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GENETICS | INVESTIGATION

Studying models of balancing selection using
phase-type theory

Kai Zeng∗,1, Brian Charlesworth† and Asger Hobolth‡

∗Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom, †Institute of Evolutionary Biology, School of Biological

Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom, ‡Department of Mathematics, Aarhus University, DK-8000 Aarhus C, Denmark

ABSTRACT Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important

genes. To further our understanding of its evolutionary significance, we analyse models with BLS acting on a biallelic locus:

an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model

of recent BLS. Using phase-type theory, a mathematical tool for analysing continuous time Markov chains with an absorbing

state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarised by nucleotide diversity, the

expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS

affects polymorphism patterns in a relatively small genomic neighbourhood, and such selection targets are easier to detect

when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction.

For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have

reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These

patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared

to selective sweeps, non-equilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which

may increase the chance of detecting such selection targets. An R package for analysing these models, among others (e.g.,

isolation with migration), is available.
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Balancing selection refers to a type of natural selection that1

maintains genetic variability in populations (Fisher 1922;2

Charlesworth 2006; Fijarczyk and Babik 2015). Genes known3

to be under balancing selection are often involved in impor-4

tant biological functions. Examples include the major histo-5

compatibility complex (MHC) genes in vertebrates (Spurgin6

and Richardson 2010), plant self-incompatibility genes (Castric7

and Vekemans 2004), mating-type genes in fungi (van Diepen8

et al. 2013), genes underlying host-pathogen interactions (Bakker9

et al. 2006; Hedrick 2011), inversion polymorphisms (Dobzhan-10

sky 1970), and genes underlying phenotypic polymorphisms11

in many different organisms (e.g., Johnston et al. 2013; Küpper12

et al. 2016; Kim et al. 2019). More recently, it has been proposed13

that a related process, known as associative overdominance,14

may play a significant role in shaping diversity patterns in ge-15
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nomic regions with very low recombination rates (Becher et al. 16

2020; Gilbert et al. 2020). These facts highlight the importance of 17

studying balancing selection. 18

Understanding how balancing selection affects patterns of 19

genetic variability is a prerequisite for detecting genes under this 20

type of selection. The best studied models involve long-term 21

selection acting at a single locus (Strobeck 1983; Hudson and 22

Kaplan 1988; Takahata 1990; Takahata and Nei 1990; Vekemans 23

and Slatkin 1994; Nordborg 1997; Takahata and Satta 1998; In- 24

nan and Nordborg 2003). It is well known that, in addition to 25

maintaining diversity at the selected locus, long-term balancing 26

selection increases diversity at closely linked neutral sites. This 27

reflects an increased coalescence time for the gene tree connect- 28

ing the alleles in a sample from the current population. When 29

this tree is sufficiently deep, it is possible for the ages of the 30

alleles to exceed the species’ age, leading to trans-species poly- 31

morphism. Furthermore, long-term balancing selection alters 32

the site frequency spectrum (SFS) at linked neutral sites, causing 33
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an excess of intermediate frequency derived variants. These1

properties underlie most of the methods used for scanning large-2

scale genomic data for targets of balancing selection (Andres3

et al. 2009; Leffler et al. 2013; DeGiorgio et al. 2014; Bitarello et al.4

2018; Cheng and DeGiorgio 2019; Siewert and Voight 2020).5

A significant limitation of most previous studies is the as-6

sumption that the population is at statistical equilibrium under7

selection, mutation and genetic drift. In reality, most popula-8

tions have experienced recent changes in population size. Our9

ability to analyse data from these populations is limited by the10

lack of an effective way of making predictions about the joint11

effects of demographic changes and balancing selection on pat-12

terns of genetic variability. Moreover, many cases of balancing13

selection involve variants that have only recently spread to in-14

termediate frequencies, rather than having been maintained15

for periods much longer than the neutral coalescence time (e.g.16

Eanes 1999; Kwiatkowski 2005; Corbett-Detig and Hartl 2012).17

Indeed, several theoretical studies have suggested that adapta-18

tion may occur through the frequent emergence of short-lived19

balanced polymorphisms (Sellis et al. 2011; Connallon and Clark20

2014). Because of their young age, there may not be sufficient21

time for the diversity patterns predicted for long-term balancing22

selection to emerge. As a result, targets of recent balancing selec-23

tion are unlikely to be detected by existing methods. This may24

explain why genome scans have only reported a relatively small25

number of potential selection targets (Andres et al. 2009; Leffler26

et al. 2013; DeGiorgio et al. 2014; Bitarello et al. 2018; Cheng and27

DeGiorgio 2019).28

Multiple authors have suggested that the emergence of a re-29

cent balanced polymorphism will generate diversity patterns30

that resemble those generated by incomplete selective sweeps31

caused by positive selection favouring a beneficial mutation32

(Charlesworth 2006; Sellis et al. 2011; Fijarczyk and Babik 2015).33

In fact, methods designed for detecting sweeps can identify34

these signals (e.g., Zeng et al. 2006). However, there is currently35

no theoretical framework for studying recent balanced polymor-36

phism, which precludes a detailed comparison with incomplete37

selective sweeps. Acquiring this knowledge will help us devise38

methods for distinguishing between balancing selection and39

positive selection, which will in turn allow us to test hypotheses40

about the importance of balancing selection in adaptation.41

We tackle these problems by using phase-type theory. Briefly,42

a phase-type distributed random variable describes the time43

until a finite state continuous time Markov process enters one of44

its absorbing states. Thus, a phase-type distribution is similar to45

the distribution of the hitting time (or first passage time) for a46

diffusion process (Karlin and Taylor 1981; Ross 1996). As an ex-47

ample, imagine that we have taken a sample of n alleles from the48

population. Going backwards, the time it takes for the process49

to reach the most recent common ancestor follows a phase-type50

distribution. Phase-type theory refers to a set of mathematical51

tools for analysing the properties (e.g., mean and variance) of52

this type of random variable (Bladt and Nielsen 2017). In a recent53

study, Hobolth et al. (2019) used a time-homogeneous version54

of the theory to study several population genetic models at sta-55

tistical equilibrium. Here, we extend this approach by deriving56

several useful results under a time-inhomogeneous framework.57

We use the new theory to analyse three models of balancing58

selection: an equilibrium model of long-term balancing selec-59

tion, a model with long-term balancing selection and changes in60

population size, and a model of recent balancing selection. The61

analysis of the last model is accompanied by a comparison with62

a comparable selective sweep model. 63

For each of these models, we calculate summary statistics that 64

are useful for understanding the effects of selection on diversity 65

patterns in nearby genomic regions. Specifically, for a sample 66

of alleles collected from a linked neutral site, we obtain (1) the 67

expected pairwise coalescence time (proportional to nucleotide 68

diversity π), (2) the expected level of linkage disequilibrium (LD) 69

between the selected locus and the focal neutral site, (3) the total 70

branch length of the gene tree (proportional to the total number 71

of segregating sites S ), and (4) the site frequency spectrum (SFS). 72

Our results extend previous studies of the equilibrium model 73

by providing a unifying framework for obtaining these statistics. 74

The analysis of the non-equilibrium models provides useful 75

insights that can be used for devising new genome scan methods 76

or parameter estimation methods. We conclude the study by 77

discussing the usefulness of phase-type theory in population 78

genetics. 79

An equilibrium model of balancing selection 80

Consider a diploid, randomly mating population. The effective 81

population size Ne is assumed to be constant over time. An 82

autosomal locus with two alleles A1 and A2 is under balancing 83

selection. The intensity of selection is assumed to be sufficiently 84

strong and constant over time that the frequencies of the two 85

alleles remain at their equilibrium values indefinitely. Denote 86

the equilibrium frequencies of A1 and A2 by p̂1 and p̂2, respec- 87

tively (p̂1 + p̂2 = 1). This set-up can accommodate any model 88

of long-term balancing selection (with or without reversible mu- 89

tation between A1 and A2), as long as it produces stable allele 90

frequencies. A random sample of n alleles have been taken from 91

a linked neutral locus. The recombination frequency between 92

this locus and the selected locus is denoted by r. In the following 93

four subsections, we use time-homogeneous phase-type theory 94

to calculate the four statistics mentioned at the end of the Intro- 95

duction. This introduces the methodology and notation, and sets 96

the stage for extending the analysis to non-equilibrium models 97

in later sections. A similar model has been investigated previ- 98

ously using different approaches (Strobeck 1983; Hudson and 99

Kaplan 1988; Nordborg 1997). However, these do not provide 100

analytical expressions for the SFS. 101

The mean coalescence time for a sample size of two 102

An allele at the neutral locus is associated with either A1 or A2 at 103

the selected site (i.e., a neutral allele is on the same haplotype as 104

either A1 or A2). The sample is therefore in one of three possible 105

states (Figure 1). In state 1, both alleles are associated with A2. 106

In state 2, one allele is associated with A1, and the other is associ- 107

ated with A2. In state 3, both alleles are associated with A1. Take 108

state 1 as an example. An allele currently associated with A2 was 109

associated with A1 in the previous generation either because 110

there was an A1 to A2 mutation during gamete production, or 111

because the parent was an A1 A2 heterozygote and there was a 112

recombination event. Define v21 as the backward mutation rate 113

(see Supplementary Text S.1). The first event occurs with proba- 114

bility v21, and the second event occurs with probability rp̂1. The 115

probability that the focal allele becomes associated with A1 in 116

the previous generation is m21 = v21 + rp̂1. The two alleles in 117

state 1 may share a common ancestor in the previous generation. 118

Because the frequency of A2 is p̂2, a total of 2Ne p̂2 alleles were 119

associated with A2 in the previous generation. The chance that 120

the two alleles coalesce is 1/(2Ne p̂2). 121

2 Zeng et al.



Under the standard assumption that the probability of occur-
rence of more than one event in one generation is negligible, the
probability that the two alleles in state 1 remain unchanged for z
generations is:
(

1 − 2m21 −
1

2Ne p̂2

)z

≈ e
−
(

2m21+
1

2Ne p̂2

)

z
= e

−
(

2M21+
1

p̂2

)

t (1)

where M21 = 2Nem21 = µ21 + ρ p̂1, µ21 = 2Nev21, ρ = 2Ner,1

and t = z/(2Ne).2

We have scaled time in units of 2Ne generations, and will use3

this convention throughout unless stated otherwise. Using this4

timescale, when in state 1, the waiting time to the next event5

follows an exponential distribution with rate parameter 2M21 +6

(1/ p̂2). Given that an event has occurred, the probability that7

it is caused by one of the two alleles becoming associated with8

A1 is 2M21/(2M21 + 1/ p̂2), and the probability that it is caused9

by the coalescence of the two alleles is (1/ p̂2)/(2M21 + 1/ p̂2).10

As illustrated in Figure 1, the first possibility moves the process11

from state 1 to state 2, whereas the second possibility terminates12

the process by moving it into the absorbing state where the most13

recent common ancestor (MRCA) is reached (state 4).14

Figure 1 Transition rates between the states of the equilibrium
balancing selection model for a sample size of two. A1 and A2
are the variants at the locus under balancing selection, with
equilibrium frequencies p̂1 and p̂2, respectively. The backward
mutation rate between Ai and Aj is vij per generation. The
thin horizontal lines represent haplotypes, and the neutral
locus is represented by a black dot. The recombination fre-
quency between the two loci is r. Time is scaled in units of
2Ne generations. The rate at which a neutral allele associated
with Ai becomes associated with Aj is Mij = µij + ρ p̂j, where
µij = 2Nevij and ρ = 2Ner. Two neutral alleles associated with
Ai coalesce at rate 1/ p̂i.

We can derive the transition rates between all four states15

of the process using similar arguments (Figure 1). This model16

is analogous to a two-deme island model in which 2Ne p̂1 and17

2Ne p̂2 are the sizes of the two demes, and M12 and M21 are the18

scaled migration rates (e.g., Hudson and Kaplan 1988; Slatkin19

1991; Nordborg 1997). Hereafter, we refer to the sub-population20

consisting of alleles associated with A1 or A2 as allelic class 1 or21

2, respectively.22

We can analyse this model efficiently using time-
homogeneous phase-type theory (Hobolth et al. 2019).

To this end, we define an intensity (rate) matrix as:

Λ =























−2M21 −
1
p̂2

2M21 0 1
p̂2

M12 −M12 − M21 M21 0

0 2M12 −2M12 −
1
p̂1

1
p̂1

0 0 0 0























. (2)

The first three rows in Λ are for states 1, 2, and 3, respectively. 23

In row i (i ∈ {1, 2, 3}), the j−th element is the rate of jumping 24

from state i to state j (j 6= i and j ∈ {1, 2, 3, 4}), and the diagonal 25

element is the negative of the sum of all the other elements in 26

this row. All elements of the last row of Λ are zero because state 27

4 is absorbing, so that the rate of leaving it is zero. 28

We can write Λ in a more compact form:

Λ =





S s

~0 0



 (3)

where S represents the 3-by-3 sub-matrix in the upper left cor- 29

ner of Λ, s
T = ( 1

p̂2
, 0, 1

p̂1
) consists of the first three elements in 30

the last column of Λ (the superscript T denotes matrix trans- 31

position), and~0 is a row vector of zeros. Thus, S contains the 32

transition rates between the transient states, and s contains the 33

rates of jumping to the absorbing state. S and s are referred to 34

as the sub-intensity matrix and the exit rate vector, respectively. 35

Assume that i and 2 − i alleles in the sample are associated
with A1 and A2, respectively. The time it takes for the process to
reach the most recent common ancestor (MRCA) of the pair of al-
leles is a random variable that follows a phase-type distribution
(Bladt and Nielsen 2017; Hobolth et al. 2019). To calculate the
expected value of this random variable, denoted by Ti,2−i, we
define the Green’s matrix U = {uij}, where uij is the expected
amount of time the process spends in state j prior to reaching
the MRCA, provided that the initial state is i (i, j ∈ {1, 2, 3}). As
shown in Supplementary Text S.2, U can be calculated as:

U = −S
−1 (4)

(see also Theorem 3.1.14 in Bladt and Nielsen (2017)). Take T0,2
as an example. The sample is in state 1. The expected amount
of time the coalescent process spends in state k before reaching
the MRCA is u1k (k ∈ {1, 2, 3}). Thus, T0,2 = ∑

3
k=1 u1k. More

generally, we have

Ti,2−i =
3

∑
k=1

ui+1,k. (5)

It is also possible to use phase-type theory to obtain the proba- 36

bility density function and all the moments of the coalescence 37

time (Hobolth et al. 2019). 38

Define the initial condition vector as α = (α1, α2, α3), where
αi is the probability that the sample is in state i (∑3

1 αi = 1). Thus,
for T0,2, α = (1, 0, 0). Further let D

T = (1, 1, 1). We can rewrite
(5) as:

Ti,2−i = αUD. (6)

As we will see later, expressing the results this way allows us 39

to accommodate non-equilibrium situations. The vector D is 40

known as the reward vector. Its k-th element Dk is the rate at 41
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which the quantity of interest accrues per unit time while the1

process stays in state k. Thus, the total contribution to Ti,2−i2

made by state k is ui+1,kDk.3

It is possible to obtain U analytically for the general model
with reversible mutation between A1 and A2, as specified by
(2). However, its terms are complicated, and are not shown.
For sites that are not very tightly linked to the selected locus,
movements of lineages between the two allelic classes are pri-
marily driven by recombination (i.e., ρ ≫ µij). Furthermore,
with only two alleles at the selected locus, the general model is
most appropriate for cases where the selected locus contains a
small handful of nucleotides. In this case µij is of the order of
the average nucleotide diversity at neutral sites (e.g., about 0.02
in Drosophila melanogaster or about 0.001 in humans). For most
applications, therefore, it is sufficient to work with a simplified
model with µij = 0. In this case, we have p̂1 M12 = p̂2 M21 (i.e.,
there is conservative migration; Nagylaki (1980)), which leads
to:

U =











p̂2+2p̂1 p̂3
2ρ

1+2p̂1 p̂2ρ 2p̂1 p̂2
2p̂3

1 p̂2ρ
1+2p̂1 p̂2ρ

p̂2
2 2p̂1 p̂2 +

1
ρ p̂2

1
2p̂1 p̂3

2ρ
1+2p̂1 p̂2ρ 2p̂1 p̂2

p̂1+2p̂3
1 p̂2ρ

1+2p̂1 p̂2ρ











. (7)

Summing the three rows, we have:














T0,2 = 1 − p̂1( p̂1− p̂2)
1+2p̂1 p̂2ρ

T1,1 = 1 + 1
ρ

T2,0 = 1 + ( p̂1− p̂2) p̂2
1+2p̂1 p̂2ρ

(8)

The results in (8) are the same as those derived by Nordborg4

(1997). The additional insight obtained here is given by (7).5

For instance, regardless of whether the initial state is 1 or 3,6

the process spends, on average, an equal amount of time in7

state 2 before coalescence (i.e., u12 = u32 in (7)). The results8

presented in Figure S1 further confirm that the simplified model9

should suffice in most cases, because the general model is well10

approximated by the simplified model for large enough ρ.11

Let πi,2−i be the expected diversity when i and 2 − i alleles in12

the sample are associated with A1 and A2, respectively. Under13

the infinite sites model (Kimura 1969), πi,2−i = 2θTi,2−i, where14

θ = 2Nev and v is the mutation rate per generation at the neutral15

site. To put the discussion in context, we note that the expected16

coalescence time for two alleles is 1 under the neutral model17

with constant population size. From (8), we can see that T1,1 is18

independent of p̂1 and p̂2, and is always greater than 1. For T0,2,19

it is < 1 or > 1 when p̂2 is < 0.5 or > 0.5, respectively. Similarly,20

T2,0 is < 1 or > 1 when p̂1 is < 0.5 or > 0.5, respectively. These21

trends hold even when there is reversible mutation between A122

and A2 (Figure S1).23

In reality, the selected variants are often unknown, and de-
tecting targets of balancing selection typically relies on inves-
tigating how diversity levels change along the chromosome
(Charlesworth 2006; Fijarczyk and Babik 2015). It is therefore
useful to consider the expected coalescence time for two ran-
domly sampled alleles at the neutral site, defined as:

T = p̂2
1T2,0 + 2p̂1 p̂2T1,1 + p̂2

2T0,2 = 1 +
p̂1 p̂2(ρ + 2)

ρ(1 + 2p̂1 p̂2ρ)
(9)

where the results in (8) are used. The nucleotide site diversity24

is given by π = 2Tθ. Figure 2 shows that the diversity level25

is highest when p̂1 = p̂2 = 0.5. This is also true when there26

is reversible mutation between A1 and A2 (Figure S2). The 27

simplified model is inherently symmetrical. For example, the 28

curve for p̂1 = 0.25 is identical to that for p̂1 = 0.75. In all 29

cases, marked effects on diversity are only seen in the immediate 30

genomic neighbourhood of the selected site where ρ is of order 31

1 or less. 32

p1=0.5
p1=0.25
p1=0.1

2 4 6 8 10
ρ1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T

Figure 2 The expected pairwise coalescence time as a function
of ρ. The simplified model with µ12 = µ21 = 0 is considered.
p̂1 is the equilibrium frequency of A1 at the selected locus.

LD between the selected locus and a linked neutral site 33

The expected pairwise coalescence time obtained in the previous
section can be used to calculate a measure of LD between the
two loci (Charlesworth et al. 1997). Assume that the neutral locus
is segregating for two variants B1 and B2. Let the frequencies
of B1 in allelic class 1 and 2 be x and y, respectively. Thus,
the frequency of B1 in the population is q1 = p̂1x + p̂2y, and
that of B2 is q2 = 1 − q1. Let δ = x − y. The coefficient of
LD between the two loci is given by D = p̂1 p̂2δ (see p. 410
of Charlesworth and Charlesworth 2010). The corresponding
correlation coefficient is R2 = D2/( p̂1 p̂2q1q2). It is impossible to
derive a simple expression for E[R2]. A widely-used alternative
can be written as:

σ2 =
E[D2]

E[ p̂1 p̂2q1q2]
=

p̂2
1 p̂2

2E[δ2]

p̂1 p̂2E[q1q2]
=

p̂1 p̂2E[δ2]

E[q1q2]
(10)

where we have used the fact that p̂1 and p̂2 are assumed to be 34

constant (Ohta and Kimura 1971; Strobeck 1983; McVean 2002). 35

Note that π = 2E[q1q2] is the expected diversity at the neutral 36

site. 37

As discussed in the previous section, we have π = 2θT under
the infinite sites model. To relate E[δ2] to the expected pairwise
coalescence times, we first define the expected diversity within
allelic class 1 and allelic class 2 as πA1 = 2E[x(1 − x)] and
πA2 = 2E[y(1 − y)], respectively. Again, under the infinite sites
model, we have πA1 = 2θT2,0 and πA2 = 2θT0,2. In addition,
let the weighted within allelic class diversity be πA = p̂1πA1 +
p̂2πA2. Note that π − πA = 2E[q1q2 − p̂1x(1 − x) − p̂2y(1 −
y)] = 2p̂1 p̂2E[δ2]. Inserting these results into the right-most
term of (10), we have:

σ2 =
π − πA

π
=

T − TA

T
(11)

where TA = p̂1T2,0 + p̂2T0,2 is the weighted average within al- 38

lelic class coalescence time. Note that σ2 has the same form as the 39
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fixation indices (e.g., FST) widely used in studies of structured1

populations. This close relationship between LD and the fixation2

indices was first pointed out by Charlesworth et al. (1997), who3

referred to σ2 as FAT . Our treatment here clarifies the relevant4

statements in this previous study. It also provides a genealogical5

interpretation of the results of Strobeck (1983).6

p1=0.5
p1=0.25
p1=0.1

neutral

2 4 6 8 10
ρ0.0

0.2

0.4

0.6

0.8

1.0

σ2

Figure 3 The level of LD between the selected and neutral loci
as a function of ρ. The simplified model with µ12 = µ21 = 0 is
considered. The neutral expectation for σ2 is also included.

Figure 3 shows σ2 as a function of ρ generated under the7

simplified model with µ12 = µ21 = 0. The level of LD between8

the selected and neutral loci is highest when p̂1 = p̂2 = 0.5,9

and decreases as p̂1 moves close to either 0 or 1 (note that the10

model is symmetrical such that, for 0 < z < 1, the curve for11

p̂1 = z is identical to that for p̂1 = 1− z). As expected, reversible12

mutation between A1 and A2 lowers LD by increasing the rate at13

which lineages move between the two allelic classes (Figure S3).14

These results mirror those described above for diversity levels.15

Together they show that the effect of balancing selection on16

linked diversity and LD patterns is largest when the equilibrium17

frequencies of the selected variants are close to 50%.18

It is informative to compare LD patterns under balancing19

selection with those under neutrality (i.e., σ2 = (5 + ρ)/(11 +20

13ρ + 2ρ2); Ohta and Kimura 1971). With balancing selection21

and p̂1 = 0.5, elevated LD is observed when ρ < 4 (Figure 3).22

With p̂1 = 0.1, LD is higher than neutral expectation when ρ <23

0.5, and it becomes lower than the neutral level when ρ > 0.5.24

Considering crossing over alone, the scaled recombination rate25

per site is of the order of 0.002 in humans, and 0.01 in Drosophila.26

These values go up substantially if we also take into account27

gene conversion (e.g., Campos and Charlesworth 2019). Thus,28

even when the effect of balancing selection is at its maximum, the29

region affected is small. The effect becomes rather insubstantial30

when the equilibrium frequency is close to 0 or 1, suggesting31

that such selection targets are probably extremely difficult to32

detect.33

Total branch length34

We now consider the situation when a sample of n alleles is35

available, with n1 of them associated with A1 and n2 with A236

(n1 + n2 = n). Let Ln1,n2 be the expected total branch length37

of the gene tree that describes the ancestry of the sample with38

respect to a neutral site linked to the selected locus. Note that,39

when n = 2, Ln1,n2 = 2Tn1,n2 . The results in Figure 2 imply40

that close genetic linkage to a locus under balancing selection 41

will result in an increase in the total branch length. Because 42

the expected number of segregating sites in the sample is given 43

by θLn1,n2 under the infinite sites model, we expect to see more 44

polymorphic sites in regions surrounding targets of long-term 45

balancing selection. This theoretical expectation underlies sev- 46

eral tests for balancing selection (Hudson et al. 1987; DeGiorgio 47

et al. 2014). 48

To illustrate the calculation, consider a sample with three 49

alleles. It can be in one of four possible states, with states 1, 2, 50

3, and 4 corresponding to situations where 0, 1, 2, and 3 of the 51

sampled alleles are associated with A1. Going backwards in 52

time, the coalescent process can move between these states via 53

recombination or mutation between allelic classes. For instance, 54

in state 1 all three alleles are associated with A2, and the process 55

moves to state 2 at rate 3M21. When more than one allele is in 56

the same allelic class, coalescence may occur. Again, take state 1 57

as an example. There are three alleles in allelic class 2, so that the 58

rate of coalescence is (3
2)/ p̂2 = 3/ p̂2. A coalescent event reduces 59

the number of alleles to two, and thus moves the process to 60

one of the three transient states depicted in Figure 1, referred 61

to as states 5, 6, and 7 here. The transition rates between these 62

states, as well as the rates of entering the absorbing state (i.e., 63

the MRCA), are identical to those discussed above (i.e., (2)). 64

A diagram showing the transition rates between the states
in this model can be found in Figure S4. The intensity matrix
Λ for this model can be defined in the same way as described
above, and is displayed in Supplementary Text S.3. Λ has a block
structure:

Λ =











S3 S32 0

0 S2 s2

~0 ~0 0











(12)

where 0 is a matrix of zeros. S3 is a 4-by-4 matrix and contains 65

the transition rates between states 1 - 4, all with three alleles. S32 66

is a 4-by-3 matrix and contains the rates of coalescent events that 67

move the process from a state with three alleles to one with only 68

two alleles (i.e., from states 1 - 4 to states 5 - 7). Finally, S2 and s2 69

are the same as the corresponding elements defined in (3). The 70

sub-intensity matrix S is the 7-by-7 sub-matrix in the upper left 71

corner of Λ, and contains the transition rates between all the 72

transient states. 73

Taking advantage of the block structure, we can calculate the
Green’s matrix more efficiently as:

U = −S
−1 = −





S3 S32

0 S2





−1

=





−S
−1
3 S

−1
3 S32S

−1
2

0 −S
−1
2



 . (13)

Recall that U = {uij} and uij is the expected amount of time the
process spends in (transient) state j prior to reaching the MRCA,
provided that the initial state is i. If, for instance, we want
to calculate L0,3, we first note that the sample is in state 1. The
process spends, on average, ∑

4
j=1 u1j in states 1 - 4. Because these

states have three alleles, the coalescent genealogy must have
three lineages. Thus, these four states contribute 3 ∑

4
j=1 u1j to

L0,3. Similarly, states 5 - 7, which contain two alleles, contribute
2 ∑

7
k=5 u1k. Putting these together, we have:

L0,3 = 3
4

∑
j=1

u1j + 2
7

∑
k=5

u1k. (14)
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More generally, if the sample is in state i, we can define
the initial condition vector as α = ei, where i ∈ {1, 2, 3, 4}
and ei is a 1-by-7 vector whose elements are 0 except that the
i-th element is 1. If we further define the reward vector as
D

T = (3, 3, 3, 3, 2, 2, 2), we have:

Li,3−i = αUD. (15)

Note that this has the same form as (6). It is also possible to use1

phase-type theory to obtain the distribution and all the moments2

of the total branch length (Hobolth et al. 2019).3

The approach can be easily extended to an arbitrary sample
size n. As discussed above (see (9)), for data analysis, it is useful
to consider the expected total branch length for a random sample
of n alleles, defined as:

L =
n

∑
i=0

(

n

i

)

p̂i
1 p̂n−i

2 Li,n−i. (16)
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Figure 4 The expected total branch length L for several com-
binations of sample size (n) and equilibrium frequency of the
selected variant A1 (p̂1). The value of L under balancing selec-
tion is divided by its neutral expectation. The y-axis is on the
log10 scale.

In Figure 4, we display L for several combinations of sample4

sizes and variant frequencies at the selected locus. To make the5

diversity-elevating effect more visible, we divide L by its neutral6

expectation (i.e., 2 ∑
n−1
i=1

1
i ). It is evident that, as n becomes larger,7

the sensitivity of L to p̂1 decreases, to the extent that, when n =8

30, L is effectively independent of p̂1. In addition, the strongest9

signal of elevated diversity appears when n = 2 and p̂1 = 0.5,10

but becomes less pronounced as n increases. To interpret these11

observations, recall that, when n = 2, π = θL, whereas for larger12

n, θL is the expected number of segregating sites in the sample,13

denoted by S. In data analysis, the nucleotide site diversity π is14

typically estimated from samples containing many alleles, and15

is known to be most sensitive to intermediate frequency variants16

(Tajima 1989). On the other hand, S is determined primarily17

by low frequency variants in the sample. Thus, these results18

suggest that S is less informative about balancing selection than19

π. However, the contrast between S and π can be used as an20

index of the departure of the SFS from its expectation at neutral21

equilibrium (Tajima 1989). This clearly points to the importance22

of considering the SFS, which is done in the next subsection.23

This way of obtaining the total branch length is an alterna- 24

tive to the recursion method used in previous studies (Hudson 25

and Kaplan 1988; DeGiorgio et al. 2014). The advantage of the 26

current approach is that it can be extended to accommodate 27

non-equilibrium dynamics such as population size changes and 28

recent selection (see below). The dimension of the sub-intensity 29

matrix S is d = (n + 1) + n + ... + 3 = 1
2 (n − 1)(n + 4). The 30

numerical complexity increases rapidly because numerical ma- 31

trix inversion requires O(n6) operations. However, by making 32

use of the block structure (e.g., (13)), the number of operations 33

is reduced to O(n5). Thus, this approach is computationally 34

feasible for samples of dozens of alleles. 35

The site frequency spectrum (SFS) 36

Again, consider a sample of n alleles at the neutral site, with n1 37

and n2 of them associated with A1 and A2, respectively. The 38

i-th element of the SFS is defined as the expected number of 39

segregating sites where the derived variant appears i times in 40

the sample (0 < i < n). Note that this definition is different from 41

the standard definition for a panmictic population in that it is 42

conditional on n1 and n2. Consider the gene tree for the sample. 43

We refer to a lineage (branch) that is ancestral to i alleles in the 44

sample as a lineage of size i (0 < i < n). Under the infinite sites 45

model, mutations on a lineage of size i segregate at frequency 46

i in the sample. Let φi(n1, n2) be the expected total length of 47

all lineages of size i in the gene tree. The SFS under the infinite 48

sites model can be expressed as Xi(n1, n2) = θφi(n1, n2) (e.g., 49

Polanski and Kimmel 2003). We can calculate φi(n1, n2) using 50

phase-type theory with additional book keeping. 51

To illustrate the calculation, consider a sample of three alleles. 52

Going backwards in time, before the first coalescent event, all 53

the lineages are size one. After the first coalescent event, one 54

lineage is size two, and the other is size one. Thus, the transient 55

states of the coalescent process can be represented by 4-tuples of 56

the form (a1,1, a1,2, a2,1, a2,2) where ai,j is the number of lineages 57

of size j that are currently associated with Ai. We have listed 58

all the transient states in Table 1. The first four states contain 59

three lineages, and the last four contain two lineages. We can 60

determine the transition rates between the states using the same 61

arguments that lead to Figures 1 and S4; the intensity matrix 62

Λ is displayed in Supplementary Text S.4. Note that Λ has the 63

same form as (12), so that we can obtain U using (13). 64

Table 1 The transient states for a sample size of three

ID state ID state ID state ID state

1 (0, 0, 3, 0) 2 (1, 0, 2, 0) 3 (2, 0, 1, 0) 4 (3, 0, 0, 0)

5 (0, 0, 1, 1) 6 (1, 0, 0, 1) 7 (0, 1, 1, 0) 8 (1, 1, 0, 0)

As an example, if n1 = 2 and n2 = 1, the starting state is 3,
so that only the elements in the third row of U are relevant. Be-
cause states 1 - 4 contain three size one lineages, they contribute
3 ∑

4
i=1 u3i to φ1(2, 1), but nothing to φ2(2, 1). The last four states

contain one size one lineage and one size two lineage. Thus,
they contribute ∑

8
k=5 u3k to both φ1(2, 1) and φ2(2, 1). Putting

these results together, we have:






φ1(2, 1) = 3 ∑
4
i=1 u3i + ∑

8
k=5 u3k

φ2(2, 1) = ∑
8
i=5 u3i

(17)
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Define the initial condition vector α = (0, 0, 1, 0, 0, 0, 0, 0),
φ(2, 1) = (φ1(2, 1), φ2(2, 1)) and

D
T =





3 3 3 3 1 1 1 1

0 0 0 0 1 1 1 1



 . (18)

We have E[φ(2, 1)] = αUD, which is again in the same form as1

(6).2

We can obtain the other φ(i, 3− i) by defining the appropriate3

α. In addition to the mean, it is also possible to use phase-4

type theory to obtain the variance of the SFS, as well as the5

covariance between different elements of the SFS (Hobolth et al.6

2019). These results are applicable to any sample size n ≥ 2.7

We defer showing results regarding the SFS until a later section8

where a model of recent balancing selection is analysed.9

Obtaining the SFS by working directly with the continuous10

time Markov process has been shown to be numerically more11

stable and accurate than approaches that rely on solving the12

diffusion equation numerically (Kern and Hey 2017). However,13

a limitation is that the size of the state space increases rapidly14

with n (Andersen et al. 2014). This is true even after exploiting15

the block structure of the sub-intensity matrix S. For instance,16

when n = 16, the dimension of the largest sub-matrix in S is 922,17

but it increases to 3493 when n = 20. However, the flexibility of18

phase-type theory, especially its ability to accommodate complex19

non-equilibrium models, makes it a useful tool, as we show next.20

A model with strong balancing selection and changes21

in population size22

So far we have only considered a model of balancing selection at23

statistical equilibrium. In this section, we switch our attention to24

a non-equilibrium model in which the population size changes25

in a stepwise manner. Specifically, we consider a diploid, ran-26

domly mating population. Looking back in time, its evolution-27

ary history consists of H non-overlapping epochs, such that the28

effective population size is Ne,h in epoch h (h ∈ {1, 2, ..., H}).29

The duration of epoch h is [th−1, th), where t0 = 0 (the present)30

and tH = ∞. Thus, epoch H, the most ancestral epoch, has31

an infinite time span, over which the population is at statisti-32

cal equilibrium. We assume that an autosomal locus is under33

balancing selection in epoch H, with two alleles A1 and A2 at34

equilibrium frequencies p̂1 and p̂2, respectively. Based on the35

results shown in the previous sections, we only consider the36

simplified model without reversible mutation between A1 and37

A2. In addition, we assume that selection is sufficiently strong,38

and the changes in population size are sufficiently small, that39

the frequencies of the two alleles remain at p̂1 and p̂2 in the more40

recent epochs. A similar approach has been applied successfully41

to modelling the joint effects of background selection and demo-42

graphic changes (Zeng 2013; Nicolaisen and Desai 2013; Zeng43

and Corcoran 2015).44

Total branch length45

As before, consider a neutral site linked to the selected locus,46

with a sample of n alleles, of which n1 and n2 are associated47

with A1 and A2, respectively. Consider the expected total branch48

length, Ln1,n2 . Here time is scaled in units of 2Ne,1 generations49

(twice the effective population size in the current epoch). We50

first note that the current model has the same states as the equi-51

librium model analysed above (e.g., see Figure S4 for n = 3). The52

main difference between the two models lies in the transition53

rates between states.54

We define the scaled recombination rate as ρ = 2Ne,1r. The
rate at which an allele in allelic class i moves to allelic class j is
Mij = ρ p̂j. These have the same form as above (cf. Figure 1). In
epoch h, the total number of alleles associated with A1 in the
population is 2Ne,h p̂1. The probability that two alleles associ-
ated with A1 in the current generation coalesce in the previous
generation is 1/(2Ne,h p̂1). In other words, the probability that
they remain un-coalesced for z generations is:

(

1 −
1

2Ne,h p̂1

)z

≈ exp
{

−
z

2Ne,h p̂1

}

= exp
{

−
gh

p̂1
t

}

(19)

where gh = Ne,1/Ne,h and t = z/(2Ne,1). Thus, the coalescent 55

rate between a pair of alleles in allelic class 1 is gh/ p̂1 in epoch 56

h. Similarly, the rate for two alleles in allelic class 2 is gh/ p̂2. 57

In epoch h, the transition rates between the states are constant, 58

and we can define an associated sub-intensity matrix, Sh. We 59

have already noted that the states in the current model are the 60

same as those in the equilibrium model. Sh is very similar to the 61

sub-intensity matrix for the equilibrium model (e.g., (12); see 62

also Supplementary Text S.3). The only differences are (1) ρ is 63

now defined as 2Ne,1r and (2) terms involving 1/ p̂i should be 64

replaced by gh/ p̂i. 65

Overall, the model has the following parameters: p̂1, ρ, t1, 66

g1, t2, g2, ..., tH−1, gH−1, and gH . Among these, p̂1 and ρ are 67

shared across all the epochs, whereas epoch h has two epoch- 68

specific parameters th and gh (note that tH = ∞). We have H 69

sub-intensity matrices: S1, S2, ..., SH . In Supplementary Text S.5, 70

we introduce time-inhomogeneous phase-type theory and prove 71

the following result: 72

Theorem 1. Consider a continuous time Markov chain with finite
state space {1, 2, ..., K, K + 1}, where states 1, ..., K are transient, and
state K + 1 is absorbing. Assume that the time interval [0, ∞) is
subdivided into H non-overlapping epochs. The duration of epoch h is
[th−1, th), where 1 ≤ h ≤ H, t0 = 0, and tH = ∞. The sub-intensity
matrix for epoch h is denoted by Sh. Then the Green’s matrix is:

U =
H

∑
h=1

[ h−1

∏
i=1

eSidi

]

Uh (20)

where dh = th − th−1, Uh = eShdh S
−1
h − S

−1
h , and eShdh = 0 if 73

dh = ∞. 74

Uh = {uij,h} in (20) is the Green’s matrix for epoch h. Its 75

element uij,h is the expected amount of time the process stays in 76

state j in this epoch if it enters the epoch in state i. Intuitively, 77

uij,h equals the amount of time the process spends in state j had 78

the duration of epoch h been [0, ∞) (represented by −S
−1
h ) minus 79

the amount of time it spends in state j in [dh, ∞) (represented 80

by −eShdh S
−1
h ). Let ∏

h−1
i=1 eSidi = {pij,h−1}. The element pij,h−1 81

is the probability that the process starts from state i at t0 = 0 82

and is in state j by the end of epoch h − 1 at time th−1. Thus, the 83

overall Green’s matrix U is the weighted mean of the epochs’ 84

contributions, with the weights being the probabilities that the 85

process enters the epochs in a particular state. 86

Applying this theorem requires the evaluation of matrix ex- 87

ponentials. Although this can be done analytically for certain 88

models (e.g., Waltoft and Hobolth 2018), it is not feasible for the 89

models considered here. We instead employ numerical methods 90

(Al-Mohy and Higham 2010; Moler and Van Loan 2003), as im- 91

plemented in the expm function in Matlab or the expm package in 92

R. The computational cost for obtaining eShdh is typically O(d3), 93

Models of balancing selection 7
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Figure 5 Expected total branch length and LD as a function of ρ and t. The population experienced a one-step change in population
size at time t before the present. The population size in the present and ancestral epochs are Ne,1 and Ne,2, respectively. Time is scaled
in units of 2Ne,1 generations. The selected alleles A1 and A2 are at equilibrium frequencies p̂1 = p̂2 = 0.5. The sample size is n = 20.

where d is the dimension of Sh. Once U has been calculated, the1

expected total branch length is given by Ln1,n2 = αUD (see (15)).2

In Figures 5a and b, we show L, the expected total branch3

length, for a random sample of n = 20 alleles (see (16)), under4

either a one-step population size increase or a one-step popu-5

lation size reduction. The population size change occurred at6

time t before the present. Because L is insensitive to p̂1 when7

n is relatively large (Figure 4), we only consider p̂1 = 0.5 (the8

results are qualitatively very similar with n = 2; not shown).9

Neutral diversity levels in genomic regions closely linked to the10

selected site are affected by recent population size changes to a11

much smaller extent than regions farther afield. This is because,12

for small ρ, migration of lineages between allelic classes is slow,13

such that the tree size is mainly determined by the divergence14

between allelic classes rather than drift within allelic classes. The15

importance of the divergence component increases with decreas-16

ing ρ. In particular, when there has been a recent reduction in17

population size, this effect protects against the loss of neutral18

polymorphisms in a larger genomic region (Figure 5b). Conse-19

quently, all else being equal, strong balancing selection affects20

a bigger stretch of the genome and produces a higher peak of21

diversity in smaller populations, potentially making them easier22

to detect. A similar observation has been made in models with23

self-fertilisation and background selection (Nordborg et al. 1996).24

Note that, although we have focused on calculating the total 25

branch length, Theorem 1 can also be used to calculate the SFS. 26

This can be done by defining an appropriate state space (e.g., 27

Table 1) and a suitable reward matrix (e.g., (18)). We will demon- 28

strate these calculations later when we analyse a model of recent 29

balancing selection. 30

LD between the selected locus and a linked neutral site 31

The measure of LD can be calculated by replacing T and TA in 32

(11) with T(t) and TA(t). In Figures 5c and d, we can see that σ2
33

converges to its new equilibrium level at a much higher rate than 34

the level of diversity, which is a well-known effect (e.g., McVean 35

2002). Interestingly, σ2 appears to approach its new equilibrium 36

in a non-monotonic way. For instance, in Figure 5c, LD levels at 37

t = 0.4 are temporarily higher than the equilibrium value (the 38

solid black curve), but become lower than the equilibrium value 39

at t = 1.3. In Figure 5d, we can see that the level of LD is higher, 40

and extends further, after the population size reduction (see also 41

Figure S5). These results further suggest that balancing selection 42

may be easier to detect in smaller populations. 43

Simulations 44

The theory developed above assumes that the frequencies of A1 45

and A2 remain constant at p̂1 and p̂2, respectively. This is true 46
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only when the population size is infinite. With a finite popula-1

tion size, allele frequencies fluctuate around their equilibrium2

values due to genetic drift. To investigate the effects of stochastic3

allele frequency fluctuation on the accuracy of our model predic-4

tions, we conducted simulations using mbs (Teshima and Innan5

2009). Briefly, each simulation replicate contained two steps: (1)6

forward simulation to obtain allele frequency trajectories for the7

selected variants given the demographic history; (2) coalescent8

simulation for a sample of n alleles at a linked neutral site, condi-9

tioning on the trajectories obtained in step 1 (see Supplementary10

Text S.6 for more details). Because the theory does not depend11

on a specific selection model, we used an overdominance model12

whereby the fitnesses of the three genotypes A1 A1, A1 A2, and13

A2 A2 are 1 − s1, 1, and 1 − s2, respectively. The equilibrium14

frequencies are p̂1 = s2
s1+s2

and p̂2 = s1
s1+s2

.15

To check the results presented in Figure 5, we let s1 = s2 = s,16

such that p̂1 = p̂2 = 50%. To simulate the population expan-17

sion model in 5a, we assumed that Ne,1 = 20, 000 (the effective18

population size of the current epoch) and Ne,2 = 2, 000 (the effec-19

tive population size of the ancestral epoch). For the population20

reduction model in 5b, we used Ne,1 = 2, 000 and Ne,2 = 20, 000.21

As shown in Figure S6, the theoretical predictions are highly22

accurate. Here selection was strong, as measured by γmin =23

2Ne,mins = 250, where Ne,min = min(Ne,1, Ne,2). To further check24

the robustness of our results, we reduced s, such that γmin = 20.25

The substantial reduction in the intensity of selection leads to26

a significantly higher level of fluctuation in the frequencies of27

the selected variants (Figure S7). Encouragingly, the theoretical28

predictions remain accurate (Table S1).29

A model of recent balanced polymorphism30

We now turn our attention to the effects of the recent origin31

of a balanced polymorphism on patterns of genetic variability.32

Consider a diploid panmictic population with constant effective33

population size Ne. At an autosomal locus, a mutation from A134

(the wild type) to A2 (the mutant) arises. The fitnesses of the35

genotypes A1 A1, A1 A2, and A2 A2 are w11 = 1 − s1, w12 = 1,36

and w22 = 1 − s2 (s1 > 0 and s2 > 0; i.e., there is heterozygote37

advantage). As above, we ignore reversible mutation between38

A1 and A2. In what follows, we first use a forward-in-time ap-39

proach to obtain equations for describing the increase in the40

frequency of A2 in the population. We then use the backward-41

in-time coalescent approach to calculate various measures of42

sequence variability in linked genomic regions. Wherever ap-43

propriate, we present results from a comparable selective sweep44

model, so that the two models can be compared.45

Frequency of the mutant allele in the population46

Let the frequencies of A1 and A2 in the current generation be p1
and p2, respectively. Let p′2 be the frequency of A2 in the next
generation. Using the standard theory (reviewed in Chap. 2
of Charlesworth and Charlesworth (2010)), the change in allele
frequency in one generation due to selection is given by

∆p2 = p′2 − p2 =
p1 p2(w2· − w1·)

w̄
(21)

where w1· = p1w11 + p2w12, w2· = p1w12 + p2w22, and w̄ =47

p1w1· + p2w2·. Assuming that both s1 ≪ 1 and s2 ≪ 1, ∆p2 ≈48

p1 p2(w2· − w1·) = p1 p2(p1s1 − p2s2). At equilibrium, ∆p2 = 0,49

such that the frequencies are p̂1 = s2
s1+s2

and p̂2 = s1
s1+s2

.50

When p2 ≪ 1, ∆p2 ≈ s1 p2. This is the same as when A2 is51

under positive selection with fitnesses of the three genotypes52

being w11 = 1, w12 = 1 + s1, and w22 = 1 + 2s1, respectively 53

(i.e., there is semi-dominance). Thus, we expect the initial signals 54

generated by the increase in p2 to be similar to those from an in- 55

complete selective sweep, referred to here as the “corresponding 56

sweep model". 57

The similarity between the two selection models means that
we can borrow useful results from the selective sweep litera-
ture. In particular, after A2 has been generated by mutation,
its frequency must increase rapidly for it to escape stochastic
loss. Following an approach first proposed by Maynard Smith
(1976), we assume that p2 increases instantly to ǫ = 1

γ1
, where

γ1 = 2Nes1 (see also Desai and Fisher 2007). Thereafter, p2
changes deterministically until its rate of change becomes very
slow near the equilibrium point, when the coalescent process
(considered in the next sub-section) is effectively the same as at
equilibrium. Measuring time in units of 2Ne generation, p2(t)
satisfies:

dp2
dt

= p1 p2(p1γ1 − p2γ2) (22)

where γ2 = 2Nes2. The solution to this differential equation is

γ1 ln(1 − p2) + γ2 lnp2 − (γ1 + γ2) ln
[

γ1 − (γ1 + γ2)p2
]

= γ1γ2(t + c) (23)

where c is a constant such that p2(0) = ǫ. We can obtain the 58

frequency of A2 at time t by solving for p2 numerically. 59

It is instructive to compare the dynamics of p2(t) with those
for the corresponding sweep model defined above. We assume
that the frequency of the positively selected variant A2 increases
instantly to ǫ and grows deterministically until 1 − ǫ. Let p∗2(t)
be the frequency of A2 at scaled time t after its frequency arrived
at ǫ. It can be shown that:

p∗2(t) =
ǫ

ǫ + (1 − ǫ)e−γ1t
(24)

(Crow and Kimura 1970; Stephan et al. 1992). 60

A recent study explicitly considered the stochastic phases 61

when the frequency of the positively selected variant A2 is below 62

ǫ or greater than 1 − ǫ (Charlesworth 2020a). These two phases 63

contribute relatively little to the fixation time under the current 64

model with strong selection and semi-dominance (see Table 1 of 65

Charlesworth 2020a). Furthermore, when the frequency of A2 is 66

very close to 0 or 1, the coalescent process is effectively the same 67

as under neutrality. Thus, ignoring these two stochastic phases 68

is reasonable for our purposes. 69

In Figure 6, we display three balancing selection models, all 70

with γ1 = 500, but different γ2 values, so that they have different 71

equilibrium allele frequencies. For comparison, the correspond- 72

ing sweep model with γ1 = 500 is also presented. As can be 73

seen, the allele frequency trajectories for the balancing selection 74

models and the corresponding sweep model are similar only for 75

a rather short period. After that, p2(t) increases at a much slower 76

pace than p∗2(t). As shown below, these observations explain the 77

differences between a recent balanced polymorphism and the 78

spread of a beneficial mutation with respect to their effects on 79

diversity patterns in nearby genomic regions. 80

Total branch length 81

We extend the coalescent approach developed above for the equi- 82

librium model, in order to calculate the expected total branch 83

length L for a random sample of n alleles at a linked neutral 84

site (see (16)). The frequency of A2 at the time of sampling is 85

Models of balancing selection 9
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Figure 6 The frequency of the mutant allele A2 as a function of
t (time since its frequency reached ǫ). γ1 = 500. γ2 is adjusted
such that the equilibrium frequency p̂2 is 0.25, 0.5, and 0.75,
respectively. The trajectory under the corresponding sweep
model is included for comparison.

p2(t) where t is the time since the frequency of A2 reached ǫ,1

expressed in units of 2Ne generations. At time τ before the2

present (0 ≤ τ < t), the frequency of A2 is given by p2(t − τ).3

For τ ≥ t, the process reduces to a standard neutral coalescent4

model with constant population size. To make use of Theorem5

1, we divide [p2(t), ǫ) into H − 1 equal-sized bins, such that the6

h-th bin is [p2,h−1, p2,h), where p2,h = p2(t) +
h

H−1 (ǫ − p2(t))7

(h ∈ {0, 1, 2, ..., H − 1}). Let τh be the solution to p2(t − τh) =8

p2,h given by (23). The corresponding time interval for bin h is9

[τh−1, τh), which is shorter when the frequency of A2 is changing10

at a faster rate. Thus, we have H epochs, with the first H − 1 in11

[0, t) and epoch H covering the whole of [t, ∞) (Figure S8).12

Consider epoch h with h < H. The state space in this epoch is
the same as that discussed above for the equilibrium model (see
the arguments leading to (12)). Thus, the sub-intensity matrix
for this epoch, Sh, can be obtained in a similar way (cf., Figure
S4). The only complication is that the frequency of A2 changes
within the epoch. However, if the time interval is sufficiently
small, we can treat the frequency of A2 as if it were constant.
Here we set the frequency of A2 in epoch h to its harmonic mean
q2,h, which can be calculated as:

1
q2,h

=
1

τh − τh−1

∫ τh

τh−1

1
p2(t − τ)

dτ. (25)

We can then obtain Sh by simply replacing p̂1 and p̂2 in the sub-13

intensity matrix for the equilibrium model with q1,h and q2,h,14

where q1,h = 1 − q2,h.15

Note that, although the space state is the same for the epochs16

in [0, t), this is not true for the transition from epoch H − 1 to17

epoch H. At the end of epoch H − 1, if more than one allele is18

associated with A2, they coalesce into a single ancestral allele19

instantly. If the resulting ancestral allele is the only allele left,20

the process is terminated. Otherwise, if there are also n1 alleles21

associated with A1 at the time, then the n1 + 1 alleles enter22

epoch H and coalesce at rate (n1+1
2 ). Thus, we need a mapping23

matrix EH−1,H , which is defined below (S22) in Supplementary24

Text S.5, to take into account the differences between the two25

epochs. For instance, for a sample of two alleles, the state space26

in [0, t) has three transient states: (0, 2), (1, 1), and (2, 0), where 27

the two numbers of each tuple represent the number of alleles 28

associated with A1 and A2, respectively. However, epoch H has 29

only one transient state, representing two uncoalesced alleles. 30

If the process is in state (0, 2) at the end of [0, t), it terminates 31

with the instant coalescence of the two alleles. If the process is 32

in any of the other two states, it enters epoch H with the same 33

starting condition. Thus E
T
H−1,H = (0, 1, 1), where 0 in the first 34

element means it is impossible to enter epoch H via state 1 in 35

epoch H − 1, and the 1s mean that, if the process is in state 2 or 36

3 by the end of epoch H − 1, the process begins epoch H in state 37

1. 38
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Figure 7 Nucleotide site diversity and LD in genomic regions
surrounding a recently-emerged variant under balancing se-
lection. The parameters are γ1 = 500 and p̂2 = 0.75 (as in
Figure 6). The discretisation scheme has H = 76 bins. In (a),
the expected total branch length for a sample of n = 2 alleles is
calculated for various value of t, the time since the frequency
of A2 reached ǫ. To make the effects more visible, L is divided
by its neutral expectation. σ2 in (b) measures the level of LD
between the selected locus and a linked neutral site. For com-
parison, the neutral expectation of σ2 is also included.
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In all, the model has the following parameters: γ1, γ2, t, and1

ρ. By increasing the number of bins in the discretisation scheme2

(i.e., H; Figure S8), we can get arbitrarily accurate approxima-3

tions. The results presented below are based on values of H4

such that the size of the frequency bins is about 1%. This is a5

rather conservative choice; using larger bins does not signifi-6

cantly change the results. Once the sub-intensity matrices are7

defined (i.e., Sh for 1 ≤ h ≤ H), we can obtain U using Theorem8

1 (see also Supplementary Text S.5) and L = αUD (see (15)).9

Figure 7a shows how neutral diversity levels are affected by10

a recent balanced polymorphism, using the balancing selection11

model with p̂2 = 0.75 considered in Figure 6. Initially, the rapid12

increase in the frequency of A2 produces a drop in neutral diver-13

sity in nearby regions (the solid blue line). The maximum extent14

of reduction appears when p2(t) is close to its equilibrium value15

(the dotted line; p2(0.04) = 0.742). After that, the diversity level16

starts to recover. Here, the increase in diversity level is fastest for17

regions closely linked to the selected site, because coalescence is18

slow when ρ is small. This leads to a U-shaped diversity pattern19

that persists for some time, which is followed by a rather slow20

approach to the equilibrium value (Figure S9). These dynamics21

are qualitatively the same when we consider a larger sample22

size with 20 alleles, although the reduction in diversity is less23

pronounced (Figure S10). Similar patterns are also observed for24

the other two balancing selection models in Figure 6 (Figure S11).25

The main difference is that models with a smaller p̂2 tend to re-26

sult in a smaller reduction in neutral diversity. For instance, for27

the model with p̂2 = 0.25, the maximum reduction in nucleotide28

site diversity in very tightly linked regions is less than 6% (as29

opposed to a more than 50% reduction in Figure 7a), potentially30

making them very difficult to detect from data.31

LD between the selected locus and a linked neutral site32

It is straightforward to use the method developed in the previ-33

ous subsection to calculate σ2. From Figure 7b, we make two34

observations. First, LD builds up quickly and extends to a large35

genomic region when the frequency of A2 is increasing rapidly36

(blue solid curve vs the neutral curve). This suggests the forma-37

tion of long haplotypes around the selected locus, which can be38

used to help detect selection targets, as is done in extended hap-39

lotype tests (e.g., Voight et al. 2006; Ferrer-Admetlla et al. 2014).40

Second, the level of LD starts to decline before the reduction in41

diversity is maximal (the dotted curves in Figures 7a and b), sug-42

gesting that LD based detection methods will have already lost43

a substantial amount of their statistical power by this time. This44

implies that LD and diversity patterns complement each other45

when it comes to detecting targets of recent balancing selection.46

Differences between balancing selection and selective47

sweeps in their effects on the total branch length and LD48

We can analyse selective sweep models using the discretisation49

scheme outlined in Figure S8. In Figure 8a, we compare the bal-50

ancing selection model shown in Figure 7 to its corresponding51

sweep model, with respect to their effects on L (the expected52

total branch length). Because the frequency of the beneficial53

allele increases much more rapidly (Figure 6), it causes a more54

pronounced reduction in diversity than the balanced polymor-55

phism of the same age. Fixation of the beneficial allele occurs at56

t = 0.025. After that, diversity returns to its neutral level over57

a time period of the order of 2Ne generations, which is much58

faster than the time it takes for diversity to reach its equilibrium59

level under balancing selection (Figure S9). The patterns are60

similar when a larger sample size is considered (Figure S12). 61
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Figure 8 Comparing recent balancing selection with the cor-
responding sweep model, with respect to their effects on di-
versity and LD levels in surrounding genomic regions. The
parameters of the balancing selection model (bls) are γ1 = 500
and p̂2 = 0.75 (i.e., the same as in Figure 7). The correspond-
ing sweep model (ssw) has γ1 = 500. In (a), the expected
total branch length for a sample of n = 2 alleles, divided by
its neutral value, is presented. In (b), we consider the level
of LD between the selected locus and a linked neutral site, as
measured by σ2. Fixation (taken as the time when the mutant
allele frequency reaches 1 − ǫ) occurs at t = 0.025 under the
sweep model. The reduction in diversity reaches its maximum
at t ≈ 0.04 under the balancing selection model.

A comparison between the two selection models with respect 62

to their effects on LD patterns in the surrounding neutral re- 63

gion is shown in Figure 8b. Both models result in elevated LD. 64

As expected, the corresponding sweep model leads to a more 65

pronounced build-up of LD (red vs black dotted lines). This 66

suggests that recent balancing selection is harder to detect than 67

a comparable beneficial mutation. Under both models, LD starts 68

to decay before the reduction in diversity is maximal (pink vs 69

grey dashed lines). The decay appears to be much faster under 70
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the sweep model. This is because, under the balancing selection1

model, A2 approaches an equilibrium frequency, instead of fixa-2

tion. Therefore, a sizeable genomic region remains at elevated3

levels of LD with the selected locus for a longer period. Recall4

that diversity levels also take much longer to reach equilibrium5

under balancing selection (Figure 8a). Thus, there may well6

be a bigger window of opportunity for detecting targets of re-7

cent balancing selection, despite the fact that the signals they8

produce tend to be less dramatic than those produced by the9

corresponding sweep model.10

The site frequency spectrum11

The SFS can also be obtained using the time discretisation pro-
cedure. Here the state space is the same as that detailed for the
equilibrium balancing selection model. As above, we obtain
the sub-intensity matrix for epoch h by replacing p̂1 and p̂2 in
the sub-intensity matrix for the equilibrium model (e.g., Sup-
plementary Text S.4) with q1,h and q2,h, respectively. We then
use Theorem 1 to calculate Xi(n1, n2). It is more instructive to
consider the SFS for a sample of n randomly collected alleles,
defined as:

Xi =
n

∑
j=0

(

n

j

)

p
j
1 p

n−j
2 Xi(j, n − j) (26)

where p1 and p2 are the frequencies of A1 and A2 at the time of12

sampling. The effects selection has on the shape of the SFS are13

visualised using the ratio Xi/Xi(neutral), where Xi(neutral) =14

2θ/i.15

In Figure 9, we present the SFS at different time points since16

the arrival of the mutant allele, for both the balancing selection17

model and the corresponding sweep model considered in Fig-18

ure 8. When the frequency of the selected variant is rapidly19

increasing in the population, both types of selection produce a20

U-shaped SFS, with an excess of both low and high frequency21

derived variants. The extent of distortion is maximised around22

the time when the reduction in neutral diversity is also the most23

pronounced (see plots in the second row). The corresponding24

sweep model has a much bigger effect on the shape of the SFS.25

For example, under the sweep model, at the time of fixation26

(t = 0.025), X9/X8 = 4.91 and X1/X2 = 8.05. In contrast, when27

the SFS is most distorted under the balancing selection model28

(t = 0.04), X9/X8 = 1.34 and X1/X2 = 3.29. The excess of high29

frequency derived variants quickly disappears after the selected30

allele has stopped its rapid increase in frequency (plots in the31

third row), although the SFS remains U-shaped for longer under32

balancing selection. The plots in the last row shows the transi-33

tion from a situation with reduced diversity and an excess of34

low frequency variants to a situation that resembles the pattern35

expected under long-term balancing selection, with an elevated36

diversity level and an excess of intermediate frequency variants.37

Qualitatively similar dynamics have been observed for the bal-38

ancing selection models with p̂2 = 0.5 and 0.25, respectively39

(Figure S13). Again, the SFS-distorting effect is weaker when40

p̂2 is smaller, with the case with p̂2 = 0.25 producing hardly41

any excess of low and high frequency variants even when A2 is42

increasing in frequency.43

To investigate the SFS further, we consider π (the nucleotide
site diversity) and Watterson’s θW . Recall that, under the infinite
sites model, π = 2θT, where T is defined by (9). Let S be the
expected number of segregating sites in a sample of size n. We
have S = θL. Because θW = S/an where an = ∑

n−1
i=1

1
i , we have
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Figure 9 The SFS at various time points after the arrival of
the selected variant for a random sample of 10 alleles. The
balancing selection (bls) and selective sweep (ssw) models are
the same as those shown in Figure 8. The scaled recombination
frequency between the focal neutral site and the selected site
is ρ = 2. The reduction in diversity reaches its maximum at
t ≈ 0.04 and 0.025 (fixation) under the balancing selection and
selective sweep models, respectively. The SFS under selection
is expressed relative to its neutral expectation.

θW = θL/an. Following Becher et al. (2020), we define

∆θW = 1 −
π

θW
= 1 −

2θT

θL/an
= 1 −

2anT

L
. (27)

∆θW = 0 under neutrality, > 0 when there is an excess of rare 44

variants, and < 0 when there is an excess of intermediate fre- 45

quency variants. 46

Figure 10 shows ∆θW for the balancing selection model with 47

γ1 = 500 and p̂2 = 0.75 (as in Figures 6 - 9); the corresponding 48

sweep model is also included for comparison. At t = 0.012, the 49

balancing selection model produces no obvious deviation from 50

neutrality (black dotted line), whereas the sweep model has 51

already started to cause a significant excess of rare variants (red 52

dotted line). This is consistent with the much slower increase 53

in the frequency of A2 under balancing selection (p2(0.012) = 54

0.303 vs p∗2(0.012) = 0.447). The extent of deviation caused by 55

the sweep is maximal around the time when A2 becomes fixed 56

(t ≈ 0.025; pink dashed line). Under the balancing selection 57

model, the maximum deviation appears when the frequency of 58

A2 becomes close to its equilibrium value (t ≈ 0.04; grey dashed 59

line), but is less pronounced than under the sweep model. After 60

the maximum is achieved, diversity patterns gradually return 61

to neutrality over 4Ne generations under the sweep model. For 62

the balancing selection model, there is a much longer period of 63

non-stationary dynamics as shown by the light blue and blue 64
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Figure 10 ∆θW as a function of ρ and t. The two selection mod-
els are the same as those considered in Figure 9. “bls: t = ∞"
corresponds to the equilibrium under balancing selection. The
sample size is 10 in (a) and 35 in (b).

lines. The observations are qualitatively similar for the two1

sample sizes considered (n = 10 vs n = 35). Nonetheless, the2

extent of deviation in the SFS is more conspicuous when n = 35,3

suggesting an increase in statistical power.4

It is informative to compare the three balancing selection5

models with γ1 = 500, but different equilibrium allele frequen-6

cies (Figure 6). The model with p̂2 = 0.75 produces the strongest7

sweep-like signals (Figure 10 vs Figure S14). At the other ex-8

treme, the model with p̂2 = 0.25 effectively emits no such signal9

(Figure S14). Thus, targets of recent balancing selection with10

larger p̂2 are easier to detect. However, for older targets of11

selection, the excess of intermediate frequency variant (i.e., neg-12

ative ∆θW ) is most noticeable for selection targets with p̂2 ≈ 0.513

(Figure S14), making them the most amenable to detection. Alto-14

gether, it seems that balancing selection targets with low equilib-15

rium allele frequencies (e.g., p̂2 ≈ 0.25) are difficult to identify16

regardless of their age.17

Simulations 18

We performed simulations with stochastic allele frequency tra- 19

jectories at the selected site using mbs. The simulation method is 20

similar to that described earlier (see also Supplement Text S.6). 21

In Figure S15, γ1 = 500 and the equilibrium frequency of A2 22

is 0.75 (i.e., the same as Figure 9). The theoretical predictions 23

for both the balancing selection and selective sweep models are 24

highly accurate. In an additional experiment, we reduced γ1 25

to 20, but kept the equilibrium frequency of A2 at 0.75. This is 26

to examine the robustness of our predictions against increased 27

stochasticity induced by weaker selection. The results in Figure 28

S16 suggest that our theory remains accurate for both models. 29

Discussion 30

In this study, we have used the power and flexibility afforded by 31

phase-type theory to study the effects of balancing selection on 32

patterns of genetic variability and LD in nearby genomic regions. 33

Our results go beyond previous attempts in that they provide 34

a unifying framework for calculating important statistics for 35

both equilibrium and nonequilibrium cases. In what follows, we 36

discuss how our results can be used in data analyses and future 37

method developments. We will also discuss the usefulness of 38

phase-type theory in general. 39

Accommodating other biological factors 40

Here we have only considered selection on an autosomal locus
in a randomly mating population. However, our results can be
readily extended to accommodate other important biological
factors. Take self-fertilization as an example. Let f be the selfing
rate and F = f /(2 − f ) be the corresponding inbreeding coeffi-
cient. For this model, Ne = N/(1 + F), where N is the number
of breeding individuals (Charlesworth 2009). Because selfing
increases the frequency of homozygotes in the population, it re-
duces the effective frequency of recombination to re = (1 − F)r,
where r is the autosomal recombination rate in a random-mating
population (Nordborg 1997; see Hartfield and Bataillon 2020
for a more accurate expression for re). Finally, for the model of
recent balancing selection, we also need to consider the effects of
selfing on the frequency trajectory of A2. This can be achieved
by replacing (22) with:

dp2
dt

= p1 p2 [(1 − F)(p1γ1 − p2γ2) + F(γ1 − γ2)] . (28)

Other factors, including separate sexes, mode of inheritance (e.g., 41

X-linkage vs autosomal), and background selection, can also be 42

modelled (Charlesworth 2009; Vicoso and Charlesworth 2009; 43

Glémin 2012; Charlesworth 2020a; Hartfield and Bataillon 2020). 44

Detecting long-term balancing selection 45

We have examined two models of long-term balancing selec- 46

tion, one with a constant population size and the other with 47

recent demographic changes. We confirm the well-known result 48

that long-term balancing selection leads to elevated diversity, 49

increased LD, and an excess of intermediate frequency variants 50

in the SFS (Figures 2 - 4, 10; Charlesworth 2006; Fijarczyk and 51

Babik 2015). Because the strength of these signals is weak ex- 52

cept at sites very close to the locus under selection, they could 53

be useful in pinpointing targets of balancing selection. On the 54

other hand, we find that, under our two-allele model, these 55

signals are strongest when the equilibrium frequencies of the 56

selected variants are close to 50% (Figures 2 - 4, 10, and S14). 57
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This implies that genome scan methods are likely to be biased to-1

wards detecting selection targets where the selected variants are2

more common, which appears to be the case for some detection3

methods (Bitarello et al. 2018; Siewert and Voight 2020).4

Our results can be used to improve existing methods for5

detecting balancing selection. For example, the T1 test by De-6

Giorgio et al. (2014), which has been shown to be among the7

most powerful, is based on L, the expected total branch length.8

The recursion equations DeGiorgio et al. (2014) used to obtain9

L assumes a constant population size. We can now relax this10

assumption by incorporating changes in population size. The in-11

crease in the strength of signals of long-term balancing selection12

after population size reduction (Figure 5b) points to the impor-13

tance of incorporating non-equilibrium demographic dynamics,14

which may help to increase statistical power and reduce false15

positive rates. Nonetheless, the results presented in Figures 416

and 10 show that L does not capture all of the information about17

balancing selection. Instead, statistical power can be gained by18

making use of the SFS. This explains why the T1 test (based on L)19

is often less powerful than the T2 test (based on the SFS) (DeGior-20

gio et al. 2014). However, DeGiorgio et al. (2014) obtained the SFS21

via stochastic simulations, due to a lack of analytical methods.22

Here we have filled this gap. As above, it is of importance to23

extend the T2 test, so that it includes both the equilibrium and24

non-equilibrium models.25

Detecting recent balancing selection26

It has long been suggested that signals generated by recent bal-27

ancing selection should be similar to those generated by incom-28

plete sweeps (Charlesworth 2006; Fijarczyk and Babik 2015).29

However, the allele frequency trajectories under these two mod-30

els are similar only when the mutant allele is rather rare in the31

population (Figure 6). This period accounts for a small fraction32

of the time it takes to fix a positively selected mutation subject33

to a comparable level of selection. In addition, the rate of allele34

frequency change in this period is slower than when the mutant35

allele is more common. Combining these two factors, it is unsur-36

prising that, at the time when the allele frequency trajectories37

under the two models start to diverge, neither model produces a38

noticeable effect on diversity patterns in nearby genomic regions39

(data not shown). Thus, this initial period of identity contributes40

very little signal.41

After the initial period, the frequency of the positively se-42

lected mutation increases rapidly. In contrast, the rate of growth43

under the balancing selection model is much slower, especially44

when the equilibrium frequency of the mutant allele is low (Fig-45

ure 6). Nonetheless, the increase in frequency of a recent bal-46

anced polymorphism does produce sweep-like diversity pat-47

terns. These include reductions in genetic variability, a skew48

towards high and low frequency derived variants in the SFS,49

and a build-up of LD between the selected and linked neutral50

sites (Figures 7 - 10). In addition, the maximum build-up of LD51

appears before the reduction in diversity levels and the distor-52

tion of the SFS peak, suggesting that these signals complement53

each other. Although these patterns are not as pronounced as54

those produced by sweeps of a comparable strength, we ex-55

pect them to be detectable by methods designed for identifying56

sweeps (Booker et al. 2017; Pavlidis and Alachiotis 2017), as has57

been shown previously (Zeng et al. 2006). An open question is58

whether it is possible to distinguish between these two types of59

selection. On the other hand, because recent balancing selection60

causes diversity and LD patterns to be in a non-equilibrium state61

for a long period (Figures 10 and S14), it is unclear whether these 62

patterns can be exploited for detecting selection targets. 63

Comparing the three balancing selection models with equi- 64

librium allele frequencies p̂2 = 0.25, 0.5, and 0.75, respectively 65

(Figure 6), mutations with p̂2 = 0.75 produce the strongest 66

sweep-like patterns (e.g., Figure 9 vs Figure S13). They are prob- 67

ably the easiest to detect, although they may also be the most 68

difficult to be distinguished from sweeps. On the other hand, 69

although selection targets with p̂2 = 0.5 are not as easy to detect 70

when they are young, they produce the strongest deviation from 71

neutrality if they have been maintained for a sufficiently long 72

period of time (Figures 2, 3, and S14), suggesting that they are 73

most likely to be identified by methods for detecting long-term 74

selection targets. Finally, it seems that selection targets with 75

p̂2 = 0.25 are the most difficult to detect regardless of the age of 76

the mutant allele. 77

Using phase-type theory to assess the accuracy of simpler 78

approximations 79

We have shown the ease for which phase-type theory can be 80

used to analyse complex models. In some cases, this can lead to 81

simple analytic solutions (e.g., (7) and (8)). When explicit ana- 82

lytic solutions are difficult to obtain, phase-type theory can be 83

useful in searching for simpler approximations. Take the model 84

of recent balancing selection as an example. By using a large 85

number of bins in the discretisation scheme (Figure S8), we can 86

obtain results that are effectively exact. It is, however, impossi- 87

ble to write them as simple equations. Nonetheless, if we make 88

an additional assumption that the recombination frequency be- 89

tween the selected locus and the neutral locus is not too high 90

relative to the strength of selection, we can adopt the methods 91

developed in Charlesworth (2020b) for selective sweeps, such 92

that they can be used to obtain the expected pairwise coalescence 93

time (see Supplementary Text S.8 for details). 94
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Figure 11 Comparing expected pairwise coalescence times
obtained by phase-type theory (exact) and an approximation
assuming low recombination rates. The model of recent bal-
ancing selection model has the following parameters: γ1 = 500
and p̂2 = 0.75 (i.e., the same as in Figures 7 - 10). t is the time
since the arrival of A2. The discretisation scheme has H = 76
epochs. Details of the approximation are given in Supplemen-
tary Text S.8.

We can assess the reliability of this approximation by compar- 95
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ing its results with those obtained using the phase-type method.1

As expected, the approximate results match the exact results2

closely when the recombination rate is low (e.g., ρ = 1 in Figure3

11). For higher recombination rates, the approximation under-4

estimates the diversity-reducing effect of the spread of A2. The5

main reason for this discrepancy is that the approximation as-6

sumes that the recombination rate is low, and the “sweep phase"7

is short. When these assumptions hold, once recombination dur-8

ing the sweep phase has moved a lineage from allelic class 2 to9

allelic class 1, back migration to allelic class 2 can be ignored. Al-10

though these assumptions work well for selective sweep models11

(Charlesworth 2020b), they are less suitable for the model of re-12

cent balancing selection, because the increase in allele frequency13

is much slower, leading to a longer sweep phase, and hence more14

opportunities for recombination. Thus, by preventing lineages15

from being moved back into allelic class 2, the approximation16

artificially slows down the rate of coalescence during the sweep17

phase, explaining the overestimation of pairwise coalescence18

time. Using results produced by phase-type theory as the base-19

line is desirable because, unlike stochastic simulations, these20

results are analytical, making comparisons straightforward and21

small differences easier to detect.22

Differences from previous studies and limitations23

The equilibrium model of balancing selection has been analysed24

previously using coalescent theory (Hudson and Kaplan 1988;25

Nordborg 1997). Phase-type theory has allowed us to reproduce26

well known results (e.g., (8)). Additionally, it has made it feasible27

to obtain other important summary statistics (e.g., total branch28

length, LD and SFS) and introduce non-equilibrium scenarios29

(changes in population size or recent selection). Recently, Kern30

and Hey (2017) analysed a coalescent model with isolation and31

migration. Although the authors did not consider selection, the32

approach they used is related in that it involves performing cal-33

culations directly using the underlying continuous time Markov34

process. However, the results derived using our formulation35

is more compact (e.g., Theorem 1), which facilitates the accom-36

modation of more complex situations (e.g., recent selection).37

Furthermore, we are able to obtain other useful results such as38

the second moment of the mean time to MRCA (Theorem 2 in39

Supplementary Text S.7).40

A limitation of the phase-type approach is that the size of41

the state space increases quickly with the sample size, meaning42

that the computational cost will become too high for large sam-43

ples. However, there is evidence that samples with as few as 2044

alleles, which is computationally feasible using our approach,45

offer sufficient statistical power for detecting balancing selection46

(Siewert and Voight 2017; Bitarello et al. 2018). More importantly,47

our method provides a way of analysing complex models, which48

will help us to understand their properties. This may in turn49

enable us to obtain computationally more efficient approxima-50

tions, as shown in the previous section. Finally, although the51

speed of forward simulators has improved significantly (Haller52

and Messer 2019), the phase-type approach is still much faster53

for moderate sample sizes. This is because, for a given set of54

parameters, we only need to perform the calculation once to55

obtain, for instance, the expected total branch length. In contrast,56

obtaining this quantity accurately using simulations requires at57

least tens of thousands of replicates. Simulations are, however,58

highly flexible and can be used to study models that are too59

difficult to analyse mathematically. Thus, both mathematical60

modelling and simulations are important.61

Applying phase-type theory to other population genetic mod- 62

els 63

Phase-type theory can be applied to many different models in 64

population genetics. For example, Hobolth et al. (2019) used a 65

time-homogeneous version of the theory to study the standard 66

Kingman’s coalescent with and without recombination, coales- 67

cent models with multiple mergers, and coalescent models with 68

seed banks. They showed the ease for which useful results can 69

be obtained (e.g., all the moments of the pairwise coalescence 70

time, the covariance in coalescence times between two linked 71

loci, or the SFS). By extending the framework to non-equilibrium 72

cases (see Theorem 1, Corollary 1 in Supplementary Text S.5, and 73

Theorem 2 in Supplementary Text S.7), we make this approach 74

applicable to a yet larger class of models. For instance, we can 75

introduce population size fluctuations into the models consid- 76

ered by Hobolth et al. (2019). Even for models that have been 77

analysed before using other approaches (e.g., Matuszewski et al. 78

2017), it is worth exploring whether the new theory provides a 79

better alternative, both in terms of ease of analysis and numeri- 80

cal stability of the resulting method, which may be beneficial for 81

parameter estimation purposes (e.g., Kern and Hey 2017). 82

The phase-type approach may be particularly useful for mod- 83

els that involve selection on a single locus at which the frequen- 84

cies of the selected variants change deterministically (Maynard 85

Smith and Haigh 1974; Kaplan et al. 1988; Coop and Ralph 2012). 86

These include the balancing selection models considered here, 87

selective sweep models (Barton 1998; Kim and Stephan 2002; 88

Kim and Nielsen 2004; Ewing et al. 2010; Charlesworth 2020a; 89

Hartfield and Bataillon 2020), soft sweeps caused by recurrent 90

mutation or migration (Pennings and Hermisson 2006), incom- 91

plete sweeps (Vy and Kim 2015), and recurrent sweeps (Kaplan 92

et al. 1989; Kim 2006; Campos and Charlesworth 2019). 93

Here, we have briefly considered selective sweep models 94

with semi-dominance and compared it to the corresponding 95

balancing selection model (see (24) and Figures 6, 8 - 10). In a 96

related study, we will use the phase-type approach to investi- 97

gate some of the sweep models listed above more systematically 98

(K. Zeng and B. Charlesworth, in preparation). Because we can 99

use phase-type theory to obtain exact solutions, it provides a 100

convenient way to determine the accuracy of existing approxima- 101

tions. For instance, for the sweep model with semi-dominance, 102

a widely-used approximation assumes that there is no coales- 103

cence during the sweep phase, such that the gene tree for a set 104

of alleles sampled immediately after a sweep has a simple “star 105

shape” (Maynard Smith and Haigh 1974; Barton 2000; Durrett 106

and Schweinsberg 2004). However, a recent study of the pair- 107

wise coalescence time suggests that this approximation can be 108

rather inaccurate when the ratio of the recombination rate to the 109

selection coefficient is high (Charlesworth 2020b). It is important 110

to also assess the effect of this simplifying assumption on the 111

SFS, given that both nucleotide site diversity and the SFS are 112

informative when it comes to estimating the strength and preva- 113

lence of (recurrent) sweeps (Corbett-Detig et al. 2015; Elyashiv 114

et al. 2016; Booker et al. 2017; Comeron 2017). In addition, we 115

can also explore the joint effects of recurrent sweeps and recent 116

population size changes. These are not well understood, but 117

are important for estimating the relative importance of back- 118

ground selection and recurrent sweeps in shaping genome-wide 119

patterns of variability (e.g., Johri et al. 2020). 120
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The methods presented in this paper have been implemented in2

an R package named bls, which is available from http://zeng-lab.3

group.shef.ac.uk. In addition to the models considered here, the4

package can also obtain the total branch length and the SFS for (1)5

neutral models with changes in population size, (2) neutral mod-6

els with two demes and changes in migration rates and/or deme7

sizes, and (3) isolation with migration models. Supplementary8

Material available at https://doi.org/10.25386/genetics.14186819.9
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