
This is a repository copy of HyFM: Function Merging for Free.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173740/

Version: Accepted Version

Proceedings Paper:
Rocha, RCO, Petoumenos, P, Wang, Z orcid.org/0000-0001-6157-0662 et al. (3 more
authors) (2021) HyFM: Function Merging for Free. In: LCTES 2021: Proceedings of the
22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems. The 22nd ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES 2021), 16-25 Jun
2021, Online. Association for Computing Machinery (ACM) , pp. 110-121. ISBN 978-1-
4503-8472-8

https://doi.org/10.1145/3461648.3463852

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

HyFM: Function Merging for Free

Rodrigo C. O. Rocha
University of Edinburgh

United Kingdom
rrocha@ed.ac.uk

Pavlos Petoumenos
University of Manchester

United Kingdom
pavlos.petoumenos@manchester.ac.uk

Zheng Wang
University of Leeds
United Kingdom

z.wang5@leeds.ac.uk

Murray Cole
University of Edinburgh

United Kingdom
mic@inf.ed.ac.uk

Kim Hazelwood
Facebook AI Research

United States
kimhazelwood@fb.com

Hugh Leather
Facebook AI Research

United States
hleather@fb.com

Abstract

Function merging is an important optimization for reduc-
ing code size. The existing state-of-the-art relies on a well-
known sequence alignment algorithm to identify duplicate
code across whole functions. However, this algorithm is qua-
dratic in time and space on the number of instructions. This
leads to very high time overheads and prohibitive levels
of memory usage even for medium-sized benchmarks. For
larger programs, it becomes impractical.

This is made worse by an overly eager merging approach.
All selected pairs of functions will be merged. Only then will
this approach estimate the potential benefit from merging
and decide whether to replace the original functions with the
merged one. Given that most pairs are unprofitable, a signif-
icant amount of time is wasted producing merged functions
that are simply thrown away.

In this paper, we propose HyFM, a novel function merging
technique that delivers similar levels of code size reduction
for significantly lower time overhead and memory usage.
Our alignment strategy works at the block level. Since basic
blocks are usually much shorter than functions, even a qua-
dratic alignment is acceptable. However, we also propose a
linear algorithm for aligning blocks at a much lower cost. We
extend this strategy with a multi-tier profitability analysis
that bails out early from unprofitable merging attempts. By
aligning individual pairs of blocks, we are able to decide their
alignment’s profitability before actually generating code.
Experimental results on SPEC 2006 and 2017 show that

HyFM needs orders of magnitude less memory, using up
to 48 MB or 5.6 MB, depending on the variant used, while
the state-of-the-art requires 32 GB in the worst case. HyFM
also runs over 4.5× faster, while still achieving comparable
code size reduction. Combined with the speedup of later
compilation stages due to the reduced number of functions,
HyFM contributes to a reduced end-to-end compilation time.

CCS Concepts: · Software and its engineering → Com-

pilers.

LCTES ’21, June 22, 2021, Virtual, Canada

2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords: Code-Size Reduction, Function Merging, LLVM,
Link-Time Optimization, Interprocedural Optimization

ACM Reference Format:

Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray
Cole, Kim Hazelwood, and Hugh Leather. 2021. HyFM: Function
Merging for Free. In Proceedings of the 22nd ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’21), June 22, 2021, Virtual, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction

While often overlooked, program size can be a first-order
constraint. Regardless of the type of the system, from IoT
devices up to cloud servers, they are all operating under
limited addressable memory, storage, or bandwidth. When
the program becomes excessively large relative to the given
constraints, this has a detrimental effect on the system. In the
extreme, this means failure. This is very likely to happen as
programs gain new features over time, continuously growing
in size and complexity [4, 14]. In such scenarios, reducing
the application footprint is essential [3, 4, 11, 22, 23, 27].
One important class of optimizations for reducing code

size is function merging. Existing techniques range from
simple passes merging identical functions at the compiler
intermediate representation (IR) [2, 15] or the binary level [1,
13, 25] up to approaches that identify and merge similar sub-
sequences in otherwise dissimilar functions [9, 20, 21]. As al-
ready noted by Chabbi et al. [4], these techniques have either
limited benefit on code reduction or unacceptable compila-
tion overheads for production, especially considering builds
using link-time optimizations (LTO) where inter-procedural
optimizations have greater opportunities but at a greater
cost [10].

The current state-of-the-art, SalSSA [20, 21], achieves on
average a 10% code size reduction but at the cost of crip-
pling compile-time inefficiencies. In this paper, we show
that SalSSA can lead to 40% slower compilation, taking up
to 32 GB of memory for temporary data when compiling
a modestly-sized program. Such a resource requirement is

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

beyond what is typically available to a developer and thus
unsuitable for optimizing real-life programs.

These inefficiencies stem directly from SalSSA’s core inno-
vation, i.e., the sequence alignment algorithm used to identify
mergeable instructions in a pair of input functions. The align-
ment algorithm has quadratic time and space complexity, so
applying it on whole functions with thousands of instruc-
tions results in unacceptable overheads. This severely limits
the applicability of function merging on relatively large pro-
grams. To make function merging scalable and practical, we
need to find ways to significantly reduce the memory and
compilation overhead. Our work is designed to offer such
capabilities.

In this paper, we present HyFM, a novel function merging
technique that addresses the performance inefficiencies of
SalSSA. Our main insight is that most of the code reduction
of SalSSA comes from matching highly similar basic blocks.
Even though it is able to align arbitrary subsequences span-
ning basic block boundaries, profitable alignments usually
contain instructions from one block matched to instructions
from a single other block. We show that an approach which
quickly identifies similar basic blocks and then aligns their
short instruction sequences achieves a similar code reduction
for a much lower overhead.
More specifically, our solution is three fold:

• We align the input functions on a per basic block man-
ner. First, we pair similar basic blocks by minimiz-
ing the distance between their fingerprints. Then, we
only align the instructions within each pair of basic
block. Even with a quadratic alignment algorithm, ba-
sic blocks are usually much shorter than functions,
translating into a much faster alignment.

• We propose a linear pairwise alignment as an alter-
native to the quadratic one. For highly similar basic
blocks, it achieves similar results but has negligible
time and space overheads.

• We estimate the profitability of the aligned basic blocks
before actually generating their merged code. If un-
profitable, we ignore them, improving the overall prof-
itability of the whole merged function and simplifying
code generation. If all paired blocks in a pair of func-
tions are unprofitable, we skip merging the function
pair altogether, speeding up the optimization process
compared to SalSSA.

Experimental results on SPEC CPU 2006 and 2017 show
that HyFM runs over 4.5× faster than SalSSA. Compared to
a baseline without function merging, HyFM reduces end-
to-end compilation time by up to 18% and 2.1% on average.
HyFM also has orders of magnitude lower peak memory us-
age, using up to 48 MB or 5.6 MB, depending on the variant
used, while SalSSA requires 32 GB in the worst case. We
achieve all these compilation-time benefits without degrad-
ing its ability to reduce code size.

2 Background and Motivation

In this section, we first introduce the working mechanism of
SalSSA [21], the state-of-the-art function merging technique.
We highlight the main drawbacks of SalSSA in terms of
compile time and memory footprint. We then outline how
we can address these drawbacks without compromising on
code size reduction.

2.1 Function Merging via Sequence Alignment

Existing function merging techniques consist of three major
stages: choosing which functions to merge, producing the
merged function, and estimating the merging profitability.
In order to pair similar functions for merging, SalSSA

employs a ranking strategy based on the similarity of the
fingerprints of the functions. A fingerprint summarizes the
content of a function as a fixed-size vector of the frequency
of each LLVM-IR opcode. The representation allows the com-
piler to compare functions using a simple distance metric,
such as the Manhattan distance. For a given reference func-
tion, all other functions are ranked based on their distance
and the closest function is chosen for merging.
Merging two functions requires identifying similar code

segments in the two functions that can be profitably merged.
The main innovation of SalSSA [21] and its predecessor [20]
is the use of a sequence alignment algorithm, called the
Needleman-Wunsch algorithm, for identifying similar code
segments. This allows them to merge arbitrary pairs of func-
tions. First, they transform each function into a linear se-
quence of labels and instructions. Then, the alignment algo-
rithm is applied on the sequences of the whole input func-
tions. The resulting alignment is used to generate the merged
function. Once the merged function has been generated, they
apply an SSA reconstruction algorithm. For a final clean up,
they simplify the merged function by removing redundant
instructions introduced by function merging.

Finally, a profitability analysis estimates the benefit of re-
placing the original pair of functions with the simplified
merged function. If unprofitable, the merged function is
simply thrown away. Otherwise, they delete the original
functions, redirecting the calls to the merged function.

2.2 Limitations of The State of The Art

After further investigation, we observed that SalSSA was
unable to optimize 602.gcc_s, from SPEC 2017, due to an
out of memory crash. Our machine with 16 GB of memory
was not enough to handle SalSSA. We succeeded only after
migrating to a 64 GB machine which could fit the 32 GB
of temporary data produced by function merging. We re-
alized that this is due to the quadratic algorithm used for
aligning the two functions selected for merging. Because
this algorithm is applied on the linearized sequences of the
whole input functions, SalSSA incurs a high memory foot-
print when merging even medium sized functions. For larger

HyFM: Function Merging for Free LCTES ’21, June 22, 2021, Virtual, Canada

2.1%

83.6%

2.7%
2.4%

7.2%

2.0%

638.imagick_s 602.gcc_s

Ranking Alignment Code-Gen

SSA Fix Simplification Others

0.4%4.2%
4.1%

11.5%

3.1%

76.7%

Figure 1. Breakdown of the relative runtime for the different
stages from SalSSA. Alignment takes 25 seconds and 4.2 min-
utes on 638.imagick_s and 602.gcc_s, respectively.

ones, it is impossible to apply it on most workstations or
even many servers, making SalSSA impractical for use in
production.
For the same reason, alignment brings the compilation

process to a crawl for large functions. Figure 1 shows the run-
ning time breakdown for the different stages of the function
merging pass in the LLVM-based SalSSA implementation for
two SPEC CPU2017 benchmarks. Sequence alignment domi-
nates the running time of function merging, representing up
to 83% of its overall running time. Sequence alignment alone
takes 25 seconds and 4.2 minutes on 638.imagick_s and
602.gcc_s, respectively. The alignment stage also causes
the peak in memory usage for these two programs, 4.5 GB
for 638.imagick_s and 32 GB for 602.gcc_s. This is
not surprising, as the Needleman-Wunsch algorithm has a
quadratic complexity in both time and memory usage. Be-
cause this algorithm is applied on linearized sequences of the
whole input functions, programs containing large functions,
such as the ones in our example, are heavily affected.

Most of the rest of the running time of function merging is
associatedwith producingmerged functions from the aligned
sequences. This includes the time spent on the code gener-
ation stage (Code-Gen), SSA reconstruction (SSA Fix), and
code simplification (Simplification). These stages account for
18.7% of the SalSSAâĂŹs running time on638.imagick_s
and 11.6% on 602.gcc_s. However, for other programs,
these stages may represent the vast majority of SalSSAâĂŹs
running time (see Section 4.3).

This breakdown includes the cost for producing both prof-
itable and unprofitable merged functions. In fact, most of it
is wasted on merged functions that will be rejected by the
profitability analysis. These costs are pronounced because
unprofitably merged functions have no limit on their size or
complexity, often adding a significant pressure on the SSA
reconstruction and simplification stages. This effect is tied
to the alignment strategy, since a good alignment is needed
for producing profitably merged functions. As we discuss in

Section 2.3, a better approach would include a finer grain
profitability analysis that would allows us to bail out from
merging complex and unprofitable code as early as possible.

2.3 When Less is More

We observe that most of the benefit of function merging
often comes from merging highly similar, but not necessarily
identical, basic blocks. Figure 2 shows one such example
extracted from the 483.xalancbmk benchmark found in
SPEC CPU2006. This example shows the two input functions
annotated with the alignment produced by SalSSA. Merging
these two functions contributes to a reduction of 33 bytes in
the final object file.
While this approach is flexible enough to identify very

complex alignments, what it actually produces is three aligned
pairs of basic blocks and a few aligned instructions in the en-
try blocks. More importantly, these entry block instructions
offer nothing in terms of code size reduction. The gains of
merging them are negated by the extra branches and operand
selections needed to preserve the program’s semantics. Since
SalSSA analyzes the profitability of the final merged func-
tion as a whole, this unprofitable sequence of instructions
will be merged because of the three highly profitable basic
blocks. For the same reason, we may have profitable areas
of code rejected because the rest of the merged function is
unprofitable.

This example shows us that we could achieve similar code
size reduction by breaking the problem of aligning functions
into two simpler processes: first identifying highly similar
basic blocks and then aligning the instructions in each pair
of similar blocks. By operating on basic blocks, we could
greatly reduce the length of the sequences to be aligned and
the associated compilation and memory overhead. Further-
more, by making profitability decisions for each pair of basic
blocks separately, we could avoid merging unprofitable pairs.
The rest of this paper shows how we use such an approach
to overcome the weaknesses of SalSSA and make function
merging practical for optimizing large programs.

3 Hybrid Function Merging

In this section, we propose HyFM (Hybrid Function Merg-
ing), a novel function merging technique that can operate on
all functions regardless of their size with little to no compila-
tion overheads. To achieve this goal, we rely on the insights
discussed in Section 2. Our solution is three-fold: 1) We intro-
duce an alignment strategy that works on the level of basic
blocks, without crossing their boundaries, leading to faster
and less memory demanding alignment; 2) We incorporate a
multi-tier profitability analysis that allows us to bail out from
unprofitable merging attempts even before code generation;
3) We introduce a linear pairwise alignment for basic blocks
of the same size that produces good results on highly similar
blocks. This technique can be enabled as an alternative to the

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

Lb1
 %x1 = bitcast @file

%x2 = call ftell(%x1)

%x3 = trunc %x2
%x4 = icmp eq %x3, -1

br %x4, Lb2, Lb3

ret %x3

Lb3Lb2
 %v6 = call alloc_except(48)

%v7 = bitcast %v6

invoke UtilsExcept(%v7, %v8)

%v8 = gep @str.1, 0, 0

 Lb4, Lb5

Lb2
 %x5 = call alloc_except(48)

%x6 = bitcast %x5

invoke UtilsExcept(%x6, %x7)

%x7 = gep @str.2, 0, 0

 Lb4, Lb5

Lb5
 %x8 = landingpad

call free_except(%x5)

resume %x8

Lb5
 %v9 = landingpad

call free_except(%v6)

resume %v9

Lb4
 call throw(...)

unreachable

Lb4
 call throw(...)

unreachable

Lb3

%v10 = trunc %v3
ret %v10

Lb1
 %v1 = zext @toRead

%v3 = call read(%f, %v1, %v2)

%v4 = call ferror(%v2)

%v5 = icmp eq %v4, 0

br %v5, Lb3, Lb2

%v2 = bitcast @file

readFileBuffer(void*, unsigned,
 char*, MemoryManager*)

curFilePos(void*, MemoryManager*)

Figure 2. Example extracted from 483.xalancbmk in
SPECCPU2006. Instructionsmarked green have been aligned
through sequence alignment with an instruction from the
other function. SalSSA would attempt merging all matched
instructions but only the ones in fully aligned basic blocks
would be profitable.

quadratic sequence alignment algorithm. Both techniques
have their place, offering different trade-offs.

3.1 Overview

For all candidate functions and basic blocks, we generate a
fixed-vector representation, namely, their fingerprint [20, 21].
We match each function with its most similar available func-
tion, the one with the shortest fingerprint distance. Instead
of aligning their linearized representations directly, we work
at the basic block level. We pair similar basic blocks of the
two functions based on their fingerprint distances. We align
the instructions in these paired basic blocks using either the
Needleman-Wunsch alignment [18] or our linear pairwise
alignment strategy. We employ the first-tier profitability
analysis on each alignment. If the cost model deems it un-
profitable, we skip the pair. The pairing of basic blocks, the
alignment, and the first-tier profitability analysis are exe-
cuted in rounds, in a greedy manner. That is, the first prof-
itable pairing is taken, however, unprofitable paired blocks
are freed for another pairing, if necessary.
Once all basic blocks have been processed, we combine

the block alignments into a function-wide one and we pro-
duce the merged function using the same code generation
proposed for SalSSA [21]. If no profitable pair of basic blocks
was found, we bail out before code generation. Finally, we
perform the second-tier profitability analysis, which is the

same used by SalSSA, to decide whether replacing the origi-
nal functions by the merged one reduces code size. If not, we
reject the merged function and we keep the original ones.
For brevity, the rest of the discussion will focus on how

HyFM differs from previous approaches.

3.2 Pairing Similar Basic Blocks

We pair similar basic blocks based on distance of their finger-
prints. This pairing process is similar to the search strategy
used for pairing functions [20]. We use the same fingerprint,
a fixed-size vector of integers with the frequency count of
each opcode. It can be used to represent any piece of code,
from basic blocks to whole functions.

The overall idea is that for each block in one function we
select a block from the other function that minimizes the
Manhattan distance between their fingerprints. Formally,
given a block B1 ∈ F1, where F1 is the set of all blocks from
function one, B1 is paired with a block Bm ∈ F2 such that:

d(B1,Bm) =min{d(B1,B2) : B2 ∈ F2}

where d(B1,B2) represents the distance between the finger-
prints of the basic blocks B1 and B2.

After pairing two basic blocks, B1 and B2, they have their
instructions aligned (see Section 3.3) and their merging prof-
itability estimated (see Section 3.4). If they are deemed prof-
itable, both blocks are removed from their respectiveworking
list. Otherwise, only B1 is removed from the working list of
blocks from F1, i.e., B2 can still be paired with another block,
but not B1. In other words, basic blocks from function F1 are
paired only once, even if its alignment is deemed unprof-
itable. As a result, given two input functions, this pairing
process is quadratic on their number of basic blocks. This
number is usually much smaller than the number of instruc-
tions in the function, so the cost of pairing is much lower
than the cost of aligning whole functions in SalSSA, despite
both being quadratic. For very large numbers of basic blocks,
efficient nearest neighbor search techniques could keep the
cost low but this was not needed in our experiments.
HyFM pre-computes the fingerprint of every basic block

in the input functions, which is a single linear cost over all
their basic blocks and instructions. Meanwhile, the distance
between two fingerprints is computed in constant time, since
the number of opcodes is a small constant.

3.3 Aligning Paired Basic Blocks

Basic blocks already represent a linearized sequence of in-
structions. Any sequence alignment algorithm can be used on
them the same way they can be used on linearized functions.
The Needleman-Wunsch [18] algorithm used by SalSSA re-
mains a good choice. It may be quadratic in both space and
time on the length of the sequences but basic block sequences
are usually much shorter than functions, making the cost of
alignment lower than in previous approaches.

HyFM: Function Merging for Free LCTES ’21, June 22, 2021, Virtual, Canada

 %v1 = gep %this, 0, 5

%v3 = load %v2

%v4 = icmp eq %v3, 0

br %v4, Lb3, Lb2

%v2 = bitcast %v1

%sw.bb

 %x1 = alloca

%x3 = load %x2

%x4 = icmp eq %x3, 73

br %x4, Lb3, Lb2

%x2 = gep %this, 0, 1

%entry 0

2

2

1

1

1

+1

+2

Merged Cost: 10

(a) A profitable alignment. BothOriдinalCost andMerдedCost are
10. The final score is OriдinalCost −MerдedCost = 0.

 %v1 = gep %this, 0, 21

store %c, %v2

%v3 = gep %this, 0, 0

%v4 = load %v3

%v2 = bitcast %v1

%entry

 %x1 = extract %pn

%x3 = gep %x2, 8

%x4 = bitcast %x3

%x5 = load %x4

%x2 = call catch(%e)

%entry 0

2

2

2

2

1

invoke printfm(...) 2%x = invoke create(%x1)

+1

+2

+1

Merged Cost: 15

(b) An unprofitable alignment. OriдinalCost is 0 andMerдedCost

is 15. The final score is −3. A negative score means it is unprofitable.

Figure 3. Two examples of the pairwise alignment. Only
instructions in corresponding positions are aligned. Instruc-
tions match if they have the same opcode.

Our observations in Section 2, though, indicate that a qua-
dratic algorithm might be an excessive solution. Profitable
sequences tend to be highly similar, so aligning them is usu-
ally straightforward and a simpler approach should suffice.
Based on this insight, we implemented a linear alignment
algorithm. Its assumption is that profitable pairs of blocks
are almost identical in terms of opcodes differing only in a
few individual cases. This translates into a pairwise align-
ment of same size basic blocks where only corresponding
instructions in the two blocks can match. Figure 3 illustrates
two examples of basic blocks aligned using our strategy. It
also includes the costs estimated by our profitability analysis,
which we discuss in Section 3.4.

Restricting alignment to basic blocks of the same size has
the added benefit that it simplifies the pairing strategy. We
only have to consider fingerprints for basic blocks of the
same size, so we group them by block size and we restrict
our search in the right group. In the worst case, all basic
blockswould have the same size and the searchwould remain
quadratic on the number of basic blocks, as discussed in
Section 3.2. However, this is unlikely to happen in large
functions, which is where the number of basic blocks might
be a problem. Overall, this solution is lean on memory usage
and usually the fastest for aligning paired basic blocks, as
corroborated by our evaluation in Section 4.

3.4 Multi-Tier Profitability Analysis

HyFM incorporates a multi-tier profitability analysis that
enables it to bail out early from an unprofitable merge op-
eration. The first tier consists of a simple analysis applied

SPxId id(int i) const {

 if (rep() == ROW) {

 SPxRowId rid = SPxLP::rId(i);

 return SPxId(rid);

 } else {

 SPxColId cid = SPxLP::cId(i);

 return SPxId(cid);

 }

}

SPxId coId(int i) const {

 if (rep() == ROW) {

 SPxColId cid = SPxLP::cId(i);

 return SPxId(cid);

 } else {

 SPxRowId rid = SPxLP::rId(i);

 return SPxId(rid);

 }

}

Figure 4. Example with code reordering extracted from the
450.soplex program.

on each pair of basic blocks selected for alignment, either
accepting or rejecting the alignment between two blocks.
The second tier consists of the same profitability analysis
that is also performed by prior techniques, i.e., FMSA and
SalSSA, which is responsible for evaluating whether the
merged function is smaller than the original input functions.

The last column of Figure 3 shows how the first tier anal-
ysis is employed alongside the pairwise alignment strategy.
The same analysis can also be applied on pairs of basic blocks
aligned using the Needleman-Wunsch algorithm. The analy-
sis tries to estimate the cost of merging, the total number of
instructions that will be necessary for merging the aligned
blocks. If two instructions match, then a single instruction is
needed (i.e., a cost of +1 is assigned to this entry). If they mis-
match, then both instructions are needed (i.e., a cost of +2 is
assigned to this entry). Moreover, we need extra instructions
to transition from matching subsequences to mismatching
ones, and vice versa. This is represented by the arrows in Fig-
ure 3. One branch instruction is needed to split control flow
into twomismatching instructions, while two branch instruc-
tions are needed to join it back into a matching pair of in-
structions. TheMerдedCost is the sum of all these costs. The
profitability score is defined as OriдinalCost −MerдedCost ,
where OriдinalCost is simply the number of instructions in
the original basic blocks. Therefore, a negative profitability
score means that merging those two basic blocks is unprof-
itable. When this is the case, we ignore the alignment.
By rejecting individual basic block alignments, we are

able to decide early whether merging a pair of functions
might be profitable. If we rejected all block alignments, then
by definition there is no point in merging the functions.
Previous approaches, without a first tier analysis, have to
rely on the second tier exclusively which is applied after the
functions are merged.

3.5 Independence from Code Layout

Unlike all prior techniques, HyFM is able to merge similar
basic blocks regardless of their position in the control-flow
graphs from the input functions. Figure 4 shows an example
of two functions that all prior techniques fail to merge even
though they are highly similar.
Due to their rigid linearization strategy, both FMSA and

SalSSA are unable to properly match the basic blocks of the
if-else structure, resulting in sub-optimal merged functions
that are deemed unprofitable. Their linearization traverses

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

the control-flow graph in a canonical manner, preventing
blocks from being rearranged for a better merging [20, 21].
Meanwhile, earlier techniques fail to merge this example as
they are restricted to functions with identical control-flow
graphs where corresponding blocks are merged [2, 9, 15].

HyFM is able to correctly pair these basic blocks. Because
the basic blocks are rearranged, the label operands of the
conditional branch need to be handled in order to preserve
the program semantics. For swapped label operands, HyFM
simply uses the optimized operand resolution proposed by
SalSSA, where an xor operation is applied on the condition
of the branch and the function identifier [21].

4 Evaluation

In this section, we compareHyFM against the state-of-the-art
function merging technique, SalSSA [21]. First, we evaluate
the code size reduction achieved by each technique, demon-
strating that our approach is on a par with SalSSA. Then we
show that HyFM reduces significantly the overhead of func-
tion merging. Combined with the speedup in later stages of
the compilation pipeline due to the reduced amount of code,
HyFM leads to faster end-to-end compilation than a baseline
with no function merging enabled. Finally, we demonstrate
how our contributions reduce the memory usage by several
orders of magnitude.

4.1 Experimental Setup

In addition to evaluating SalSSA, we also consider four varia-
tions of our technique based on two dimensions: 1) the linear
Pairwise Alignment (PA) versus the quadratic Needleman-
Wunsch Alignment (NW), both on a per basic block manner
and 2) using a multi-tier profitability analysis versus using
only the standard profitability analysis from SalSSA, which
is the analysis applied on the whole function after generat-
ing the merged function. As described in Section 3, the [PA]
variant is, by construction, limited to merging only basic
blocks of the same size. The [NW] variant can merge blocks
of different sizes. The four variations are:

• [PA]: PA with the Multi-tier Profitability analysis.
• [PA,NMP]: PA with No Multi-tier Profitability.
• [NW]: NW with the Multi-tier Profitability.
• [NW,NMP]: NW with No Multi-tier Profitability.

For SalSSA, we used the version published in the eval-
uation artifact [19]. To keep the comparison fair, we im-
plemented HyFM for the same compiler version as SalSSA,
namely, LLVM v11.We evaluated all techniques on the C/C++
programs from the SPEC CPU 2006 and the SPEC CPU 2017
benchmark suites [24]1. The baseline in all cases is the LLVM
build in full LTO mode without any function merging.

1All training, testing, and use of the SPEC2006 and SPEC2017 datasets was
conducted at University of Edinburgh.

We target the Intel x86 architecture. All experiments were
performed on a dedicated server with a quad-core Intel Xeon
CPU E5-2650, 64 GiB of RAM, running Ubuntu 18.04.3 LTS.
To minimize the effect of measurement noise, we repeated all
compilation and runtime overhead experiments 5 times. We
report the average values and their 95% confidence intervals.

We evaluate all approaches in terms of code size reduction,
time overhead of function merging, end-to-end compilation
time, and peak memory usage. To better examine the trade-
off between code size reduction and compilation time, we
also introduce and measure a new metric called average re-
duction speed which shows the efficiency of the optimization
at reducing code size. This metric offers a single number
that allows us to compare how different versions address the
trade-off between compilation time and code size reduction.

Definition 4.1 (Average Reduction Speed). For a given in-
put program and optimization, let S and S0 be the size of the
program with and without the given optimization, respec-
tively. R = S0 − S represents the reduction achieved by such
optimization. Let T be the running time of the optimization
pass. We define the average reduction speed as:

ARS =
R

T

4.2 Code Size Reduction

Figures 5 reports the reduction on the size of the linked object
files produced by the compiler. While limiting alignment at
a basic block granularity seems restrictive, its effect on code
size is small. Even theworst performing variants of HyFM are
still within 3 percentage points of SalSSA, while both [PA]
and [NW] achieve good results that are on a par with SalSSA.
[PA]’s code size reduction varies from 5 percentage points
worse to over 10 points better than SalSSA. On average,
it is within 1 percentage point of the reduction achieved
by SalSSA. [NW] almost always achieves better code size
reduction than [PA] and on average outperforms SalSSA
by a small margin. Since our primary aim is to reduce the
high compile-time overheads of SalSSA a small loss of code
reduction is acceptable.

These results indicate that the multi-tier profitability anal-
ysis is the single most important component of our approach.
The two variants without the multi-tier profitability analysis,
[PA,NMP] and [NW,NMP], are consistently worse than their
counterparts that include this analysis, i.e. [PA] and [NW].
The multi-tier analysis contributes on average about 1 per-
centage point in code reduction for SPEC 2017 andmore than
2 points for SPEC 2006. The multi-tier profitability analysis
has an important impact in the quality of the merged func-
tion. While SalSSA lets unprofitable merged subsequences
through as long as they are outweighed by profitable sub-
sequences elsewhere in the merged function, HyFM filters
such unprofitable subsequences out.

HyFM: Function Merging for Free LCTES ’21, June 22, 2021, Virtual, Canada

5
0

8
.n

a
m

d
_
r

5
1

0
.p

a
re

s
t_

r

5
1

1
.p

o
v
ra

y
_
r

5
2

6
.b

le
n
d
e
r_

r

6
0

0
.p

e
rl

b
e
n
c
h
_
s

6
0

2
.g

c
c
_
s

6
0

5
.m

c
f_

s

6
1

9
.l
b
m

_
s

6
2

0
.o

m
n
e
tp

p
_
s

6
2

3
.x

a
la

n
c
b
m

k
_
s

6
2

5
.x

2
6

4
_
s

6
3

1
.d

e
e
p
s
je

n
g
_
s

6
3

8
.i
m

a
g
ic

k
_
s

6
4

1
.l
e
e
la

_
s

6
4

4
.n

a
b
_
s

6
5

7
.x

z
_
s

M
e
a
n

0

5

10

15

20

25

30

35

R
e
d
u
c
ti

o
n
 (

%
)

1
0
.3

9
.3

9
.9

9
.5

1
0
.4

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

M
e
a
n

0

5

10

15

20

25

30

1
1

.4
8

.4 1
0

.5
9

.1 1
1

.7

SPEC 2017 SPEC 06

Figure 5. Linked object size reduction over LLVM LTO when performing function merging with HyFM or SalSSA on SPEC
CPU 2006 and 2017. On average, HyFM improves code size reduction.

The next most important effect comes from the choice
of alignment algorithm. Needleman-Wunsch is on average
half a percentage point better than Pairwise Alignment for
SPEC 2017 and about one percentage point better for SPEC
2006. Given that Pairwise Alignment only aligns blocks of
the same size and does not try to discover optimal align-
ments, this difference is smaller than one would expect. It
indicates that profitable pairs of basic blocks tend to be ex-
tremely similar if not identical, as discussed in Section 2. Still,
Needleman-Wunsch results in more size reduction. When
code size reduction is paramount, [NW] might be a better
choice than [PA], but as we will see in Sections 4.4 and 4.6,
there is still a trade-off to navigate.
We get the biggest improvement by [PA] compared to

SalSSA and [NW] for lbm, where it reduces the program’s
object file by 18.5%, almost 13 percentage points more than
the competition. This represents an overall reduction of al-
most 4.2 KB from an object file with a total of 21 KB. SalSSA
is able to profitably merge two pairs of functions. On the
other hand, [PA,NMP] chooses to perform a chained merge
of the three largest functions in lbm, resulting in a signifi-
cantly smaller binary. This is possible because [PA,NMP] is
merging some nearly identical pairs of basic blocks of the
same size. With the multi-tier profitability analysis, [PA]
successfully identifies all four cases. [NW] fails to identify
all of these cases, even though it is still better than SalSSA.
This exposes existing limitations in the cost model used by
our profitability analysis.
The two worst results for [PA] are for the namd bench-

mark in both SPEC 2006 and SPEC 2017. SalSSA achieves
close to 7 percentage points more than [PA] in code size re-
duction. In both cases, Pairwise Alignment limits the number

of successfulmerge operations. The variants usingNeedleman-
Wunsch recover most of the lost reduction.

4.3 Speeding Up Function Merging

Figure 6 shows the speedup of HyFM relative to SalSSA. This
considers only the time taken by the function merging pass,
which include all stages discussed in Section 2.2. Our novel
technique achieves an impressive speedup. For [PA] it is on
average 5.28× faster for SPEC 2017 and 4.59× for SPEC 2006.
Even in the worst case, it achieves a 50% speedup. In the best
case, for the SPEC 2017 gcc, function merging under HyFM
takes a total of 23.5 seconds instead of 302, which translates
to almost 13× less time.
All components of HyFM contribute towards this result

but the multi-tier profitability analysis has the most signifi-
cant impact. The two variants with the multi-tier profitabil-
ity analysis achieve on average three to four times higher
speedups than their counterparts without it. To help us un-
derstand why, Figure 7 shows how the compilation time of
each approach is distributed across its various stages. Even
though the time spent on the alignment strategy becomes
negligible with HyFM, the less optimal alignment often pro-
duces complex merged functions Ð code with an excessive
amount of branches, phi-nodes, and operand selections Ð
slowing down SSA reconstruction and code simplification.
This effect is very pronounced for the blender bench-
mark, where both [PA,NMP] and [NW,NMP] are slower than
SalSSA due to the added pressure on the SSA reconstruction
algorithm, even though the alignment overhead is practically
zero. Similar effects can be observed in other benchmarks.

Enabling the multi-tier profitability analysis counters this
effect by focusing code generation exclusively on profitable
blocks and functions. Most of the complex basic blocks HyFM

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

5
0
8
.n

a
m

d
_
r

5
1
0
.p

a
re

s
t_

r

5
1
1
.p

o
v
ra

y
_
r

5
2
6
.b

le
n
d
e
r_

r

6
0
0
.p

e
rl

b
e
n
c
h
_
s

6
0
2
.g

c
c
_
s

6
0
5
.m

c
f_

s

6
1
9
.l
b
m

_
s

6
2
0
.o

m
n
e
tp

p
_
s

6
2
3
.x

a
la

n
c
b
m

k
_
s

6
2
5
.x

2
6
4
_
s

6
3
1
.d

e
e
p
s
je

n
g
_
s

6
3
8
.i
m

a
g
ic

k
_
s

6
4
1
.l
e
e
la

_
s

6
4
4
.n

a
b
_
s

6
5
7
.x

z
_
s

M
e
a
n

0

2

4

6

8

10

12

S
p
e
e
d
u
p

1
.0

1
.6

9
5

.2
8

0
.9

6 3
.5

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

M
e
a
n

0

2

4

6

8

10

12

1
.0 1

.5
7

4
.5

9
0
.7

9
3
.1

SPEC 2017 SPEC 06

Figure 6. Speedup of the function merging pass in isolation relative to SalSSA. The multi-tier profitability analysis reduces
the number of unprofitable merge operations leading to a significant speedup.

5
0
8
.n

a
m

d
_
r

5
1
0
.p

a
re

s
t_

r

5
1
1
.p

o
v
ra

y
_
r

5
2
6
.b

le
n
d
e
r_

r

6
0
0
.p

e
rl

b
e
n
c
h
_
s

6
0
2
.g

c
c
_
s

6
0
5
.m

c
f_

s

6
1
9
.l
b
m

_
s

6
2
0
.o

m
n
e
tp

p
_
s

6
2
3
.x

a
la

n
c
b
m

k
_
s

6
2
5
.x

2
6
4
_
s

6
3
1
.d

e
e
p
s
je

n
g
_
s

6
3
8
.i
m

a
g
ic

k
_
s

6
4
1
.l
e
e
la

_
s

6
4
4
.n

a
b
_
s

6
5
7
.x

z
_
s

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ranking Alignment Code-Gen SSA Fix Simplification Others

N
o
rm

a
li
z
e
d
 c

o
m

p
il
e
-t

im
e
 (

%
)

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

Figure 7. Breakdown of the relative runtime for the different stages of the function merging pass. All measurements are
normlized by SalSSA’s total runtime on the corresponding benchmark. For every benchmark, we show SalSSA, [PA,NMP],
[PA], [NW,NMP], and [NW], in this order.

generates are not profitable for the same reason it is expen-
sive to process them. The first-tier profitability filters them
out. On top of that, most paired functions under either SalSSA
or HyFM are unprofitable. SalSSA has to merge them any-
way to determine their profitability. This is expensive and
wasteful. Our approach, on the other hand, is able to estimate
profitability early. Only function pairs with any chance of
being profitable, that is pairs with at least one profitable pair
of basic blocks, move forward to the expensive merge stage.

The linear pairwise alignment contributes to the perfor-
mance improvement, too. The variants using pairwise align-
ment run on average 48% to 98% faster than their Needleman-
Wunsch counterparts. The most pronounced case is for lbm
where [PA] is around 3× faster than [NW]. The blocks paired
in lbm are longer than usual, so the quadratic Needleman-
Wunsch spends significantly more time trying to align them
than our linear pairwise algorithm. Figure 7 shows that the

HyFM: Function Merging for Free LCTES ’21, June 22, 2021, Virtual, Canada

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

5
0

8
.n

a
m

d
_
r

5
1

0
.p

a
re

s
t_

r

5
1

1
.p

o
v
ra

y
_
r

5
2

6
.b

le
n
d
e
r_

r

6
0

0
.p

e
rl

b
e
n
c
h
_
s

6
0

2
.g

c
c
_
s

6
0

5
.m

c
f_

s

6
1

9
.l
b
m

_
s

6
2

0
.o

m
n
e
tp

p
_
s

6
2

3
.x

a
la

n
c
b
m

k
_
s

6
2

5
.x

2
6

4
_
s

6
3

1
.d

e
e
p
s
je

n
g
_
s

6
3

8
.i
m

a
g
ic

k
_
s

6
4

1
.l
e
e
la

_
s

6
4

4
.n

a
b
_
s

6
5

7
.x

z
_
s

M
e
a
n

5
0
5

10
15
20
25
30
35
40

C
o
m

p
il
e
-t

im
e
 i
n
c
re

a
s
e
 (

%
)

9
.5

6
.6

-0
.1

9
.3

1
.4

M
e
a
n

15
10

5
0
5

10
15
20
25
30
35

4
.1

3
.5

-2
.3

8
.8

-1
.6

SPEC 2017 SPEC 06

Figure 8. Normalized end-to-end compilation time for SPEC 2017 and SPEC 2006 relative to LLVM LTO.

5
0
8
.n

a
m

d
_
r

5
1
0
.p

a
re

s
t_

r

5
1
1
.p

o
v
ra

y
_
r

5
2
6
.b

le
n
d
e
r_

r

6
0
0
.p

e
rl

b
e
n
c
h
_
s

6
0
2
.g

c
c
_
s

6
0
5
.m

c
f_

s

6
1
9
.l
b
m

_
s

6
2
0
.o

m
n
e
tp

p
_
s

6
2
3
.x

a
la

n
c
b
m

k
_
s

6
2
5
.x

2
6
4
_
s

6
3
1
.d

e
e
p
s
je

n
g
_
s

6
3
8
.i
m

a
g
ic

k
_
s

6
4
1
.l
e
e
la

_
s

6
4
4
.n

a
b
_
s

6
5
7
.x

z
_
s

M
e
a
n

0

50

100

150

200

250

300

350

400

A
R

S
 (

K
B

/s
)

3
5

.9
5

3
.5

1
1

5
.3

2
7

.4 7
8

.2

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

M
e
a
n

0

50

100

150

200

250

300

350

4
7

.0
4

8
.8

1
3

4
.3

3
3

.4
1

1
4

.3

SPEC 06SPEC 2017

Figure 9. Average reduction speed on both SPEC 2006 and 2017.

added pairing restrictions from [PA], to focus on blocks with
higher similarities, also benefits later stages.

4.4 End-to-End Compilation Time

We have also analyzed separately the end-to-end compila-
tion time because reducing code size through function merg-
ing has knock-on effects in later stages of the compilation
pipeline. The first order effect is that reducing the number
of functions tends to reduce compilation time. This is not
guaranteed though, because merged functions may be more
complex, potentially slowing down later compiler analyses
and transformations. Moreover, the time spent merging func-
tions may be so large that it negates any benefits from having
fewer functions later in the pipeline.

Even though on a few occasions SalSSA reduces end-to-
end compilation time, in general, its overhead is large enough
to result in an overall compilation time slowdown, 9.5% to
4.1% for SPEC 2017 and 2006 respectively. In contrast, our ap-
proach is so much faster that its compilation time overhead is
matched or outweighed by the speedup in later stages. This
reduction is marginal for SPEC 2017, but for SPEC 2006 [PA]
reduces the average compilation time by 2.3% and [NW] by
1.6%. There is only a single case where [PA] results in a sig-
nificant end-to-end slowdown, 10% for blender. Figure 7
shows that, although [PA] runs faster than SalSSA, both of
them spent a significant amount of time ranking the function
candidates, due to its large number of functions. Ranking
alone in this case takes around 70 seconds.

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

Overall, we believe that this reduction in end-to-end com-
pilation time is a very important result. While HyFM is still
achieving code-size reduction on par with the state-of-the-
art, the end-to-end compilation time becomes often faster
than the alternative without any function merging. These re-
sults suggest that our optimization could always be enabled
when optimizing for code size since it is beneficial both in
terms of code size and compilation time.

4.5 Code Size and Compilation Time Trade-Off

While the multi-tier profitability analysis improves both
code-size reduction and compilation speed, the choice of
alignment algorithm introduces a trade-off. Pairwise align-
ment is better for speed, Needleman-Wunsch is better for
code-size reduction. In terms of compilation efficiency, i.e.
how much code size reduction we get for the effort we put
in, the picture is clearer. In Figure 9, the average reduction
speed suggests that [PA] achieves the ideal trade-off, with
an average reduction speed of 115.3 KB/s, which is around
3× greater than SalSSA’s and 20% to 40% greater than [NW].

4.6 Memory Usage

Another important aspect of function merging is peak mem-
ory usage. This is especially critical for an optimization de-
signed for LTO. Compilation in full LTO mode is already
memory hungry. Just keeping the whole program in mem-
ory can be a significant problem for large programs [10].
Maintaining additional information for every function and
basic block could easily tip the compiler over the edge.
Figure 10 shows the peak memory usage (in log scale)

needed for the alignment stage alone. For SalSSA, this rep-
resents simply the execution of the Needleman-Wunsch al-
gorithm. For HyFM, the alignment stage represents both
aligning each pair of basic blocks as well as the pairing these
basic blocks. Our results show that [PA] is over three or-
ders of magnitude better than SalSSA, while [NW] is more
than two orders of magnitude better. In other words, while
SalSSA requires on average 2.4 GB of memory, [PA] uses
only around 610 KB and [NW] uses 5.6 MB.
The peak memory usage is especially noticeable on gcc,

when merging its two largest functions, containing 90093
and 76265 instructions. Since SalSSA applies its quadratic
sequence alignment algorithm on the linearized sequences
of the whole input functions, it uses over 32 GB of memory
when merging these two functions. Meanwhile, [NW] re-
quires only around 5.6 MB for merging the same pair of input
functions, even though it employs the same sequence align-
ment algorithm. This is because its peak memory usage is a
quadratic function of the largest pair of blocks instead of the
largest pair of functions. Although very large, these two func-
tions are composed of several thousands of very small basic
blocks, so the memory overhead of Needleman-Wunsch is
limited. Most of the memory consumed by [NW] in this case
is actually needed for storing the basic block fingerprints.

5
0
8
.n

a
m

d
_
r

5
1
0
.p

a
re

s
t_

r

5
1
1
.p

o
v
ra

y
_
r

5
2
6
.b

le
n
d
e
r_

r

6
0
0
.p

e
rl

b
e
n
c
h
_
s

6
0
2
.g

c
c
_
s

6
0
5
.m

c
f_

s

6
1
9
.l
b
m

_
s

6
2
0
.o

m
n
e
tp

p
_
s

6
2
3
.x

a
la

n
c
b
m

k
_
s

6
2
5
.x

2
6
4
_
s

6
3
1
.d

e
e
p
s
je

n
g
_
s

6
3
8
.i
m

a
g
ic

k
_
s

6
4
1
.l
e
e
la

_
s

6
4
4
.n

a
b
_
s

6
5
7
.x

z
_
s

M
e
a
n

10 2

10 1

100

101

102

103

104

P
e
a
k
 M

e
m

o
ry

 U
s
a
g
e
 (

M
B

)

2420.97

0
.6

1 4
.4

9

SalSSA HyFM [PA] HyFM [NW]

M
e
a
n

10 2

10 1

100

101

102
123.0

0
.1

5 0
.9

5

SPEC 2017 SPEC 06

Figure 10. Peak memory usage of SalSSA and HyFM vari-
ants for SPEC 2006 and 2017 in log scale. SalSSA has a peak
memory usage several orders of magnitude hundreds higher
than all other approaches. The pairwise alignment variants
of HyFM need on average only a seventh of the memory
needed by the Needleman-Wunsch variants.

This aspect becomes evident when we compare the peak
memory usage of [NW] with that of the [PA] for gcc. They
have similarly low memory requirements, even though only
one of them uses a quadratic alignment algorithm.
In other cases, where basic blocks are longer, pairwise

alignment leads to a significantly lower peak memory usage
compared to Needleman-Wunsch. For parest, for example,
pairwise alignment reduces memory usage from 40 MB to
200 KB. Overall, [PA] needs around 6× less memory. For
smaller programs, [NW] might be a viable option but for
larger ones being able to reducememory usage to aminimum
might be more important.

4.7 Summary

Overall, our novel function merging technique has surpassed
the state-of-the-art in terms of compilation time, memory
usage, as well as code size reduction. However, different vari-
ants of the proposed technique are better suited for different
goals. If the code size is the utmost concern, HyFM [NW]
is the winning strategy, but if we are looking for the most
balanced trade-off between compilation-time overheads and
code-size reduction, HyFM [PA] has shown better results.

5 Related Work

Compiler-based code size reduction is important for fitting
large programs to resource-constraint embedding devices.
Previous approaches reduce code size by replacing a code
segment with a smaller, semantically-equivalent implemen-
tation [17, 26], deleting unnecessary code [7, 12], combin-
ing redundant code within a function [5, 6] or across func-
tions [4, 16]. Function merging falls into the later category.

HyFM: Function Merging for Free LCTES ’21, June 22, 2021, Virtual, Canada

Established compilers like GCC and LLVM [2, 15] pro-
vide an optimization for merging identical functions at the
IR level. They can only handle type mismatches that can
be losslessly cast to the same format. Von Koch et al. [9]
extended this idea into merging nearly identical functions.
They restrict merging to functions with the same signature,
identical control-flow graphs, corresponding basic blocks
must also have the same number of instructions, and corre-
sponding instructions in these basic blocks must have the
equivalent data type. They only allow pairs of corresponding
instructions to differ in their opcode or list of arguments.

Rocha et al. [20] proposed a technique capable of merging
arbitrary pairs of functions. They employ a sequence align-
ment algorithm to find equivalent code segments. These
aligned functions with equivalent code can be merged into a
single function. Mismatching code segments of code are also
added to the merged function but have their code guarded
by a function identifier. SalSSA [21], based on the sequence
alignment algorithm, is the current state-of-the-art function
merging technique. While promising, SalSSA still suffers
from high memory usage and compilation time. As we have
shown in the paper, when compiling a modest-sized program,
the memory requirement of SalSSA can go well beyond what
is typically available to a developer. This drawback limits
the practicability and the scale at which SalSSA can oper-
ate. HyFM overcomes the limitations of SalSSA with a novel
alignment strategy and probability analysis. Experimental
results show that our techniques significantly reduce the
memory consumption and compilation time required when
using the sequence alignment algorithm, allowing function
merging to scale to larger programs.

Link-time optimization can merge text-identical functions
at the machine instruction level [1, 13, 25]. This technique
is hardware-specific but is orthogonal to our techniques
that work at the compiler IR level. Another closely related
technique is procedural abstraction [4, 8, 16]. This technique
moves identical code segments to separate functions and
replaces the original code segment with a function call. It
requires the code texts to be fully identical, but our function
merging approach does not have this restriction.

6 Conclusion

We have presented HyFM, a novel technique for compiler-
based function merging. By operating on individual pairs
of basic blocks, it eliminates most of the time and space
overheads of the previous state-of-the-art approach. Through
its multi-tier profitability analysis, it allows the compiler to
bail out early from unprofitable merging attempts saving
additional compilation time.
We evaluate HyFM by applying it to SPEC CPU2006 and

2017 benchmark suites. Experimental results show that HyFM
achieves comparable and often better results in code size re-
duction than the state-of-the-art. However, HyFM achieves

this while running over 4× faster and using orders of mag-
nitude less memory. We further demonstrate how different
variants of HyFM can be developed, giving users the flexi-
bility to control the trade-off between compilation overhead
and code size reduction.

Future work for improving function merging could focus
on an even finer grain tier to the profitability analysis that
works on individual pairs of aligned instructions. Another
aspect that could be improved is the strategy for pairing
functions, the most expensive part of function merging for
some benchmarks. One could also explore a hybrid approach
that uses both the pairwise and the Needleman-Wunsch
alignment algorithms, depending on the size of the paired
basic blocks.

Acknowledgment

This work has been supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) un-
der grants EP/L01503X/1 (CDT in Pervasive Parallelism),
EP/P003915/1 (SUMMER) and EP/M01567X/1 (SANDeRs).
This work was supported by the Royal Academy of Engi-
neering under the Research Fellowship scheme.

References
[1] 2020. Microsoft Visual Studio. Identical COMDAT Folding.

https://msdn.microsoft.com/en-us/library/bxwfs976.aspx.
[2] 2020. The LLVM Compiler Infrastructure. MergeFunctions pass, how

it works. http://llvm.org/docs/MergeFunctions.html.
[3] Rafael Auler, Carlos Eduardo Millani, Alexandre Brisighello, Alisson

Linhares, and Edson Borin. 2017. Handling IoT platform heterogeneity
with COISA, a compact OpenISA virtual platform. Concurrency and
Computation: Practice and Experience 29, 22 (2017), e3932.

[4] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with
Code-size Optimization for Production iOS Mobile Applications. In
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). IEEE Press, US, 1ś12.

[5] Wen Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code Compaction
of Matching Single-Entry Multiple-Exit Regions. In Static Analysis,
Radhia Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
401ś417.

[6] John Cocke. 1970. Global Common Subexpression Elimination. In
Proceedings of a Symposium on Compiler Optimization. ACM, New
York, NY, USA, 20ś24.

[7] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.
Optimizing for Reduced Code Space Using Genetic Algorithms. In Pro-
ceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers,
and Tools for Embedded Systems (Atlanta, Georgia, USA) (LCTES ’99).
ACM, New York, NY, USA, 1ś9.

[8] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and M.
Philippsen. 2007. Graph-Based Procedural Abstraction. In International
Symposium on Code Generation and Optimization (CGO’07). 259ś270.

[9] Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and
Anshuman Dasgupta. 2014. Exploiting Function Similarity for Code
Size Reduction. In Proceedings of the 2014 SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES ’14).
ACM, New York, NY, USA, 85ś94.

[10] Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017. ThinLTO:
Scalable and Incremental LTO. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization (Austin, USA) (CGO

LCTES ’21, June 22, 2021, Virtual, Canada Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazelwood, and Hugh Leather

âĂŹ17). IEEE Press, 111âĂŞ121.
[11] S. L. Keoh, S. S. Kumar, and H. Tschofenig. 2014. Securing the Internet

of Things: A Standardization Perspective. IEEE Internet of Things
Journal 1, 3 (June 2014), 265ś275.

[12] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial Dead
Code Elimination. In Proceedings of the ACM SIGPLAN 1994 Confer-
ence on Programming Language Design and Implementation (Orlando,
Florida, USA) (PLDI ’94). ACM, New York, NY, USA, 147ś158.

[13] Doug Kwan, Jing Yu, and B. Janakiraman. 2012. Google’s C/C++
toolchain for smart handheld devices. In Proceedings of Technical Pro-
gram of 2012 VLSI Technology, System and Application. 1ś4.

[14] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher:
Inter-Procedural Basic Block Layout Optimization. In Proceedings of the
28th International Conference on Compiler Construction (Washington,
DC, USA) (CC 2019). Association for Computing Machinery, New York,
NY, USA, 65âĂŞ75.

[15] Martin Liška. 2014. Optimizing large applications. arXiv preprint
arXiv:1403.6997 (2014).

[16] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. 2004. Code
factoring in GCC. In Proceedings of the 2004 GCC Developers’ Summit.
79ś84.

[17] HenryMassalin. 1987. Superoptimizer: A Look at the Smallest Program.
In Proceedings of the Second International Conference on Architectual
Support for Programming Languages and Operating Systems (ASPLOS
II). IEEE Computer Society Press, Los Alamitos, CA, USA, 122ś126.

[18] Saul B. Needleman and Christian D. Wunsch. 1970. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology 48, 3 (1970), 443 ś 453.

[19] Rodrigo Rocha. 2020. pldi20salssa. (4 2020). https://doi.org/10.6084/

m9.figshare.12089217.v1

[20] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2019. Function Merging by Sequence Alignment.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019). IEEE Press, Piscataway, NJ,
USA, 149ś163.

[21] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,
and Hugh Leather. 2020. Effective Function Merging in the SSA Form.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020). Association for Com-
puting Machinery, New York, NY, USA, 854âĂŞ868.

[22] Ulrik Pagh Schultz, Kim Burgaard, Flemming Gram Christensen, and
Jùrgen Lindskov Knudsen. 2003. Compiling Java for Low-end Em-
bedded Systems. In Proceedings of the 2003 ACM SIGPLAN Conference
on Language, Compiler, and Tool for Embedded Systems (San Diego,
California, USA) (LCTES ’03). ACM, New York, NY, USA, 42ś50.

[23] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder. 2012. Manage-
ment of resource constrained devices in the internet of things. IEEE
Communications Magazine 50, 12 (December 2012), 144ś149.

[24] SPEC. 2014. Standard Performance Evaluation Corp Benchmarks.
http://www.spec.org.

[25] Sriraman Tallam, Cary Coutant, Ian Lance Taylor, Xinliang David Li,
and Chris Demetriou. 2010. Safe ICF: Pointer Safe and Unwinding
Aware Identical Code Folding in Gold. In GCC Developers Summit.

[26] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson.
1982. Using Peephole Optimization on Intermediate Code. ACM Trans.
Program. Lang. Syst. 4, 1 (Jan. 1982), 21ś36.

[27] A. Varma and S. S. Bhattacharyya. 2004. Java-through-C compilation:
an enabling technology for Java in embedded systems. In Proceedings
Design, Automation and Test in Europe Conference and Exhibition, Vol. 3.
161ś166 Vol.3.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Function Merging via Sequence Alignment
	2.2 Limitations of The State of The Art
	2.3 When Less is More

	3 Hybrid Function Merging
	3.1 Overview
	3.2 Pairing Similar Basic Blocks
	3.3 Aligning Paired Basic Blocks
	3.4 Multi-Tier Profitability Analysis
	3.5 Independence from Code Layout

	4 Evaluation
	4.1 Experimental Setup
	4.2 Code Size Reduction
	4.3 Speeding Up Function Merging
	4.4 End-to-End Compilation Time
	4.5 Code Size and Compilation Time Trade-Off
	4.6 Memory Usage
	4.7 Summary

	5 Related Work
	6 Conclusion
	References

