Many pathogens enter host cells during an infection in order to evade the immune 601 

system, requiring adaptation to a different environment. In S. aureus, the stringent 602 

response is induced following uptake by human polymorphonuclear neutrophils 603 

(PMNs), resulting in Rel-dependent induction of the cytotoxic phenol soluble modulins 604 

psm1-4 and psm1-2114. These cytotoxins lyse neutrophils and promote escape162,163, 605 

making the stringent response crucial for S. aureus survival after phagocytosis114 (FIG. 606 

5).  607 
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 Biofilms are complex communities of microorganisms held together by an 608 

extracellular matrix that can form on many different surfaces. This matrix enables 609 

resistance to opsonisation, complement deposition, phagocytosis by macrophages and 610 

ultimately immune evasion and subsequent bacterial dissemination164. A number of 611 

reports suggest a role for (p)ppGpp in regulating biofilm formation, however whether 612 

it is required for the formation or for the dispersal of biofilms appears to differ between 613 

species, with the precise mechanisms not yet fully understood. E. faecalis, for instance, 614 

can cause biofilm-mediated catheter-associated urinary tract infections (CAUTI), 615 

which are impacted by both (p)ppGpp and CodY165 (FIG. 5). (p)ppGpp-null and ΔcodY 616 

single mutants of E. faecalis show reduced biofilm formation and reduced colonisation 617 

of bladders and catheters in vivo165. However, the biofilm formation and colonisation 618 

of a (p)ppGpp-null ΔcodY double mutant was similar to wild-type, although this strain 619 

was unable to cause kidney infection, suggesting decreased virulence165. These findings 620 

agree with research in Listeria monocytogenes demonstrating that codY inactivation re-621 

establishes virulence to a certain extent in a (p)ppGpp mutant, as there is no repression 622 

of the CodY regulon (mimicking the stringent response)165,166. Biofilm formation is also 623 

regulated by the stringent response in species which do not encode codY, for example 624 

B. pertussis151, E. coli167 and Helicobacter pylori168.  625 

In contrast to the above examples, increased biofilm formation in the absence of 626 

a functional stringent response has been demonstrated in a number of species, including 627 

Porphorymonas gingivalis169 and Actinobacillus pleuropneumoniae170. In 628 

Pseudomonas putida, (p)ppGpp is required for biofilm dispersal by inhibiting the 629 

synthesis of the adhesin LapA, while simultaneously promoting its proteolysis171,172 630 

(FIG. 5). In S. epidermidis, the -PSMs are responsible for cell detachment and 631 

dissemination of cells from biofilms173, and as mentioned above, these toxins are 632 
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upregulated by (p)ppGpp in staphylococcal species114. These contradictions between 633 

species highlights the complexity and non-uniformity of the stringent response across 634 

bacteria, with much about how (p)ppGpp mechanistically controls biofilm formation 635 

and immune evasion remaining to be clarified. 636 

 637 

The role of (p)ppGpp in chronic infections 638 

Tolerance to cyclic antibiotics by a bacterial population has been found to enable the 639 

emergence of resistance174. These populations often contain small colony variants 640 

(SCVs), which are characterised as slow growing cells, with small colony sizes and 641 

mutations resulting in decreased virulence and metabolism175. In the laboratory, 642 

(p)ppGpp mutants are artificially generated in order to examine their effect on growth 643 

and virulence. However, an MRSA strain from a chronically infected patient harboured 644 

a mutation affecting (p)ppGpp production176. (p)ppGpp overexpression occurred due to 645 

a F128Y substitution in the hydrolase domain of Rel, constitutively activating the 646 

stringent response176. The transcription profile of the clinical isolate was similar to that 647 

of a strain in which the stringent response had been induced by the antibiotic mupirocin. 648 

This strain also had an upregulation of the global regulator-encoding agr locus, as well 649 

as substitutions in RpoB, in the DNA topoisomerase IV ParC and in the ribosomal 650 

methyltransferase RlmN, resulting in rifampicin, ciprofloxacin and linezolid 651 

resistance176. Notably, linezolid is a last resort antibiotic in the treatment of resistant 652 

infections. Altogether, these four mutations sequentially allowed the emergence of a 653 

resistant SCV within a chronic infection176. This is similar to findings by Mwangi and 654 

colleagues, who showed high levels of (p)ppGpp in a strain highly resistant to 655 

methicillin177 and demonstrates in a clinical environment how bacteria evolve to adapt 656 

to stressful conditions. 657 
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 658 

Conclusions and outlook 659 

In this review, we have examined some of the more recent discoveries relating to the 660 

synthesis and function of (pp)pGpp in bacteria. Although first identified many years 661 

ago, the recent characterisation of pGpp production and the use of (p)ppApp as a toxin, 662 

has stressed that there is still much to learn about these signalling systems. Excitingly, 663 

this also extends beyond the identification of new regulatory nucleotides, as an 664 

increasing number of pathways that are controlled by these nucleotides are being 665 

identified. Here, we have touched upon a number of metabolic processes that are 666 

regulated by (pp)pGpp, including priming for DNA replication, synchronising the 667 

production of both GTP and ATP to match cellular needs, controlling protein 668 

production at multiple points and adjusting fatty acid production. As discussed, all of 669 

the above processes are vital for bacterial survival in a host, explaining why these 670 

alarmones are intertwined with virulence and bacterial survival. 671 

The reallocation of cellular processes during times of stress is an incredibly 672 

complex process. Despite (p)ppGpp having been identified in the 1960s11, many 673 

unknowns about this signalling system remain. Until recently the vast majority of 674 

research had been conducted in E. coli. However, we now understand that while this 675 

system is ubiquitous throughout the Bacteria, the mechanisms of stress sensing, 676 

alarmone production and alarmone function are far more diverse than previously 677 

anticipated. Of the subfamilies of RSH enzymes identified3,14, only a small number 678 

have been characterised. Work to characterise the toxSAS subfamilies14 demonstrates 679 

that there may be functions for (pp)pGpp beyond the classical stringent response. 680 

Furthermore, other unidentified enzymes without SYNTH or HD domains involved in 681 

(pp)pGpp turnover may exist. Prime examples of this are the phosphohydrolase GppA33 682 
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or the NuDiX hydrolase NahA8. In addition, many other HD/SYNTH enzymes with 683 

functional domain fusions, like RelZ, could exist in order to adapt the stringent response 684 

to respond to stimuli specific for the survival of a given species. Extending from this, 685 

(pp)pGpp synthesis enzymes are present in the chloroplasts of plants and in green 686 

algae178-181, suggesting a fairly understudied role for these alarmones beyond the 687 

prokaryotes.  688 

New tools are continually being developed to aid our understanding of this 689 

signalling pathway. For example, the use of a DRaCALA (pp)pGpp binding screen in 690 

S. aureus64, E. coli55 and B. anthracis8, as well as the development of a (p)ppGpp 691 

capture-compound65 have significantly broadened the repertoire of (pp)pGpp targets. 692 

Combining that, with numerous “omic” techniques such as RNA-seq that provide 693 

interesting insights into processes controlled by (pp)pGpp106, has led to a much greater 694 

understanding of this system. These tools now need to be combined with in vivo work 695 

to fully explore how (pp)pGpp impacts bacterial pathogenicity. Much is still to be 696 

clarified on the role of (pp)pGpp in chronic infection, and the development of methods 697 

to detect the production of (pp)pGpp in vivo and monitor the triggers of the stringent 698 

response in host cells, will greatly improve our understanding of this essential 699 

signalling system in the future.  700 

  701 
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1197 

Figure 1. Synthesis and hydrolysis of (pp)pGpp by RSH enzymes. a) The synthetase 1198 

domain (SYNTH: grey) of RSH enzymes catalyses the transfer of a pyrophosphate 1199 

group from ATP to the ribose moiety of GTP/GDP/GMP to produce pppGpp, ppGpp 1200 

or pGpp, respectively. This reaction also generates a molecule of AMP. Conversely, 1201 

the hydrolase domain (HD: orange) is responsible for removing the pyrophosphate 1202 

group to recover GTP/GDP/GMP. Enzymes outside of the RSH superfamily are also 1203 

involved in (pp)pGpp metabolism, with GppA (pink) hydrolysing pppGpp to ppGpp33, 1204 

and NahA (blue) hydrolysing (p)ppGpp to pGpp8. b) Domain architecture and structure 1205 

of the long RSH enzyme RelA from E. coli (PDB: 5KPX), consisting of an N-terminal 1206 

domain (NTD) enzymatic region and a C-terminal domain (CTD) regulatory region. 1207 
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The enzymatic region consists of the HD (orange – inactive in RelA) and SYNTH 1208 

(grey) domains. The regulatory region contains four domains: the TGS region (ThrRS, 1209 

GTPase and SpoT: red), an alpha-helical domain (tan), the ZFD/CC domain (zinc finger 1210 

domain/conserved cysteine: purple) and the ACT/RRM domain (aspartate kinase, 1211 

chorismate and TyrA/RNA recognition motif: green). c) Structure of RelA from E. coli 1212 

(orange) bound to the ribosome (PDB: 5L3P). An uncharged tRNA is located in the A-1213 

site (green) and P-tRNA in the P-site (grey). The 50S (blue) and 30S (yellow) subunits 1214 

of the ribosome are shown.  1215 

  1216 
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 1217 

Figure 2. (p)ppGpp-mediated inhibition of purine nucleotide synthesis. a) The first 1218 

step of de novo purine synthesis (yellow box) begins with 5-phosphoribosyl-1-1219 

pyrophosphate (PRPP) which is converted to 5-phosphoribosylamine (PRA) by PurF, 1220 
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an amidophosphoribosyltransferase (blue). Through a complex series of reactions, PRA 1221 

is ultimately modified to inosine 5′-monophosphate (IMP), which is the precursor for 1222 

both ATP and GTP. The salvage pathway (pale red box) on the other hand, begins with 1223 

the conversion of purine bases such as hypoxanthine, xanthine and guanine to IMP, 1224 

xanthosine monophosphate (XMP) and guanosine monophosphate (GMP) respectively. 1225 

Conversions to IMP and GMP are catalysed by hypoxanthine 1226 

phosphoribosyltransferase (HprT: yellow), while XMP is formed by xanthine 1227 

phosphoribosyltransferase (XprT: pink), which all utilise PRPP as a phosphoribose 1228 

donor. Adenine is modified to AMP by adenine phosphoribosyltransferase (AprT) 1229 

(brown). PpnN, pyrimidine/purine nucleotide 5′-monophosphate nucleosidase (orange) 1230 

catalyses the reverse reaction using AMP, IMP, XMP and GMP as substrates. For GTP 1231 

synthesis, the IMP dehydrogenase GuaB (purple) converts IMP to XMP, which is 1232 

utilised by GuaA to form GMP. Guanylate kinase (Gmk: grey) converts GMP to GDP. 1233 

For ATP synthesis, the adenylosuccinate synthetase PurA (green) produces 1234 

adenylosuccinate (AMP-S) from IMP, which is a precursor for ATP. All enzyme names 1235 

written in red are inhibited by (pp)pGpp8,65,88,90,92,96, while those in green (PpnN) are 1236 

activated97. AprT, displayed as a fainter red, is weakly inhibited by (p)ppGpp in E. 1237 

coli55. b) Crystal structures of purine nucleotide synthesis enzymes shown in cartoon 1238 

representation in complex with ppGpp, pppGpp or ppG2′:3′p (spacefilled). Monomers 1239 

(PurA from E. coli – PDB: 1CH8 & PpnN from E. coli – PDB: 6GFM) are coloured 1240 

yellow. Dimers (Gmk from S. aureus – PDB: 4QRH & XprT from B. subtilis – PDB: 1241 

1Y0B) in yellow and blue, while tetramers (PurF from E. coli – PDB: 6CZF & HprT 1242 

from B. anthracis – PDB 6D9S) are coloured yellow, blue, pink and grey. Structures 1243 

from the de novo pathway was boxed in yellow and salvage in pale red. 1244 

 1245 
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1246 

Figure 3.  ppGpp binding to the RNAP. a) Schematic of the holoenzyme of RNAP 1247 

bound to two molecules of ppGpp (red) and DksA (yellow). Individual RNAP subunits 1248 

are coloured:  – purple, ′ – pink, I – teal, II - orange,  - green and 70 – brown. 1249 

b-d) Crystal structure of the RNAP holoenzyme from E. coli in complex with ppGpp, 1250 

DksA and the rrnBP1 promoter (PDB: 6WRD). Coloured as in (a). b) Face-on view of 1251 

the RNAP bound to the rrnBP1 DNA. c) Rotation of the RNAP 90º to visualise ppGpp 1252 

(red) bound to site 1 between the ′ (pink) and  (green) subunits. d) Rotation to 1253 

visualise ppGpp (red) bound to site 2 between the ′ subunit (pink) and DksA (yellow). 1254 

 1255 
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1256 

Figure 4. Control of protein translation by (p)ppGpp. a) (p)ppGpp directly binds to 1257 

and inhibits a number of proteins responsible for the different stages of translation. 1258 

Through association with GTP, the prokaryotic initiation factor IF2 acts to position the 1259 

initiating fMet-tRNAfMet in the 30S pre-IC and promote the association of the 50S 1260 

subunit, a process which is inhibited by (p)ppGpp117,118. Elongation and translocation 1261 

processes are also targets of (p)ppGpp. (p)ppGpp-mediated inhibition of the elongation 1262 

factor EF-Tu prevents the binding of an aminoacyl-tRNA to the A site of the 70S 1263 
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ribosome119. Inhibiting EF-G, a translocase, stops the translocation of aminoacyl-tRNA 1264 

through the ribosome119. (p)ppGpp also inhibits the release factor RF3, therefore 1265 

preventing the recycling of RF1/2 from the ribosome120. The post-termination complex 1266 

is recycled by RRF and EF-G, allowing the cycle to start again, a process that may also 1267 

be inhibited by (p)ppGpp interacting with EF-G. b) ppGpp binding to IF2 inhibits start 1268 

codon recognition. The pre-IC can then exchange a non-compatible transcript for one 1269 

that contains a structured enhancer of translation initiation (SETI) element that is 1270 

tolerated by ppGpp e.g. tufA, allowing the exchange of ppGpp for GTP and the 1271 

continuation of translation118.  1272 

 1273 

  1274 
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1275 

Figure 5. (p)ppGpp affects bacterial pathogenicity in multiple ways. (p)ppGpp (red 1276 

star) can regulate genes to promote pathogenicity, including the downregulation of 1277 

flagella and the upregulation of surface proteins and factors that promote increased 1278 

attachment to host cell surfaces141,147-150. (p)ppGpp can promote invasion into host cells 1279 

by upregulating toxins and pathogenicity islands, and avoidance of cellular defences by 1280 

controlling the production of cytolytic toxins152,153,155. (p)ppGpp also has a role to play 1281 

in immune evasion and bacterial dissemination via toxin production114,162 and the 1282 

regulation of biofilm formation. Both (p)ppGpp and the transcription factor CodY have 1283 

been implicated in the formation of biofilms165,166,168, while the promotion of biofilm 1284 

dispersion through various (p)ppGpp-mediated mechanisms has also been reported170-1285 

172. 1286 
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