
Automation in Construction 125 (2021) 103633

Available online 21 February 2021
0926-5805/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

An innovative image processing-based framework for the numerical
modelling of cracked masonry structures

Dimitrios Loverdos a, Vasilis Sarhosis a,*, Efstathios Adamopoulos b, Anastasios Drougkas a

a University of Leeds, School of Civil Engineering, Woodhouse Ln, Leeds LS2 9DY, United Kingdom
b University of Turin, Department of Computer Sciences, Corso Svizzera 185, Turin 10149, Italy

A R T I C L E I N F O

Keywords:
Masonry
Image processing
Watershed transform segmentation
Feature extraction
Numerical modelling
DEM

A B S T R A C T

A vital aspect when modelling the mechanical behaviour of existing masonry structures is the accuracy in which
the geometry of the real structure is transferred in the numerical model. Commonly, the geometry of masonry is
captured with traditional techniques (e.g. visual inspection and manual surveying methods), which are labour
intensive and error-prone. Over the last ten years, advances in photogrammetry and image processing have
started to change the building industry since it is possible to capture rapidly and remotely digital records of
objects and features. Although limited work exists in detecting distinct features from masonry structures, up to
now there is no automated procedure leading from image-based recording to their numerical modelling. To
address this, an innovative framework, based on image-processing, has been developed that automatically ex-
tracts geometrical features from masonry structures (i.e. masonry units, mortar, existing cracks and pathologies,
etc.) and generate the geometry for their advanced numerical modelling. The proposed watershed-based algo-
rithm initially deconstructs the features of the segmentation, then reconstructs them in the form of shared
vertices and edges, and finally converts them to scalable polylines. The polylines extracted are simplified using a
contour generalisation procedure. The geometry of the masonry elements is further modified to facilitate the
transition to a numerical modelling environment. The proposed framework is tested by comparing the numerical
analysis results of an undamaged and a damaged masonry structures, using models generated through manual
and the proposed algorithmic approaches. Although the methodology is demonstrated here for use in discrete
element modelling, it can be applied to other computational approaches based on the simplified and detailed
micro-modelling approach for evaluating the structural behaviour of masonry structures.

1. Introduction

Assessing the structural performance of ageing masonry structures is
a difficult task. Over the last three decades, significant efforts have been
devoted to developing numerical models to represent the complex and
non-linear behaviour of existing unreinforced masonry structures sub-
jected to external loads. Such models range from considering masonry as
a continuum (macro-models) to the more detailed ones that consider
masonry as an assemblage of units and mortar joints (micro-models or
meso-scale models), see [22]. Since old and deteriorated masonry is
typically characterised by low bond strength [29], cracking is often a
result of the masonry units’ de-bonding from the mortar joints. Given
the importance of the masonry unit-to-mortar interface on the structural
behaviour of aged masonry structures, micro-modelling approaches (i.e.
those based on Discrete Element Method; in which the mortar is

described as zero-thickness interfaces between the masonry units) are
better suited for simulating their serviceability and load carrying ca-
pacity [27,29]. A vital aspect when modelling masonry structures based
on the micro-modelling approach is the accuracy in which the geometry
and material performance characteristics are transferred in the numer-
ical model [14,15]. Even though current numerical modelling strategies
for masonry are focusing primarily on idealised geometry [3], examples
in the literature (e.g. [13]) demonstrate that a more representative
visualisation of the masonry leads to more accurate results.

Some efforts are being made by the scientific community to accu-
rately capture the geometrical characteristics of masonry structures
using traditional techniques (e.g. on-site inspection and manual
surveying methods). However, such methods have been found to be
labour intensive and error-prone [38]. Over the last ten years, advances
in laser scanning and photogrammetry have started to drastically change

* Corresponding author.
E-mail address: v.sarhosis@leeds.ac.uk (V. Sarhosis).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.103633
Received 2 December 2020; Received in revised form 4 February 2021; Accepted 14 February 2021

mailto:v.sarhosis@leeds.ac.uk
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2021.103633
https://doi.org/10.1016/j.autcon.2021.103633
https://doi.org/10.1016/j.autcon.2021.103633
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2021.103633&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Automation in Construction 125 (2021) 103633

2

the building industry since similar techniques are able to capture rapidly
and remotely digital records of building elements and features in three-
dimensional (3D) point-cloud and ortho-image format [1,24,25]. How-
ever, current approaches for extracting geometrical features (i.e. size
and positioning of masonry units, location and size of cracks, etc.) from
imagery, lack automation, while protocols for the systematic generation
of meso-scale models for assessing the structural behaviour of masonry
structures are absent. Thus, even today, the feature extraction of ma-
sonry units’ geometry is done manually using either computer-aided
design (CAD), image, or point-cloud-based approaches [24,25]. Point-
based voxelisation of point-cloud data offers a possible solution by
allowing the generation of discretised models [17]. Even so, voxelisation
methods do not consider the effect of the masonry-unit geometry or
physical defects on the numerical model.

Image-processing approaches can offer various solutions to the
problem of creating simplified records of masonry structures suitable for
meso-scale modelling via the use of feature-detection [2,5,7,23] and
segmentation techniques [2,4,21]. Research in automated detection and
segmentation of masonry elements has drawn much attention by the
scientific community [6,30]. Additionally, research in defect local-
isation using artificial intelligence also offers alternative methods to
identify the extent of damage present on masonry structures, with high-
level of automation [8,11,37]. Feature-detection of masonry elements
presents a challenging task due to the anisotropic radiometric charac-
teristics of the imagery or ortho-imagery involved. Raw images or
photogrammetric derivatives, depending on the method of acquisition,
may be of low quality for the automated detection of features. That in-
cludes the on-image sharpness of the edges of masonry units and defects,
efficient contrast between masonry units and interfaces, and the effect of
surface degradation on capturing the necessary radiometric data.

However, recent studies have demonstrated the efficient application
of image-enhancing algorithmic implementations, with the purpose to
improve the radiometric quality of digital records of masonry, facili-
tating the extraction of geometric features of their structural elements
[18,36]. Advanced solutions have also considered the use of infrared
thermography as a primary sensing technique for the interpretation of
the structure of masonry [9]. Those recent developments establish the
use of image-based applications as a viable solution for the mechanical
evaluation of masonry elements. A similar notion is presented in
[33–35], where it contemplates the use of binarised-images for the
automatic construction of a voxel/pixel heterogenous pattern for the
limit-analysis of irregular masonry. However, despite the rationale of

identifying the structural composition characteristics of masonry in a
cost and time-effective way, the practical use of feature and defect-
detection is rarely used for the automated generation of discreet nu-
merical models.

To resolve the commonly discussed topic of masonry evaluation
using image-obtained data, this study proposes an automated method-
ological approach for numerical model generation using the output of
image-processing applications. The main objective is the geometric
feature-extraction from masonry structures (e.g. masonry units, mortar,
and damage pathologies) using an innovative watershed segmentation
approach. The methodology proposed in this document is part of a ho-
listic framework that aims to automate fully the generation of masonry
models from point-cloud data (PCD) and imagery data (Fig. 1). Although
the approach is demonstrated here for use in discrete element modelling,
it can be applied to other computational approaches for evaluating the
structural behaviour of masonry structures.

2. Segmentation adjustments

The purpose of this section is to describe the refinement procedure
followed to correct spatially the characteristics of masonry segmentation
(Fig. 2), which can run as input for the accurate description of the ma-
sonry geometry in the structural analysis model. The procedure com-
mences with a watershed segmentation-derived input and considers the
actual geometric characteristics of both mortars and cracks in masonry
to correct segmentation issues caused by geometric irregularities (Fig. 2:
Steps 3 and 4).

Segmentation is often used in image processing to reduce the amount
of available data on an image from pixels to regions. The segmentation
technique considered is the marker-based watershed-transform, due to
its innate ability to produce closed-regions. The methodology proposed
is aimed to be used in combination with algorithms that can produce
good binarisation. However, if the contrast between building blocks and
their interfaces on the source imagery is adequate, typical image pro-
cessing techniques can be applied (Fig. 3(d)). Additionally, If the input
includes background information, it should be removed during the pre-
processing stage. Moreover, a background of uniform colour can be used
to limit the segmentation by generating the background-mask (Fig. 3
(c)). After an appropriate binarised image is applied, a morphological
operation can be used to detect the local minima (Fig. 3(e)). In which
case, H-minima transform is often used to remove false local-minima
and prevent over-segmentation (Fig. 3(f)). The local-minima of a

Case study:
Masonry structure

Data capture:
Orthorec�fied colour or

depth image.

Pre-processing:
2D representa�on of the
masonry characteris�cs

Input:
Watershed transform-based

segmented image

Algorithm #1:
Segmenta�on Adjustments

Algorithm #2:
Extrac�on of masonry

characteris�cs

Output #1:
Micro-model genera�on

Output #2:
Numerical analysis

Fig. 1. Suggested workflow of the overall framework. The work presented in this document is shown in blue (Second row).

Input:
Watershed transform-based

segmented image

Algorithm #1: Step-1
Mortar/Damage mask

genera�on

Algorithm #1: Step-2
Mask applica�on

Algorithm #1: Step-3
Segmenta�on cleaning

Algorithm #1: Step-4
Segmenta�on correc�ons

Output:
Final segmenta�on

Fig. 2. Workflow of the algorithm responsible for the segmentation modifications (Algorithm #1).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

3

modified distance-transform provides the markers of the watershed
(Fig. 3(g)). Fig. 3 shows a typical procedure of watershed-segmentation.

2.1. Mortar and damage mask generation

Considering the labelling convention of the watershed segmentation,
the proposed algorithm generates a mortar-mask based on the numerical
values of the watershed array, where the background label is marked
with zero values, while the segmented areas are positive. The input for
the mask generation process is the initial watershed array, padded by 1-
pixel with zero values in all four directions. That allows to scan the
image using a 2 × 2 Region of Interest (ROI). The size of 2 × 2 ROI
corresponds to the minimum size required to detect an area where
multiple labels are present. The following are the steps to define the
network of mortar interfaces:

1. Generated Mortar Mask (GMM): The mortar mask is generated using a
2 × 2 ROI to scan the image for inner interfaces (i.e. where the 2 × 2
ROI has two or more unique values, and all values are larger than
zero) (Fig. 4(b)).

2. Imported Mortar Mask (IMM): Optionally, the original rasterised
output of the feature-detection, can be included to provide with
minor corrections to the GMM (Fig. 4(c)). However, the rasterised
image will contain perimetral edges that should be removed.
2.1. Generated Perimeter Mask (GPM): When the original raster

image is used, the perimeter mask is generated (i.e. where the 2

× 2 ROI has two or more unique values and contains at least one
zero) which aims to remove the perimetral edges from the IMM
(Fig. 4(d)).

3. Generated Background Mask (GBM): Excessive mortar caused by the
dilation of GMM and IMM is removed by the background mask (i.e.
where the padded watershed array has zero values), the GBM is
applied to the final segmentation (Fig. 4(e)).

The padding of all masks contains values of ones, except the GBM
that contains zeros (Fig. 4). This allows the background to reduce the
segmentation, even if it envelopes the entire image. The initial line-
thickness of each mask that uses a 2 × 2 ROI is at least 2-pixels, since
the entire ROI is transferred to the mask. The 2-pixel thickness is
required due to the segmentations being connected, and a mortar of 1-
pixel thickness would reduce the size of a masonry unit in one side.
The size of each mask is controlled by erosion/dilation, which effec-
tively adjusts their effect. The GMM is adjusted manually to represent
the average mortar thickness. The GBM and IMM are generally used as
generated without modifications to their thickness. However, the GPM is
given an excessive value to remove the perimeter of the imported-
mortar-mask, given that it does not override succeeding mortar layers.
The option to adjust each mask using morphological erosion and dilation
allows the fine-tuning of the final result if it is required.

If the damage (i.e. cracking) in masonry is provided as a raster image
(IDM, Fig. 5(d)), it can be applied to the final segmentation before the
background mask. However, the use of external masks should be

(a)

(b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Marker-based watershed segmentation, (a): Image source; (b): Bilateral blurring on greyscale to reduce noise and retain edges; (c): Background mask by
global-thresholding; (d): Canny edge-detector applied on the filtered image (after erosion/dilation); (e): Inverse distance-transform for the markers; (f): H-Minima
transform to remove false minima; (g): Local-minima for watershed-markers (after dilation/erosion); (h): Segmentation lines.

 (a) (b) (c) (d) (e) (f)

Fig. 4. Raster masks; (a): Initial watershed segmentation; (b): Generated-mortar (GMM); (c): Imported-mortar (IMM); (d): Generated-perimeter (GPM); (e):
Generated-background (GBM); (f): Final mortar (FMM = IMM + GMM).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

4

adjusted or avoided; if they are inaccurate (i.e. excessive noise, false
detection of damage, etc.). If not, they may create inappropriate dis-
continuities on the material (Fig. 5(e)) and may cause incorrect esti-
mation of collapse loads during the numerical analysis. Finally, a unique
label is applied by each mask, on the final segmentation, used by the
feature extraction method to identify different locations (i.e. mortar =
− 1; damage in mortar = − 2; damage in masonry unit = − 3). Assuming
that the accurate mortar (GMM, IMM) and damage (IDM) location is
provided, the different damage states will indicate different damage
types (i.e. crack on mortar, crack on brick, loss of material due to
spalling or excessive cracking, etc). If not, they will only indicate the
prior label before the damage is assigned to the affected location (Fig. 5
(f)).

2.2. Segmentation cleaning and correction

The application of external masks, on the watershed array, may
cause the isolation of individual pixels or separation of a segmentation
into multiple objects (i.e. Fig. 5(d)). Their existence must be corrected

before the feature extraction as it may cause issues with the definition of
each block.

The first step, towards the correction of the segmentation, is the
elimination of isolated pixels (Fig. 6). Pixels that do not have a 4-connec-
tivity (i.e., no diagonal connectivity) with a label are considered “iso-
lated”. An “isolated” pixel may cause the erroneous description of a
masonry units’ perimeter. For that reason, they are replaced with the
most common label of its neighbour pixels (Fig. 6 (c) & d). All values of
the 3 × 3 ROI are considered, but the pixel is replaced only by a label
that has 4-connectivity with it.

The second and final step, for the correction of the segmentation, is
the separation of duplicate objects (Fig. 7). If two or more segmentations
have the same label, they are considered duplicates. Duplicate objects
may cause conflicts during the feature-extraction. For that reason,
duplicate objects are provided with a new label. Initially, each zero/
positive label is isolated on a new-array (Fig. 7(b)) with a size equal to
the original watershed padded by 1-pixel of zero values. The new-array
contains zeros and ones, where one is the segmentation label examined.
The watershed segmentation is then applied using as a mask and source

(a) (b) (c) (d)

5 5 5 -1 -1 5 5
5 5 5 -1 -1 5 5
5 5 5 -1 -1 -1 5
-1 -1 -1 -1 -2 -2 -2
-1 -1 -1 -1 -2 -2 -2
7 7 7 7 7 7 7
7 7 7 7 7 7 7

5 5 5 -1 -1 5 5
5 5 5 -1 -1 5 5
5 5 5 -1 -1 -1 5
-1 -1 -1 5 -2 -2 -2
-1 -1 -1 -1 -2 -2 -2
7 7 7 7 7 7 7
7 7 7 7 7 7 7

5 5 5 -1 -1 5 5
5 5 5 -1 -1 5 5
5 5 5 -1 -1 -1 5
-1 -1 -1 5 -2 -2 -2
-1 -1 -1 -1 -2 -2 -2
7 7 7 7 7 7 7
7 7 7 7 7 7 7

5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
7 7 7 7 7 7 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7

Fig. 6. Segmentation-cleaning; (a): Initial segmentation; (b): After mask application; (c): Detection of isolated pixels; (d): Replacement of isolated pixels with the
most common value of the 3 × 3 ROI (limited to 4-connectivity labels).

(a) (b) (c) (d)

1 1 1 0 0 1 1
1 1 1 0 0 1 1
1 1 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 1 1 0 0 2 2
1 1 1 0 0 2 2
1 1 1 0 0 0 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

5 5 5 -1 -1 61 61
5 5 5 -1 -1 61 61
5 5 5 -1 -1 -1 61
-1 -1 -1 -1 -2 -2 -2
-1 -1 -1 -1 -2 -2 -2
7 7 7 7 7 7 7
7 7 7 7 7 7 7

5 5 5 -1 -1 5 5
5 5 5 -1 -1 5 5
5 5 5 -1 -1 -1 5
-1 -1 -1 -1 -2 -2 -2
-1 -1 -1 -1 -2 -2 -2
7 7 7 7 7 7 7
7 7 7 7 7 7 7

Fig. 7. Segmentation-corrections; (a): Masked segmentation; (b): Isolation of label #5 in a new array; (c): Watershed segmentation and detection of additional labels;
(d): Re-labelling of additional segmentation.

(a) (b) (c)

(d) (e)
kkkkkkkkkkkkkkkkkk

(f)

Fig. 5. Watershed segmentation demonstrating the name convention (GMM & IDM); (a): Source image; (b): Initial rasterised image; (c): GMM; (d): IDM; (e):
Watershed lines with damage; (f): Watershed lines with damage states (Blue: Damage on mortar pixels, Magenta: Damage on brick pixels).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

5

the new-array and the inverse new-array to acquire the local-minima for
the markers (Fig. 7(c)). After the first segmentation, any subsequent
labels are assigned a new value equal to the existing maximum plus one
(Fig. 7(d)). The command used for the markers should consider only
pixels with 4-connectivity to separate segmentations that are not con-
nected vertically or horizontally. Doing so also solves the issue where
two isolated pixels are located side-by-side and thus not detected by the
segmentation-cleaning process demonstrated above (Fig. 6). Only zero
and positive labels are verified during this step. Furthermore, any
modified label is stored in the Changed-Contour-List (CCL), with its prior
label to retain the previous state/type of the segmentation (i.e. Blocks,
Background, etc.). The structure of the Changed-Contour-List is pro-
vided below:

CCLn = [New Label,Old Label] (1)

3. Feature extraction

The second part of the proposed framework is the extraction of a
network of lines and nodes, which will represent the simplified geom-
etry of the interfaces. The final output is a collection of polylines that
will be used for the numerical model generation. The input of this sec-
tion is the modified segmentation acquired previously (Algorithm #2,
see Fig. 1). It initiates by scanning the watershed array to extract the
coordinates in-between segmentations using a novel approach (Fig. 8:
Step-1). The correct order of the extracted pixels is provided by using a
border-following algorithm (Fig. 8: Step-2). Additionally, it uses a
generalisation algorithm to reduce the number of vertices that describe
an interface (Fig. 8: Step-3). Furthermore, it includes geometric opera-
tions to adjust the location of selected vertices and produce more ac-
curate results (Fig. 8: Step-4).

3.1. Point detection and contour definition

The input of the point-detection algorithm is the watershed array
padded by 1-pixel of zero values in all directions (i.e. from 100 × 100 to
102 × 102, (Fig. 9(a)), to allow scanning using a 2 × 2 ROI. Moreover,
the geometric definition of damage is excluded at this stage; since the
same labels have been assigned to multiple segmentations and may
cause false detection of the perimetrical characteristics of masonry units.
The simplest solution is to apply the point detection on a padded
watershed array (PWS), where all damage labels are replaced with
mortar (i.e. PWS(< − 1) = − 1). Initially, the watershed array is scanned

using a 2 × 2 ROI under the following conditions:

1. Interface-Point: If the 2 × 2 ROI contains two or more unique values,
it is considered an interface-point (Fig. 9(a)). In which case, it is
saved on the interface-point-list (IPL), with its ID and location.

2. End-Point: If the 2 × 2 ROI contains three or more unique values, it is
considered an end-point (Fig. 9(c)). In which case it is saved on the
end-point-list (EPL), with its ID and location.

The ID is the ordered list of unique values from the ROI. The location
saved for each point detected is the top-left location of the 2 × 2 ROI.
Each collection of points of a unique ID (of two components), makes an
interface with known end-points, and their location is saved on the
interface list (IL). End-points have three or more ID values and are stored
to all appropriate interfaces (where they have two common values).
Practically, the point-detection does not consider the location of pixels,
but the gridlines instead. This method was selected to avoid the sepa-
ration between segmentations. For that reason, the coordinates include
an additional unit in the two directions (i.e. from 100 × 100 to 101 ×
101, Fig. 9(b)). The structure of the lists is provided below:

ROI = PWS[i, i+ 1 : j,j+ 1] => Loc = [x, y] = [j, i] (2)

IPLn = [ID,Loc] (For 2+ unique labels) (3)

EPLn = [ID, Loc] (For 3+ unique labels) (4)

ILn = [ID, EndPoints, Interface Points] (5)

At this stage, all nodes that define the geometry of the interfaces have
been identified. However, their order is still unknown. Their sequence is
calculated by applying the border-following algorithm developed by
[31]. The algorithm is applied to a new 2D-array for each unique ID with
all its points marked (Fig. 10(b)). Moreover, only the parent-contours
are stored (outer perimeter of a closed object), using the algorithm’s
hierarchy. As mentioned previously, the algorithm returns the perimeter
that contains duplicate points if it is an open shape (Fig. 10(c)). Addi-
tionally, it does not return the last point of closed shapes and thus,
complicates the determination of closed objects. The aforementioned
are addressed by the following framework:

1. Create an array of zeros where ones mark the examined interface.
2. Apply the border following algorithm on the new array and extract

the outer-contours. In rare cases, multiple contours may be extracted

 (a) (b) (c) (d) (e)

0 0 0 0 0 0 0
0 4 4 4 4 4 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 7 7 7 7 7 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 4 4 4 4 4 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 7 7 7 7 7 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 4 4 4 4 4 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 7 7 7 7 7 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 4 4 4 4 4 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 7 7 7 7 7 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 4 4 4 4 4 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 5 5 6 6 6 0
0 7 7 7 7 7 0
0 0 0 0 0 0 0

Fig. 9. Point detection on the padded array; (a): interface-point with 2 unique labels; (b): All detectable interface-points; (c): interface-point and end-point with 3
unique labels; (d): All end-points; (e): interface with ID = [5,6] (gridline).

Input:
Modified segmenta�on

Algorithm #2: Step-1
End-point and Interface-point

detec�on

Algorithm #2: Step-2
Contour defini�on

Algorithm #2: Step-3
Contour generaliza�on

Algorithm #2: Step-4
Geometric adjustments

Output
Segmenta�on polylines

Fig. 8. Workflow of the algorithm responsible for the feature extraction (Algorithm #2).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

6

with the same interface ID (i.e. when the mortar label is in contact
with a specific block at two separated locations).
2.1. Scan each contour detected to find if it contains any end-points

of the same interface. Each end-point is only considered once.
2.1.1. If less than two end-points are detected, consider the

object a closed shape.
2.1.2. If two are detected, store only the first range between the

end-points.
2.1.3. If three or more are detected, find the first location of

every end-point and store all ranges between end-points
separately. Duplicate end-points are not considered.

2.2. If the contour is considered a closed shape, and the first and last
points are not equal, append the first point to the end of the xy-
array.

2.3. Finally, store each range separately to the contour-list (CL),
including the interface ID.

The structure of the contour-list is the following:

CLn = [ID, End-Points, xy-Array] (6)

3.2. Contour generalisation

Contour generalisation is the process of reducing the number of
vertices that define a contour. This process will dramatically reduce the
time-cost of the structural analysis. Additionally, it will provide general
corrections to the shape by smoothing the interface. It is also the reason
why the border-following algorithm was not used to extract the shape of
each block, but was used instead on each interface. Using the border-
following algorithm on the blocks, the generalisation of contours
would produce multiple generalisations for the same interface (since an
interface is common between two segmentations). Moreover, a line
generalisation algorithm is developed, based on the
“Ramer–Douglas–Peucker” algorithm [12,26], with conditions speci-
alised to the needs of the research.

Considering an original contour C = [p0,…,pn], with n subset of
vertices p, a generalised contour can be defined as C′ = […,p′k− 1,p′k,…]
⊆ C, with the minimum number of elements that satisfies the condition f
(Sk) ≤ t. Each sequential pair of vertices of C′, divides C into sections Sk
= {pk− 1

′,…,pi,…,p′k} ∈ C. The examined vertex pi ∈ Sk is tested with
regards to the straight-line segment p′k− 1p′k. If the condition is not
satisfied, the vertex pi with the highest vertical distance (vd), is stored in
C’. The (simplified) original condition in [26], is the following:

f(Sk) = max(vd(Sk)) ≤ t (7)

where vd(Sk) is the vertical distance of all elements in Sk and the line
segment p′k− 1p′k, and t is the constant-threshold value. Compared to the

original, the following changes were implemented:
Transformation: Before the first iteration and only if the contour is

closed (i.e. p0 = pn), the contour is reformed to start/end from the point
pi ∈ C, with the largest distance from the initial point p0 (similar to Eq.
(8)).

Condition #1: For the first iteration and only if the contour is closed
(i.e. p0 = pn), add the point pi ∈ Sk with the largest distance from the
initial point p0, to the generalised contour. Where pi is defined as:

f (i) = f (Sk) = max(ld(Sk)) = max(ld1(Sk) , ld2(Sk)) (8)

Condition #2: If the previous condition did not activate, then the
second condition is considered. Add the point pi ∈ Sk with the largest
distance from either the first or last point of the line segment, if it sat-
isfies either: The vertical and length, or the horizontal and length
thresholds. Using the minimum of the horizontal and length values of
the pair. Where pi is defined as:

f (i) = f (Sk) = max(ld(Sk)) = max(ld1(Sk) , ld2(Sk)) (9)

Where the condition is disregarded if : vd(i) ≤ tv or min(ld1(i) , ld2(i)) ≤ tl

(10)

and : min(hd1(i) , hd2(i)) ≤ th or min(ld1(i) , ld2(i)) ≤ tl (11)

Condition #3: If the previous condition did not activate, then the
third condition is considered. Add the point pi ∈ Sk with the largest
vertical distance from the line segment, if it satisfies both: the vertical
and length thresholds. Using the minimum of the length values of the
pair. Where pi is defined as:

f (i) = f (Sk) = max(vd(Sk)) (12)

Where the condition is disregarded if : vd(i) ≤ tv or min(ld1(i) , ld2(i)) ≤ tl

(13)

Threshold: The threshold values are: Vertical (tv), Horizontal (th), and
Length (tl). If the value of any threshold is below one, then it is
considered the ratio of the threshold over the length of the line segment.
Else, if it is above one, it is the actual threshold.

If t < 1 : t = t∙length
(
p′

k− 1p′

k
)
; else : t = t (14)

where f(i) is a simplification of: f(i) = f([pk− 1
′,pi,pk

′]). Each pi point
considered creates two horizontal (hd) and two length (ld) values
(Fig. 11(a)), but only the minimum of each pair is tested (Eq. (10), (11),
(13)). The “Transformation” ensures that the first point of a closed shape
is essential to describe the general shape (i.e. Fig. 12(a1) as opposed to
Fig. 12(b1)). While “Condition #2” (Eq. (11)), ensures that a vertex with
a vertical point outside the range of the line segment and small vertical
distance, is considered with the horizontal threshold instead (Fig. 11(a)

(a) (b) (c) (d)

Fig. 10. Ordering of interface points; (a): Marked interface with ID = [5,6], end-point #1 = [2,1], and end-point #2 = [2,4]; (b): New array of examined interface
(counting gridlines); (c): Border-following output (perimeter); (d): Modified output (polyline).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

7

& (c)). Additionally, the length threshold (Eq. (10), (11), (13)) ensures
that both line segments created have adequate length. Modifying the
threshold values (tv, th, tl) allows to control the level of detail of the final
output by reducing the number of vertices accordingly. Lastly, the
threshold ratio for values below one, ensures that the preferred accuracy
is preserved by dynamically adjusting the applied threshold (Eq. (14)).
Every identified polyline is stored in the line-list (LL). The structure of
the line-list is provided below:

LLn = [ID,Original Contour,Generalised Polyline] (15)

The resulting generalisations of the original “Ramer–Douglas
–Peucker” (RDP) and the proposed algorithm (PROP) are compared at
two levels of detail (Fig. 12). The level of detail is measured in the
number of line segments (Lines) of the total output. Group [a] demon-
strates the original algorithm using a static threshold (RDP), group [b]
the proposed algorithm using static threshold (PROP-S), and [c] the
proposed algorithm using a dynamic threshold (PROP-D). The results
displayed below include only the geometry with mortar, since without
mortar, almost every main vertex is pre-determined by the end-points
between the interfaces. Regarding the results, the RDP algorithm de-
tects a false point as initial (p′

0) on top of the closed contour in (i.e. [a1]),
which is eliminated by the proposed algorithm using the “Trans-
formation” (i.e. [b1, c1]). When the dynamic threshold with high ratio
values is used (not shown below), the proposed algorithm may omit a
second vertex to describe the small curvature near the corners better.
Additionally, if a very small threshold-ratio is used (Eq. (14)), it may
create an excessive number of vertices near the edges, where the
threshold becomes smaller due to limited distance. Finally, all cases
could be used for the development of the geometry for numerical
analysis except [a2, b2], where it is possible that their highly uneven and
irregular interface could cause overestimation of collapse loads due to
local hinging phenomena.

3.3. Geometric adjustments

An issue arising from segmenting the masonry imagery via a

watershed-based transform is that the location where two segmentations
meet is not placed at the centre of gravity of the mortar area of the
binarised image (Fig. 13(a1)). This is because the segmentation is
growing further from the marker provided. Thus, any pixel located in the
bright section will be labelled from the closest marker, creating a
triangular shape (Fig. 13(a2)). This issue is amended partially when
using the distance transform of the raster image as a source for the
segmentation (Fig. 13(b)). Doing so creates a boundary located in the
middle of the bright section, forcing the assignment of half the mortar
thickness to each block. Another solution suggested, only when the final
model includes mortar, is to use a large erosion value on the GMM and
then dilation to restore its average size, covering the small cavities near
the end-points (Fig. 13(c)). However, that will also introduce a small
curvature to the edges of the block. Nonetheless, the erosion/dilation
solution is often unnecessary since the generalisation of the contour will
correct this, assuming that the threshold is not excessively low. How-
ever, it is required to have implemented the transformation of the pre-
vious section; otherwise, the top-most point will be included, since it is
the first point detected by the border following algorithm (Fig. 12(a1)).

An additional processing step is introduced that adjusts only the
affected vertices when the mortar is not modelled (Fig. 15(a)). The issue
develops where two segmentations are connected, and two of the three
interface lines form a near ~180◦ angle. Thus, the algorithm must target
end-points that have three ID values (three unique values in the 2 × 2
ROI), and all are larger than zero. The location where the ID of end-
points have zero or negative values are not affected since they do not
have a second marker. Any end-point that has precisely three unique
labels (i.e. end-points connected to three polylines), and all its values are
larger than zero (i.e. not mortar, damage or background) is considered a
possible candidate. Knowing the location and the unique ID, makes
possible to identify the three polylines that are connected to the end-
point. For every polyline detected, the line-segment is formed between
the end-point and the previous on the polyline’s xy-array. That may be
either the first two or the last two points. If the angular difference be-
tween any combination of two line-segments is ~180◦, then the end-
point is relocated so that the angular difference between the two lines

 (a1)

)1c()1b(

 (a2) (b2) (c2)

Fig. 12. Comparison of generalisation (Purple: Contour, Green: Polyline); (a1): RDP (Lines = 443); (b1): PROP-S (Lines = 438); (c1): PROP-D (Lines = 431); (a2):
RDP (Lines = 1049); (b2): PROP-S (Lines = 1048); (c2): PROP-D (Lines = 1075).

(a) (b) (c)

Fig. 11. (a): Variables of proposed algorithm; (b) Proposed algorithm (with: “th”); (c): Original algorithm (without: “th”).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

8

is exactly 180◦. However, the global angle of the remaining line must
remain the same to retain its shape (Fig. 14: BP). The extension of the
line that does not form ~180◦ splits the geometry into two triangles
(Fig. 14: BP’), where the law of sines can be used to determine its length.
Then, simple geometric functions are applied to calculate the co-
ordinates of the adjusted end-point (Fig. 14: P’). A threshold value (ta) is
used to determine the tolerance of the angular difference. Furthermore,
three iterations of the algorithm are required to correct all vertices. The
formal description is provided below:

1. Create a copy of the “End-Point-List” and “Line-List” (i.e. EPL2 and
LL2), to avoid modification of the original lists. Important: This may
be required later if a closed-block is incorrectly defined.

2. Create the first iterative loop to repeat the process three times.
3. Create the second iterative loop to scan through the copied end-

Point-list” (EPL2).
4. If the ID of the end-point contains exactly three labels, and all are

higher than zero, consider the end-point (P) a possible candidate (i.e.
ID = [Lbl1,Lbl2,Lbl3]; and: min(ID) > 0).
4.1. Identify the location index of the three polylines in the line-list

(LL), by verifying that the first or last point of the polyline is
equal to the location of the end-point saved on EPL2. The ID
label of the end-point may also be used to locate the index.

4.2. Create the line-segments by taking either the first two, or the
last two points of the generalised line, based on the location of
the end-point (i.e. if: xyP = xy0, then: Line = [xy0,xy1]; else if:
xyP = xyn, then: Line = [xyn,xyn− 1]).

4.3. Calculate the angular difference between all combinations of
the three line-segments to identify if two of the line segments
form ~180◦ angle (i.e. Ad1 = ∠ APC; Ad2 = ∠ CPB; Ad3 = ∠
BPA). If the optional condition is used (Eq. (17)), calculate the
global angle of the two line-segments that form ~180◦,
excluding the end-point (i.e. A1 = ΘAC).

4.4. If the conditions are satisfied (Eq. (16), Eq. (17), Eq. (18)),
relocate the end-point (P), such that the lines that form ~180◦

become parallel (i.e. AP’ ‖ P′C, with P′ ∈ AC), while retaining
the global angle of the remaining line (i.e. ΘBP = ΘBP’).

4.5. Update the value of the modified end-point to every list used (i.
e. EPL2, LL2)

5. Repeat the process for all end-points during three iterations.

The main-condition is to verify if any combination of angular dif-
ference is ~180◦ (Eq. (16)). An optional-condition to automatically
avoid rubble or arch-lines is to target cases where both ~180◦ and ~ 90◦

angular-difference are detected (Eq. (17)). An alternative optional-
condition, that has the same purpose, is to verify that the global-angle
of the adjusted line that forms near ~180◦ local-angle, is either: ~0◦

or multiples of ~90◦; before applying the geometric corrections (Eq.
(18)). All proposed conditions of the formal description (Sub-list: [4.4]),
are provided below:

Condition#1 (Main) : [180◦ − ta ≤ Adi ≤ 180◦ + ta] (16)

Condition#2 (Optional) :
[
90◦ − ta ≤ Adj ≤ 90◦ + ta

]
; i ∕= j; (17)

Condition#3 (Optional) : [At − ta ≤ Ai ≤ At + ta];

At = [0◦ ∨ 90◦ ∨ … ∨ 360◦]
(18)

Applying the geometric corrections to the interface between struc-
tural units allows for a more representative visualisation of masonry
characteristics (Fig. 15). Regarding the examples demonstrated below,
only the main condition was used (Eq. (16)). The arch-lines (Fig. 15(e))
were automatically excluded from the corrections since one of the three
labels is zero (i.e. background). However, if the arch would contain more
layers, an additional condition would be necessary to avoid the geo-
metric adjustments on the inner interfaces (i.e. Eq. (17), Eq. (18)).

3.4. Producing closed-shapes

Specific numerical analysis software require closed-objects to define
a shape (i.e. ABAQUS, 3DEC, LS-DIANA, etc.). For that purpose, it is
necessary to generate the closed-block from the open-polylines. An
interface ID contains two labels that are equal to the two objects that are
in contact; where the label is the value of any segmentation. Thus, all
polylines are compared, and those that contain a specific label are

Fig. 14. Variables used in the geometric corrections (P: End-point, Blue: Old
lines, Red: Adjusted lines).

(a1) (a2) (a3) (a4)

 (b1) (b2) (b3) (b4)

 (c1) (c2) (c3) (c4)

Fig. 13. Simple corrections to segmentation: (a): Contours and polylines using the original rasterised image; (b): Contours and polylines using the distance transform
as a source; (c): Correcting generated mortar-mask using erosion/dilation.

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

9

assigned to the block of the same value (i.e. Interface ID = [2,3] is
assigned to blocks #2 and #3). The collection of the polylines is added to
a temporary-block-list (TBL) with its label.

The polylines are then combined by comparing the initial and final
vertices of each entry in the collection (using the first entry as a tem-
porary combined-polyline). The process is repeated until no connection
is found with the temporary combined-polyline. Every entry used is
removed from the polyline-collection to ensure that it is not used
repetitively. If the combined-polyline is closed (i.e. equal first and last
vertices), it is stored to the final block-list (BL) with its original label (Eq.
(1)) to retain its type. Alternatively, if no connection is found and the
combined polyline remains open, it is rejected. Furthermore, the process
must repeat again for the same collection if there are remaining entries,
which is possible when multiple segmentations have the same label.
However, this will not be the case if the “Segmentation Corrections” have
been applied. The original contour (the line with all points included),
can also be stored to allow the use of the preferred accuracy for CAD
model generation. Negative labels (damage and mortar) are excluded
from this process, but the zero label is included to describe the overall
perimeter. The structure of the block-lists is provided below:

TBL = [Label,Contour Collection,Polyline Collection] (19)

If Label ≥ 0 : BLn = [Old Label,Closed Contour,Closed Polyline] (20)

Moreover, if the generalisation and generation of closed shapes for
the damage is required (i.e. for CAD design), each negatively-labelled
segmentation must be assigned a unique label during the “Segmenta-
tion Corrections” (Eq. (1)), which aims to avoid conflicts with the contour
definition.

Although a rare occurrence, a block label may fail to regenerate or
provide the correct shape when an external mask is supplied. This is
because interfaces of equal ID value are marked on the same array to
apply the border-following algorithm. When 1-pixel segmentation sep-
arates two interfaces of equal ID, they are drawn connected since the
method proposed considers the gridlines rather than the pixels. In this
case, the algorithm may return incorrect ranges by omitting an end-
point that is blocked by connected pixels (case #1), or return a single
perimeter of the combined shape instead of two separated interfaces
(case #2). The aforementioned refers only to individual outputs of the
border-following algorithm that contain three or more end-points and is
considered an open-shape. Additionally, it affects only watershed-
segmentations that were modified using imported-masks (i.e. mortar,
damage).

The simplest solution to this is to increase the size of the watershed
segmentation two-fold just before the point-detection algorithm, which
will effectively increase segmentations of 1-pixel thickness to 2-pixel. In

this way, the unification of individual sections that are separated by 1-
pixel is avoided. Alternatively, a programmable solution is also
possible by forcing the algorithm to follow only the outer-perimeter of
an affected interface. This is accomplished by applying the border-
following algorithm on the gridlines of a segmentation instead, which
will provide the outer perimeter of the affected block. The perimeter can
be divided into interfaces by comparing the ID values of each point it
contains. All contours/blocks of the affected cases must be removed and
replaced with the adjusted items. However, the contour-generalisation
and geometric adjustments require repetition for every affected item
and interfaces/blocks in contact with the affected case, since modified
interfaces may be common to two different segmentations. The pro-
grammable solution should be applied after combining interfaces into
closed-blocks to ensure that all detection methods were used. Affected
contours/blocks can be identified by:

1) Detection method #1: When an individual and open contour-output,
of the border-following algorithm, contains duplicate inner-points.

2) Detection method #2: When the combined closed-shape includes
duplicate inner-points (excluding the first since it is a closed shape).

3) Detection method #3: When failing to combine the interfaces of a
segmentation into a closed-shape (i.e. unequal first and last vertices).

3.5. Data scaling

Before any further adjustments are made, the block and line list (BL
and LL) are scaled to the preferred size by application of a scale factor to
xy-coordinates of each element (Eq. (21)).

x′

= x × scale
y′

= (ymax − y) × scale
ymax = max(y)

(21)

The final geometry may include small objects that are inappropriate
for use in CAD geometry or numerical model generation. Furthermore,
the application of the line-generalisation algorithm may cause the
generation of blocks with zero area due to inadequate space between
essential vertices. Thus, the area verification of each object is required to
provide proper input for the numerical analysis. The area of a closed
polygon can be calculated using the Surveyor’s Formula provided below
(Eq. (22):

Area =
1
2
×

⃒
⃒
⃒
⃒
⃒

∑n− 1

i=1
(xi × yi+1)+ (xn × y1) −

∑n− 1

i=1
(xi+1 × yi) − (x1 × yn)

⃒
⃒
⃒
⃒
⃒

(22)

Acquiring the area of either the scaled closed-contour or the closed-
polyline allows the removal of small or zero-area objects from the block-

(a) (b) (c)

(d) (e)

Fig. 15. Correcting geometrical inaccuracies (ta = 20◦): (a): Initial generalised lines; (b): Original and modified lines comparison; (c): Adjusted generalised lines; (d):
Original lines on arched-door; (e): Adjusted lines on arched-door.

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

10

list (BL) (Fig. 16). This can extend to lines by removing entries from the
line-list (LL), that do not have at least one ID label equal to the labels of
the remaining blocks (i.e. if both labels 10 and 11 do not exist in the
adjusted block-list, then the polyline with ID = [10,11] is removed).
Furthermore, the samples below exclude damage from the “point detec-
tion” section to avoid common issues (pg. 11). However, the damage will
be included during the numerical analysis (Tables 1–3).

4. Numerical model generation

The last part of the proposed framework is the numerical model
generation, which includes mortar and damage depending on the user’s
preferences (Fig. 17: Output). The proposed framework can be used to
simulate masonry with the simplified-micro-modelling (or meso-scale)
and detailed-micro-modelling approach. For the development of the
numerical simulations, the commercial software UDEC, developed by
Itasca, has been used [19]. The formulation of the method was proposed
initially by [10] to study jointed rock, modelled as an assemblage of
rigid blocks. Later this approach was extended to other engineering
fields requiring a detailed study of the contact between blocks or

particles such as soil and other granular materials [16]. More recently,
the approach was applied successfully to model historic masonry
structures in which the collapse modes were typically governed by
mechanisms in which the blocks’ deformability plays little to no role at
all.

4.1. Geometric model generation

The methodology used to develop the polylines from the previous
sections has been used here to generate the model geometry in AutoCAD
or directly into a structural analysis software (Fig. 18). The python li-
brary used to create the AutoCAD model was “pyautocad”. The 3D model
was extruded using a standard value for the depth (Fig. 18(b)). The 2D
mesh was created in AutoCAD using the “hatch” command (Fig. 18(c))
and includes both mortar and damage. For the models developed using
the detailed micro-modelling approach, the mesh generation was made
externally when the mortar was modelled. Optimally, the mesh could be
produced programmatically when the geometry is aimed for UDEC, to
avoid the use of AutoCAD entirely. For cases where the model was
initially generated in AutoCAD, the python library “dxfgrabber” was used
to read DXF files. Lastly, each line was imported in UDEC using FISH
(programming language embedded in ITASCA software) to generate the
masonry units (Fig. 18(d)).

4.2. Mortar and damage group assignment

In the numerical model, the mortar was assigned by calculating the
area of each element. So, if an element is smaller than a predefined
value, then it is assigned to the “Mortar” group (Fig. 19(a)). The pre-
defined value is equal to the square of the largest (vertical or horizontal)
side of the mesh element, see (Eq. (23)).

If Area ≤ (length)2
, then assign the element to the“Mortar”group (23)

Moreover, the mortar may be cracked, which needs to be reflected in
the “Mortar” group. If this is the case, then the masked watershed seg-
mentation (without padding) is used to extract the coordinates. When-
ever a pixel with a damage label is detected, a FISH command is
generated that re-assigns the “Mortar” element that contains the speci-
fied coordinates to the “Damage” group, see (Fig. 19(b)). It is essential to
mention that the coordinates obtained require adjustment, since the
interface-contours measure gridlines instead of pixels:

If WS(i, j) = − 2 or WS(i, j) = − 3 : Extract adjusted xy coordinates (24)

x = (j + 0.5) × scale
y = (ymax − (i + 0.5)) × scale

ymax = max(y)
(25)

The method mentioned earlier used to assign the damage, requires
an excessive amount of time due to the large number of pixels detected
(i.e. 315 s for 71,030 entries on a laptop with i7-9750h, Fig. 19(b)). For
that reason, the accuracy of pixel extraction is limited to a preferred area
(i.e. Acc = 5px). Thus, rejecting new entries if they are in proximity to an
already extracted location, which reduces dramatically the computa-
tional time required (i.e. 18 s for 4386 entries, Fig. 20(a)). The method
used to verify the distance is by creating a test-array of equal size to the
original image where all coordinates extracted are marked by the

Table 1
Macro properties of the brick elements- Block properties: Sandstone [20].

Density (kg/m3) Young’s modulus (N/m2) Poisson’s ratio

2350 26364x106 0.2

Table 2
Joint properties of the zero-thickness interfaces - Join contact properties of
mortar [28].

Normal
stiffness
(N/m3)

Shear
stiffness
(N/m3)

Friction
(deg)

Cohesive
strength (N/
m2)

Tensile
strength
(N/m2)

Dilation
(deg)

4 × 1011 2 × 1011 38 0.6 × 106 0.6 × 106 4

Table 3
Macro properties of the brick elements [28].

Brick elements Mortar elements

Density
(kg/m3)

Young’s
modulus (N/
m2)

Poisson’s
ratio

Density
(kg/m3)

Young’s
modulus
(N/m2)

Poisson’s
ratio

1900 19700x106 0.2 1200 2974x106 0.2

Input:
Segmenta�on

polylines

Output: Step-1
Geometric model

genera�on

Output: Step-2
Mortar group

assignment based
on element area

Output: Step-3
Damage group

assignment based
on watershed labels

Output:
Structural analysis

using DEM

Fig. 17. Workflow of the numerical model generation (Output).

(a) (b)

 (c) (d)

Fig. 16. Removing small objects; (a): Initial segmentation; (b): Original con-
tours and generalised lines; (c): Removed small objects (in purple); (d):
Remaining objects on source image.

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

11

preferred area of double the size of the accuracy (i.e. TArray[i − 5 : i + 5,
j − 5 : j + 5] = 0). Creating multiple test-arrays for each damage state
allows to verify and assign multiple groups (Fig. 20(b)), which in turn
can be used to assign different material and joint characteristics or to
remove completely specified damage-groups. The assignment accuracy
of multiple groups depends highly on the mesh size, the precision of the
imported damage/mortar masks, and the applied order of the damage to
the model (i.e. Fig. 20(b)), where the mortar-damage is given priority).
For the tested accuracy, multiple damage assignments are not recom-
mended since the mesh size is not sufficiently small, and due to inade-
quate accuracy of the imported (not generated) masks. The second
method proposed is based on both; a range value targeting the centroid
(Eqs. (26) & (27)) and the block that contains the specified coordinates
(Eq. (25)), of mortar-elements only. The range of values used, in the
numerical model, are provided below:

x1 = (j + 0.5 − Acc) × scale
x2 = (j + 0.5 + Acc) × scale (26)

y1 = (ymax − (i + 0.5 − Acc)) × scale
y2 = (ymax − (i + 0.5 + Acc)) × scale (27)

5. Numerical analysis of existing masonry walls

The geometry obtained using the proposed algorithm is compared
with the idealised model to verify the proposed methodology’s potential
to be used in automated model generation. This section does not aim to
predict the behaviour of a real structure. Instead, it tests the structure for
similar behaviour, assuming a similar geometry is provided, while
retaining the mechanical properties equal between all models. The nu-
merical analysis also assumes an accurate model calibration, by
following the typical modelling procedure and by using representative
material characteristics, using information acquired from the literature.
Moreover, the following generalisation values are suggested for the
general definition of the geometric model aimed for numerical analysis:

Vertical Ratio = Horizontal Ratio = 0.1 (28)

Min.Length = Mortar Thickness+ 1 (in pixel size) (29)

The first model selected as a case study is the masonry arched-door
(Fig. 21). The specific geometry was chosen as it introduces additional
complexity to the analysis by including an arch and opening to the
model. In this case, the mortar is represented as a zero-thickness inter-
face since the simplified micro-modelling approach is typical for the
numerical analysis of masonry structures. The vertical and horizontal
generalisation-ratio used, to acquire the geometry, is equal to 0.1 with a
3-pixel minimum distance. Regarding the analysis, only deformable
blocks are considered (although failure is expected to occur in the

(a) (b)

Fig. 19. Assigning mortar and damage (Orange: Brick, Grey: Mortar, Black: Damage); (a): Mortar comparing the element area; (b): Damage per pixel at each mortar
element (71,030 entries – 315 s).

 (a) (b)

(c) (d)

Fig. 18. Geometric model generation; (a): Image source; (b): AutoCAD 3D-model using blocks; (c): AutoCAD 2D-model using lines (detailed micro-modelling); (d):
UDEC 2D-model using lines (detailed-micro-modelling).

(a) (b)

Fig. 20. Assigning damage using range (5-pixel range, Blue: Mortar damage,
Purple: Block damage); (a): General damage (4386 entries, 18 s); (b): Multiple
assignments giving priority to mortar-damage (4628 entries, 18 s).

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

12

mortar joints rather than in the masonry units). The source of the action
affecting the structure is a horizontal velocity applied on a block pattern,
see (Fig. 21(c) & (d)).

The maximum loading of the idealised and generated model is 1240
kN and 1360 kN respectively (+9.7%, Fig 22(a)), assuming a 500 mm
depth. The maximum-load difference is possibly caused by the inter-
locking/hinging mechanism between the top-left block-row and the arch
in the generated model, not present in the idealised case. A more ac-
curate binarised-source would provide overall better results. However,
the failure-pattern at 10 mm displacement is similar, with only minor
differences (Fig. 22(b) & (c)), although the geometry between the two
models is not identical (i.e. merged blocks, additional edges, etc.).

The second model for comparison is the damaged brick-wall,
including the physical modelling of mortar (Fig. 23(a) & (b)). The
pixels corresponding to damaged areas, detected from the image-

processing of the original image, were directly inserted on the ideal-
ised model. This allows the comparison of the extracted geometry
without considering the success rate of the defect detection. Further-
more, the damaged locations were removed to imitate the separation of
material on the original image. The vertical and horizontal
generalisation-ratio used, to simplify the geometry, is equal to 0.1 with a
5-pixel minimum distance. The analysis considers only deformable
blocks.

Moreover, the mechanical properties of the joints are the same as in
the previous case. However, the brick/mortar units have different
properties, which are provided below. In this particular case, the mortar
is consisted of individual triangles of 20 mm sides to reduce the
computational cost for the analysis. More importantly, the triangular
mesh was selected since it permits diagonal separation. In the future,
segmentation of the mortar can be done using Voronoi elements or

(a) (b)

(c) (d)

Fig. 21. Model geometry of Arched-Door; (a): Idealised model; (b): Generated model; (c): Idealised UDEC groups; (d): Generated UDEC groups.

Fig. 22. (a): Force-Displacement graph of Arched-Door under horizontal loading; (b): Idealised model after 10 mm horizontal displacement; (c): Generated model
after 10 mm horizontal displacement.

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

13

(a) (b)

(c) (d)

(e) (f)

Fig. 23. Model geometry of Damaged-Wall; (a): Idealised model; (b): Generated model; (c): Idealised UDEC-groups; (d): Generated UDEC-groups; (e): Removed
material of Idealised model; (f): Removed material of generated model.

Fig. 24. (a): Force-Displacement graph of Damaged-Wall under horizontal loading; (b): Idealised model after 10 mm horizontal displacement; (c): Generated model
after 10 mm horizontal displacement.

D. Loverdos et al.

Automation in Construction 125 (2021) 103633

14

alternative shapes. The source of the action affecting the structure is a
horizontal velocity applied on a block pattern, see (Fig. 23(c) & (d)).

The maximum loading of the idealised and generated model is 23.15
kN and 22.45 kN respectively (− 3.0%, Fig. 24(a)), assuming a 102.5 mm
depth. Moreover, the failure-pattern at 10 mm displacement is similar,
following the pre-existing damage and causing separation at the top-
right and bottom-left corners (Fig. 24(b) & (c)). However, the shape of
the mesh has not been optimised for numerical analysis and may
interfere with the results due to local hinging phenomena. The investi-
gation of the mesh type and size is outside the scope of this research.
Nonetheless, the expected behaviour is observed in both cases (i.e.
separation at damaged locations).

6. Conclusions

The proposed methodology proves to be a time-efficient and robust
system of acquiring the geometric shape of a masonry structure for
numerical analysis, especially in the case of complex structures where a
significant effort is required to create the numerical model. Any type of
masonry construction is supported, as long as an adequate source is
provided (i.e. ashlar, rubble, dry-joint, mortared-joint, etc.). Another
possible application of the proposed methodology is the automated
assessment of numerical analysis results (by comparing the displace-
ments of the elements with the coordinates of the objects acquired
during the feature-extraction). Especially during evaluation of an in-
verse analysis or assessment of proposed models aimed to predict crack
propagation [32]. Other uses of the algorithm may include the genera-
tion of precise CAD designs of real structures, in a timely-efficient
manner. Additionally, it provides a use-case for state-of-the-art
research in feature-detection and segmentation. However, a reliable
method of feature-detection is required for optimal results.

From the analysis of results, the efficiency of the methodology de-
pends highly on the accuracy of the geometry extracted and the number
of lines used to describe the same geometry. The generated model has
the potential to provide more accurate results, assuming that it re-
sembles the shape of the structure in more detail than the idealised
geometry. Nevertheless, the user must ensure that no interlocking be-
tween the blocks is present, where it is not anticipated, due to unnec-
essary complexity. This is resolved by the proposed generalisation-
algorithm, which reduces the number of edges of the blocks in the
model. For general use, the values proposed in the “Numerical Analysis”
section (Eqs. (28) & (29)) demonstrate adequate results, which are
taking advantage of the dynamic-adjustment to automate the assign-
ment (Eq. (14)). If necessary, a larger generalisation-ratio can be used to
simplify the model further. However, the physical modelling of mortar
assists on that regard since there is no direct interaction between the
masonry blocks.

The main limitation of the methodology is the accuracy of the orig-
inal binarised-image used to produce the watershed segmentation. The
proposed approach is aimed to be used in combination with state-of-the-
art image-processing techniques to improve the overall precision of the
feature-extraction. Additionally, the methodology is limited to 2D model
generation. Although, simple 3D models can be generated by assuming a
standard depth value across a single plane (i.e. Fig. 18(b)).

Regarding the discrete element analysis, the mortar mesh has not
been optimised for the current use-case. Further investigation is
required to optimise the mesh type and the size of each element. A
different mesh type (i.e. Voronoi, [28]) and equal or smaller size than
the mortar-thickness may prove more efficient in highly stressed areas.
However, it may also increase the computational effort required.
Moreover, the joint characteristics consider a single global assignment,
where the mortar-to-mortar interface is equal to the block-to-mortar
(only valid for the damaged-wall example). A more accurate represen-
tation of the joints could provide a more realistic outcome. Lastly, the
material, joint, and damage characteristics require further investigation
and should be calibrated to experimental data for a realistic depiction of

the analysis results.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was partially funded by European Union’s Framework
Programme for Research and Innovation Horizon 2020, under the
H2020-Marie–Skłodowska Curie Actions-COFUND scheme (Grant
Agreement ID: 754511), and from the banking foundation Compagnia di
San Paolo.

References

[1] C. Altuntas, S. Hezer, S. Kirli, Image based methods for surveying heritage of
masonry arch bridge with the example of dokuzunhan in konya, Turkey 3 (2017)
13–20, https://doi.org/10.5281/zenodo.438183.

[2] P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical
image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 898–916,
https://doi.org/10.1109/TPAMI.2010.161.

[3] P.G. Asteris, V. Plevris, V. Sarhosis, L. Papaloizou, A. Mohebkhah, P. Komodromos,
Numerical modeling of historic masonry structures, in: Austin De Marco,
Kayla Wolfe, Christina Henning, B. Carbaugh (Eds.), Handbook of Research on
Seismic Assessment and Rehabilitation of Historic Structures, Engineering Science
Reference (an imprint of IGI Global), United States of America, 2015, pp. 213–256,
https://doi.org/10.4018/978-1-4666-8286-3.ch007.

[4] S. Beucher, F. Meyer, Advances of mathematical morphology in image processing,
in: Mathematical Morphology in Image Processing, Marcel Dekker Inc, New York,
1993, pp. 433–481, https://doi.org/10.1201/9781482277234-12.

[5] D.J. Bora, A novel approach for color image edge detection using multidirectional
Sobel international journal of computer sciences and engineering open access a
novel approach for color image edge detection using multidirectional Sobel filter
on HSV color space, Int. J. Comput. Sci. Eng. 5 (2017) 154–159, https://doi.org/
10.6084/m9.figshare.4732951.

[6] D. Brackenbury, M. Dejong, Mapping Mortar Joints in Image Textured 3D Models
to Enable Automatic Damage Detection of Masonry Arch Bridges, Tampere,
Finland, 2018. URL, http://programme.exordo.com/icccbe2018/delegates/prese
ntation/344/ (accessed 27.1.21).

[7] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal.
Mach. Intell. PAMI-8 (1986) 679–698, https://doi.org/10.1109/
TPAMI.1986.4767851.

[8] K. Chaiyasarn, M. Sharma, L. Ali, W. Khan, N. Poovarodom, Crack detection in
historical structures based on convolutional neural network, Int. J. GEOMATE 15
(2018) 240–251, https://doi.org/10.21660/2018.51.35376.

[9] F. Cluni, D. Costarelli, A.M. Minotti, G. Vinti, Enhancement of thermographic
images as tool for structural analysis in earthquake engineering, NDT and E Int. 70
(2015) 60–72, https://doi.org/10.1016/j.ndteint.2014.10.001.

[10] P.A. Cundall, A computer model for simulating progressive large-scale movements
in blocky rock systems, in: Proocedings of the Symposium of the International
Society of Rock Mechanics, Nancy, France, 1971 p. Vol. 1., Paper No. II-8. URL
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/
ReferencesPapers.aspx?ReferenceID=1230197 (accessed 27.1.21).

[11] D. Dais, İ.E. Bal, E. Smyrou, V. Sarhosis, Automatic crack classification and
segmentation on masonry surfaces using convolutional neural networks and
transfer learning, Autom. Constr. (2021), https://doi.org/10.1016/j.
autcon.2021.103606.

[12] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica, Int. J. Geogr.
Inform. Geovisualiz. 10 (1973) 112–122, https://doi.org/10.3138/fm57-6770-
u75u-7727.

[13] E. Erdogmus, B. Pulatsu, B. Can, K. Ozkan, Analysis of the Last Standing Arch of the
Roman Aqueduct at Blaundos, in: P.B. Dillion, F.S. Fonseca (Eds.), 13th North
American Masonry Conference. Salt Lake City, Utah, 2019, pp. 483–493. URL,
https://www.researchgate.net/publication/334001391_Analysis_of_the_Last_Stan
ding_Arch_of_the_Roman_Aqueduct_at_Blaundos (accessed 27.1.21).

[14] T. Forgács, V. Sarhosis, K. Bagi, Influence of construction method on the load
bearing capacity of skew masonry arches, Eng. Struct. 168 (2018) 612–627,
https://doi.org/10.1016/j.engstruct.2018.05.005.

[15] T. Forgács, V. Sarhosis, K. Bagi, Minimum thickness of semi-circular skewed
masonry arches, Eng. Struct. 140 (2017) 317–336, https://doi.org/10.1016/j.
engstruct.2017.02.036.

[16] J. Ghaboussi, R. Barbosa, Three-dimensional discrete element method for granular
materials, Int. J. Numer. Anal. Methods Geomech. 14 (1990) 451–472, https://doi.
org/10.1002/nag.1610140702.

[17] T. Hinks, H. Carr, L. Truong-Hong, D.F. Laefer, Point cloud data conversion into
solid models via point-based Voxelization, J. Surv. Eng. 139 (2013) 72–83, https://
doi.org/10.1061/(asce)su.1943-5428.0000097.

D. Loverdos et al.

https://doi.org/10.5281/zenodo.438183
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.4018/978-1-4666-8286-3.ch007
https://doi.org/10.1201/9781482277234-12
https://doi.org/10.6084/m9.figshare.4732951
https://doi.org/10.6084/m9.figshare.4732951
http://programme.exordo.com/icccbe2018/delegates/presentation/344/
http://programme.exordo.com/icccbe2018/delegates/presentation/344/
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.21660/2018.51.35376
https://doi.org/10.1016/j.ndteint.2014.10.001
http://refhub.elsevier.com/S0926-5805(21)00084-4/rf0050
http://refhub.elsevier.com/S0926-5805(21)00084-4/rf0050
http://refhub.elsevier.com/S0926-5805(21)00084-4/rf0050
http://refhub.elsevier.com/S0926-5805(21)00084-4/rf0050
http://refhub.elsevier.com/S0926-5805(21)00084-4/rf0050
https://doi.org/10.1016/j.autcon.2021.103606
https://doi.org/10.1016/j.autcon.2021.103606
https://doi.org/10.3138/fm57-6770-u75u-7727
https://doi.org/10.3138/fm57-6770-u75u-7727
https://www.researchgate.net/publication/334001391_Analysis_of_the_Last_Standing_Arch_of_the_Roman_Aqueduct_at_Blaundos
https://www.researchgate.net/publication/334001391_Analysis_of_the_Last_Standing_Arch_of_the_Roman_Aqueduct_at_Blaundos
https://doi.org/10.1016/j.engstruct.2018.05.005
https://doi.org/10.1016/j.engstruct.2017.02.036
https://doi.org/10.1016/j.engstruct.2017.02.036
https://doi.org/10.1002/nag.1610140702
https://doi.org/10.1002/nag.1610140702
https://doi.org/10.1061/(asce)su.1943-5428.0000097
https://doi.org/10.1061/(asce)su.1943-5428.0000097

Automation in Construction 125 (2021) 103633

15

[18] Y. Ibrahim, B. Nagy, C. Benedek, Cnn-based watershed marker extraction for brick
segmentation in masonry walls, in: F. Karray, A. Campilho, A. Yu (Eds.), Image
Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science,
Springer, Cham, Waterloo, ON, Canada, 2019, pp. 332–344, https://doi.org/
10.1007/978-3-030-27202-9_30.

[19] Itasca, ITASCA Consulting Limited [WWW Document], URL, https://www.itasca.
co.uk/, 2019. accessed 22.9.20.

[20] A. Karagianni, G. Karoutzos, S. Ktena, N. Vagenas, I. Vlachopoulos, N. Sabatakakis,
G. Koukis, Elastic properties of rocks, Bull. Geol. Soc. Greece 43 (2010)
1165–1168, https://doi.org/10.12681/bgsg.11291.

[21] A.S. Kornilov, I.V. Safonov, An overview of watershed algorithm implementations
in open source libraries, J. Imaging 4 (2018) 123, https://doi.org/10.3390/
jimaging4100123.

[22] P.B. Lourenço, Computational strategies for masonry structures. PhD Thesis, Delft
University Press, 1996. URL, http://www.narcis.nl/publication/RecordID/oai:tud
elft.nl:uuid:4f5a2c6c-d5b7-4043-9d06-8c0b7b9f1f6f (accessed 27.1.21).

[23] D.R. Martin, C.C. Fowlkes, J. Malik, Learning to detect natural image boundaries
using brightness and texture, Adv. Neural Inf. Proces. Syst. 26 (2003) 530–549,
https://doi.org/10.1109/TPAMI.2004.1273918.

[24] P. Morer, I. de Arteaga, A. Ortueta, A low-cost photogrammetric methodology to
obtain geometrical data of masonry arch bridges, J. Archit. Conserv. 19 (2013)
246–264, https://doi.org/10.1080/13556207.2013.869974.

[25] R. Napolitano, B. Glisic, Methodology for diagnosing crack patterns in masonry
structures using photogrammetry and distinct element modeling, Eng. Struct. 181
(2019) 519–528, https://doi.org/10.1016/j.engstruct.2018.12.036.

[26] U. Ramer, An iterative procedure for the polygonal approximation of plane curves,
Computer Graphics and Image Processing 1 (1972) 244–256, https://doi.org/
10.1016/S0146-664X(72)80017-0.

[27] V. Sarhosis, S.W. Garrity, Y. Sheng, Influence of brick-mortar interface on the
mechanical behaviour of low bond strength masonry brickwork lintels, Eng. Struct.
88 (2015) 1–11, https://doi.org/10.1016/j.engstruct.2014.12.014.

[28] V. Sarhosis, J.V. Lemos, A detailed micro-modelling approach for the structural
analysis of masonry assemblages, Comput. Struct. 206 (2018) 66–81, https://doi.
org/10.1016/j.compstruc.2018.06.003.

[29] V. Sarhosis, Y. Sheng, Identification of material parameters for low bond strength
masonry, Eng. Struct. 60 (2014) 100–110, https://doi.org/10.1016/j.
engstruct.2013.12.013.

[30] G. Sithole, Detection of Bricks in a Masonry Wall, in: International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008,
pp. 567–572. URL, https://www.isprs.org/proceedings/XXXVII/congress/5_p
df/99.pdf (accessed 27.1.21).

[31] S. Suzuki, K. Abe, Topological structural analysis of digitized binary images by
border following, Comp. Vision, Graphics Image Processing 30 (1985) 32–46,
https://doi.org/10.1016/0734-189X(85)90016-7.

[32] S. Tiberti, N. Grillanda, V. Mallardo, G. Milani, A genetic algorithm adaptive
homogeneous approach for evaluating settlement-induced cracks in masonry walls,
Eng. Struct. 221 (2020) 111073, https://doi.org/10.1016/j.
engstruct.2020.111073.

[33] S. Tiberti, G. Milani, 3D voxel homogenized limit analysis of single-leaf non-
periodic masonry, Comput. Struct. 229 (2020) 106186, https://doi.org/10.1016/j.
compstruc.2019.106186.

[34] S. Tiberti, G. Milani, 3D homogenized limit analysis of non-periodic multi-leaf
masonry walls, Comput. Struct. 234 (2020) 106253, https://doi.org/10.1016/j.
compstruc.2020.106253.

[35] S. Tiberti, G. Milani, 2D pixel homogenized limit analysis of non-periodic masonry
walls, Comput. Struct. 219 (2019) 16–57, https://doi.org/10.1016/j.
compstruc.2019.04.002.

[36] E. Valero, F. Bosché, A. Forster, Automatic segmentation of 3D point clouds of
rubble masonry walls, and its application to building surveying, repair and
maintenance, Autom. Constr. 96 (2018) 29–39, https://doi.org/10.1016/j.
autcon.2018.08.018.

[37] E. Valero, A. Forster, F. Bosché, E. Hyslop, L. Wilson, A. Turmel, Automated defect
detection and classification in ashlar masonry walls using machine learning,
Autom. Constr. 106 (2019) 102846, https://doi.org/10.1016/j.
autcon.2019.102846.

[38] Y. Zhang, L. Macorini, B.A. Izzuddin, Numerical investigation of arches in brick-
masonry bridges, Struct. Infrastruct. Eng. 14 (2018) 14–32, https://doi.org/
10.1080/15732479.2017.1324883.

D. Loverdos et al.

https://doi.org/10.1007/978-3-030-27202-9_30
https://doi.org/10.1007/978-3-030-27202-9_30
https://www.itasca.co.uk/
https://www.itasca.co.uk/
https://doi.org/10.12681/bgsg.11291
https://doi.org/10.3390/jimaging4100123
https://doi.org/10.3390/jimaging4100123
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:4f5a2c6c-d5b7-4043-9d06-8c0b7b9f1f6f
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:4f5a2c6c-d5b7-4043-9d06-8c0b7b9f1f6f
https://doi.org/10.1109/TPAMI.2004.1273918
https://doi.org/10.1080/13556207.2013.869974
https://doi.org/10.1016/j.engstruct.2018.12.036
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/j.engstruct.2014.12.014
https://doi.org/10.1016/j.compstruc.2018.06.003
https://doi.org/10.1016/j.compstruc.2018.06.003
https://doi.org/10.1016/j.engstruct.2013.12.013
https://doi.org/10.1016/j.engstruct.2013.12.013
https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/99.pdf
https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/99.pdf
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/j.engstruct.2020.111073
https://doi.org/10.1016/j.engstruct.2020.111073
https://doi.org/10.1016/j.compstruc.2019.106186
https://doi.org/10.1016/j.compstruc.2019.106186
https://doi.org/10.1016/j.compstruc.2020.106253
https://doi.org/10.1016/j.compstruc.2020.106253
https://doi.org/10.1016/j.compstruc.2019.04.002
https://doi.org/10.1016/j.compstruc.2019.04.002
https://doi.org/10.1016/j.autcon.2018.08.018
https://doi.org/10.1016/j.autcon.2018.08.018
https://doi.org/10.1016/j.autcon.2019.102846
https://doi.org/10.1016/j.autcon.2019.102846
https://doi.org/10.1080/15732479.2017.1324883
https://doi.org/10.1080/15732479.2017.1324883

	An innovative image processing-based framework for the numerical modelling of cracked masonry structures
	1 Introduction
	2 Segmentation adjustments
	2.1 Mortar and damage mask generation
	2.2 Segmentation cleaning and correction

	3 Feature extraction
	3.1 Point detection and contour definition
	3.2 Contour generalisation
	3.3 Geometric adjustments
	3.4 Producing closed-shapes
	3.5 Data scaling

	4 Numerical model generation
	4.1 Geometric model generation
	4.2 Mortar and damage group assignment

	5 Numerical analysis of existing masonry walls
	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

