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A B S T R A C T   

During the 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, Nepal, numerous 
Nepalese Pagodas suffered extensive damage while others collapsed. Risk reduction strategies 
implemented in the region focused on disassembling historical structures and rebuilding them 
with modern material without in depth analysis of why they suffer damage and collapse. The aim 
of this paper is to evaluate the effectiveness of low-cost, low-intervention, reversible repair and 
strengthening options for the Nepalese Pagodas. As a case study, the Jaisedewal Temple, typical 
example of the Nepalese architectural style, was investigated. A nonlinear three-dimensional 
finite element model of the Jaisedewal Temple was developed and the seismic performance of 
the temple was assessed by undertaking linear, nonlinear static and nonlinear dynamic analyses. 
Also, different structural intervention options, suggested by local engineers and architects 
working in the restoration of temples in Nepal, were examined for their efficacy to withstand 
strong earthquake vibrations. Additionally, the seismic response of the exposed foundation that 
the Nepalese Pagodas are sitting on was investigated. From the results analysis, it was found that 
pushover analysis failed to capture the type of failure which highlights the necessity to perform 
time-history analysis to accurately evaluate the seismic response of the investigated temple. Also, 
stiffening the connections along the temple was found to enhance the seismic behaviour of the 
temple, while strengthening the plinth base was concluded to be insignificant. Outputs from this 
research could contribute towards the strategic planning and conservation of multi-tiered temples 
across Nepal and reduce their risk to future earthquake damage without seriously affecting their 
beautiful architectural heritage.   

1. Introduction 

On April 25, 2015, the Gorkha earthquake of 7.8 Mw struck close to the city of Kathmandu in Nepal [1–5]. It is estimated that during 
this earthquake, approximately 9000 people were killed, many thousands were injured, 2.8 million people were displaced, and more 
than half a million structures were either damaged or collapsed [6–9]. On top of that, dozens of Kathmandu heritage buildings suffered 
severe damages while others partially or totally collapsed [10,11]. In particular, numerous Nepalese Pagodas, exemplary temples of 
the Nepalese architecture, collapsed during the Gorkha earthquake [11–13]. The financial losses after the Gorkha earthquake have 

* Corresponding author at: Research Center for Built Environment, Hanze University of Applied Sciences, Groningen, the Netherlands. 
E-mail address: d.dais@pl.hanze.nl (D. Dais).  

Contents lists available at ScienceDirect 

Engineering Failure Analysis 

journal homepage: www.elsevier.com/locate/engfailanal 

https://doi.org/10.1016/j.engfailanal.2021.105262 
Received 25 August 2020; Received in revised form 15 January 2021; Accepted 26 January 2021   

mailto:d.dais@pl.hanze.nl
www.sciencedirect.com/science/journal/13506307
https://www.elsevier.com/locate/engfailanal
https://doi.org/10.1016/j.engfailanal.2021.105262
https://doi.org/10.1016/j.engfailanal.2021.105262
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfailanal.2021.105262&domain=pdf
https://doi.org/10.1016/j.engfailanal.2021.105262
http://creativecommons.org/licenses/by/4.0/


Engineering Failure Analysis 123 (2021) 105262

2

been estimated to be around 7 billion US dollars [14]. A side-effect of this earthquake was the severe drop in the influx numbers of 
tourists due to damages inflicted to the monuments of the Kathmandu region, entailing a significant drop in the income of the country. 
The significance of the conservation of the monuments of a country for the economic growth highlights the need for future-proofing 
actions in terms of restoration, rehabilitation and strengthening. 

The excessive damage inflicted on the cultural heritage of Nepal urged researchers to investigate further the monuments that 
survived from the Gorkha earthquake and assist in the documentation of existing damages [15]. A rapid visual damage assessment 
survey was developed in the direct aftermath of the 2015 Gorkha earthquake to assess the safety and damage of residential buildings in 
the areas affected by the earthquake [16]. Digital recording and non-destructive techniques were utilized to assess the structural 
condition of historical temples [17], while a geo-crowdsourcing and web-mapping platform was developed incorporating both web 
and mobile based data collection with the intention to invite community participation [18,19]. This end-to-end system created an 
online virtual community encouraging public engagement and raising awareness about heritage ownership. It also provided valuable 
sources for cultural heritage exploitation, management, education, and monitoring over time. Furthermore, since masonry is one of the 
main structural components in modern and historical structures along the world, the research community has been focusing on 
developing methods for the efficient detection of damages in such constructions. Dais et al. [20] and Brackenbury et al. [21] developed 
algorithms for the automatic defect detection on photos of masonry structures. Researchers have introduced methods that automat-
ically process point cloud representations of historic masonry structures and generate accurate numerical models that allow for ef-
ficiency and automation in structural assessment [22,23]. 

As discussed by Joshi & Kaushik [24], “loss of life” is more important than “loss of authenticity” and a more rational and practical 
stand on the future of Nepalese heritage is recommended to be adopted. In particular, different cases of restored or reconstructed 
historic structures that survived the Gorkha earthquake were presented. It was concluded that a degree of interference needs to be 
permitted to secure the Nepalese monuments against future earthquakes. Heritage structures, like the Nepalese Pagodas, are char-
acterised by peculiarity and complex history. Thus, according to ICOMOS (Intrenational Council on Monuments and Sites), their 
assessment and retrofitting should require extra attention and involve the following steps: anamnesis, diagnosis, therapy and control 
[25]. In order to achieve cost effectiveness and minimal impact on architectural heritage using funds available in a rational way; it is 
usually necessary that the study repeats these steps in an iterative process. Regarding the anamnesis, the history of the Nepalese 
Pagodas highlights the high vulnerability of the temples. For instance, during the 1934 Nepal–Bihar earthquake (Mw 8.0), over 
200,000 buildings and temples were damaged [26]. This earthquake was well documented using photographs giving us clear evidence 
of the magnitude of devastation [24]. Several temples were reportedly heavily damaged during the 1934 earthquake and were 
reconstructed from the plinth level [27–30]. Consequently, interventions on the improvement of seismic performance of the Nepalese 
Pagodas are reckoned essential to reduce the seismic risk. 

Masonry, a complex material consisting of units and mortar joints following a certain pattern, is heterogeneous and anisotropic in 
nature. Different approaches and scales exist in the literature for the numerical representation of masonry [31,32]. A detailed 
simulation of masonry, usually referred to as micro-modelling, includes the units, mortar and the unit/mortar interface [32,33]. This 
modelling approach enables an accurate representation of the complex response of masonry and is typically well suited for small 
structures. In larger structures such a modelling approach raises concerns regarding the increased computational cost and convergence 
issues. When assessing large scale structures, the masonry units and the mortar joints are commonly represented by homogenous 
elements, a method called macro-modelling [34]. A limitation of the macro-modelling approach is that it fails to reproduce the 
anisotropy in the inelastic range that characterises masonry [34]. The mortar joints act as planes of weakness [35] and thus the 
arrangement of bricks/blocks influences the orthotropic response of masonry [36,37]. Milani and Lourenço [38] in order to address 
this limitation examined representative elements of masonry walls with different orientations of the bed joints and the in-plane 
masonry strength was stochastically assessed. A continuum damage model was introduced by Pelà et al. [39] in which the ortho-
tropic behaviour was simulated using the concept of mapped stress tensor. While such sophisticated numerical models exist in the 
literature, it is commonly accepted for damage-plasticity isotropic models mainly designed for concrete to be utilized to simulate 
masonry structures [37]. These isotropic models neglect any orthotropic effects but they have been found to reproduce accurately the 
overall behaviour of a structure [31,37]. 

Despite the considerable amount of work related to understanding the seismic vulnerability of historic temples in Nepal 
[11,28–30,40,41], little work has been done on the effectiveness of repair and strengthening options found in the literature (refer to 
Section 2.2). The aim of this paper is to evaluate the effectiveness of low-cost, low-interference and reversible repair and strengthening 
options for the Nepalese Pagodas. To this end, local engineers and architects working for the restoration of the temples in Nepal were 
engaged in different aspects of this study. The three-tiered Jaisedewal temple, a typical example of the Nepalese Pagoda architectural 
style, was chosen as a case study. A nonlinear three-dimensional finite element model of the Jaisedewal temple was developed in the 
commercial software ABAQUS based on the macro-modelling approach. Modal, pushover and time-history analyses were performed to 
assess the seismic vulnerability of the temple. Moreover, the plinth base, on which most of the Nepalese Pagodas sit, has attracted little 
research and thus its influence on the seismic response of the temple was investigated herein. 

2. Case study and related work 

2.1. Characteristics of the Nepalese Pagodas and the Jaisedewal temple 

The Nepalese Pagodas, multi-tiered temples, began to appear extensively around the middle of the fourteenth century during the 
Malla Dynasty [28]. These monuments have been constructed using clay brick masonry and timber members with tiles or metal roof 
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coverings [42]. Most of the Nepalese Pagodas are considered non-engineered constructions that follow very simple rules and con-
struction detailing with respect to the seismic resistance requirements [29]. Post-seismic surveys of past earthquakes, before the 
Gorkha earthquake, emphasized the high vulnerability of the Pagoda temples while excessive damages were expected in future 
earthquakes [29]. During the Gorkha earthquake, the pathologies of the Nepalese temples were revealed. The main causes of damage 
of these unreinforced masonry (URM) temples were: (a) deterioration of the construction materials; (b) lack of regular maintenance of 
the temples; (c) lack of proper connections in the corners; (d) excessive weight in the upper part of the building; and (e) discontinuous 
loading paths along the height of the structure [13,27,43,44]. 

The Jaisedewal temple (Fig. 1a) was chosen as case study and its seismic response was assessed. It is noted that the temple collapsed 
during the Gorkha earthquake and only the plinth base survived (Fig. 1b). The structure is a typical example of the Nepalese archi-
tecture in the Kathmandu Valley. The Jaisedewal temple is a three-tiered temple siting on a massive exposed foundation plinth, the 
dimensions of which are 19.8 m × 19.8 m at the bottom and 7.6 m × 7.6 m at the top. The height of the plinth is 6.1 m while the height 
of the upper structure is 16.6 m (Fig. 1a). The exposed foundation has been constructed using red clay bricks bonded together by mud. 
The temple is characterized by a box-type configuration. Fig. 1c and d show a cross-section of the Jaisedewal temple as well as 

Fig. 1. Jaisedewal temple: (a) before and (b) after the Gorkha earthquake, (c) cross section (illustration of foundation is indicative) and (d) detail of 
the roof system. 
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structural details of the roof system together with its different components (i.e. tiles, soil layer and timber elements). The walls of the 
temple were made of masonry clay units bonded together by brick mortar [8]. The structural system of the temple consists of a thick 
main core of walls in addition to a peripheral external wall sitting on wooden pillars (Fig. 1c). At the top of the temple there is an 
internal core with thinner cross-section, which does not sit on the main core of the structure but is simply connected with some crossing 
timber beams (Fig. 1c). For further details regarding the Jaisedewal temple, the reader is referred to the work of Kumar et al. [45] 
where a reconnaissance survey was undertaken and a geotechnical study on the site of the temple was presented. 

Similar to the Jaisedewal temple, the Nepalese Pagodas are generally found on a massive plinth base (Fig. 1). The plinth is usually 
of low-quality workmanship and limited cohesion, thus of inferior performance than the supported temple [46]. According to [47], the 
Nepalese temples were placed on plinths in order to improve their seismic response against the wave amplification and to avoid the 
resonance with the soil layer. Although the structure could have been considered as an integral system consisting of the upper structure 
and the massive plinth base, the contribution of the latter has been neglected in previous numerical studies (see Section 2.2). In this 
study, the base plinth was incorporated in the numerical model and its influence on the overall response of the temple under seismic 
loads was investigated. 

2.2. Numerical studies for the seismic assessment of Nepalese Pagodas 

Regarding the numerical evaluation of the Nepalese Pagodas, in the literature, mostly linear elastic finite element modelling 
approach was utilized, while the plinth base was not incorporated in the model. In particular, modal analysis was performed and the 
dynamic characteristics of the structure were calibrated based on ambient vibration measurements [29,40]. Similar approach was 
followed by Shrestha et al. [27] in which static lateral load was applied and the maximum stresses were extracted for the modelled 
temple at its initial condition. A linear elastic finite element model was developed and calibrated over ambient vibration measure-
ments, while different types of supports were investigated, including fixed and elastic support conditions [48]. A parametric study was 
undertaken on three different temples which were modelled adopting linear elastic material properties while neglecting the plinth base 
[28]. Degradation of different structural components was considered and simulated by decreasing the modulus of elasticity. The effect 
of this degradation on the fundamental frequency of temples was examined by Shakya et al. [28]. More elaborate numerical approach 
was followed and nonlinear material properties were considered by [49,50]. In particular, modal and pushover analyses were per-
formed by Arce et al. [49], while time-history analyses were undertaken by Pejatovic et al. [50]. 

In terms of investigating the efficacy of retrofitting schemes little work could be found in the literature. A linear elastic finite 
element model was developed, static lateral load was applied and the maximum stresses were assessed to evaluate the effectiveness of a 
proposed retrofit which considered timber frames in both vertical and horizontal directions in the inner wall of the temple [27]. It is 
noted that such a retrofit scheme is highly intrusive and irreversible and thus its efficacy and necessity ought to be thoroughly 
examined before being implemented. Different strengthening methods which include the installation of timber and/or steel plates and 
the application of higher compressive strength of mud mortar masonry were investigated [49]. These solutions were investigated in 
terms of pushover analysis and the pseudo-static acceleration achieved was reported. It is noted that the examined interventions are 
highly invasive and milder approaches need to be considered first. Moreover, it was found that pushover analysis has many drawbacks 
and is not recommended when investigating complex structures such as the Nepalese Pagodas. The implementation of retrofitting 
solutions has been investigated in terms of assessment of its vulnerability and loss of structural integrity [43]. 

2.3. Common retrofitting practises for Nepalese Pagodas 

Different interventions have been suggested for upgrading the seismic behaviour of the Nepalese Pagodas [10,24,43,46,51]. Some 
of the common practises are the stiffening of floors and strengthening of the traditional connections. In particular, timber floors with 
poorly connected elements and limited bracings, a common observation in the Nepalese temples, fail to provide diaphragmatic action 
and can be considered as rather flexible [48] (Fig. 2a). The replacement of the timber floors with stiffer elements can be part of the 

Fig. 2. (a) Timber floors poorly connected with limited bracing elements [48]. (b) Rotting roof beams and planks [46].  
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maintenance of the Nepalese Pagodas given the fact that degradation has been observed in many cases [46] (Fig. 2b). Other typical 
examples of poor connection details are the timber beams that the top tier of the Pagodas usually sits on [49] (Fig. 3a) and the timber 
peg connections between the main masonry wall and the peripheral wall (Fig. 3b and c). The latter interventions are considered of low 
interference, since they are not visible and can be easily removed in order to bring the structure in its previous state. 

Internal reinforcements and ties are applied to enhance the structural coherence of the building but have no visible impact on the 
outside. Further on, deep repointing and crack stitching has been suggested. Other common strengthening practises entail the 
installation of internal metal bracings or timber columns and beams in the existing structure. These interventions require new elements 
to be added to the temple and in most cases are irreversible. 

Another intervention to reduce the seismic demand is the reduction of the mass of the structure. More specifically, the mass 
reduction can be achieved from the roofs and the masonry walls. Regarding the roofs, the soil layer (Fig. 1d) can be removed and the 
existing timber planks can be replaced with lighter ones. It is highlighted that the soil layer existing in the tiers could attract vegetation 
which diminishes the structural integrity of the timber roofs [10,46] (Fig. 4a) while rotten timber elements are typical observation 
during inspection of the Nepalese temples [51] (Fig. 4b). The restoration of the roofs is undertaken by local engineers and practi-
tioners, while traditional techniques are followed and locally available hardwood, i.e. Shorea robusta, that is typically preferred for its 
strength and durability is installed adhering to the preservation of the architectural style of the Nepalese temples [51] (Fig. 4c and d). 
As far as the mass reduction from the masonry walls is considered, binding mortar is used and additionally hollow bricks could replace 
the existing solid ones which are heavier. 

A common intervention applied on the Nepalese temples involves the removal of the existing bricks in the perimetry of the plinth 
base and replacing them with new masonry with higher strength characteristics (Fig. 5). Further information for the application of the 
intervention at the Silu Mahadev temple, which collapsed up to the plinth level during the Gorkha earthquake, are provided by GoN 
[52]. In detail, the outer shell of mud mortar plinth, two feet width is carefully removed and replaced by Lime Surkhi brick-wall 
without disturbing the inner core. This type of intervention has been practiced widely. Nevertheless, it affects the authentic style of 
the temples given that it is rather visible, while its efficacy has not been investigated yet. 

2.4. Examined retrofitting solutions 

In order to suggest a retrofit scheme on historical monuments the guidelines from ICOMOS ought to be taken into account [25]. 
Conservation, reinforcement and restoration of architectural heritage requires a multi-disciplinary approach. Any intervention on 
monumental structures is essential to be hidden or aesthetically pleasing, reversible and should comply with local material and 
construction methods. Moreover, no action should be undertaken without determining the likely benefit and harm to the architectural 
heritage. An incremental approach is suggested to be followed, beginning with a minimum level of intervention and the possible 
adoption of subsequent supplementary or corrective measures. 

Taking all the above into consideration, local engineers and architects working for the restoration of the temples in Nepal were 
engaged in different aspects of this study in order to implement a multi-disciplinary assessment and select retrofitting solutions to be 
numerically studied. In particular, it was decided to evaluate the effectiveness of low-cost, low-interference and reversible repair and 
strengthening options. Moreover, following the guidelines of ICOMOS [25], an incremental approach was investigated. The stiffening 
of floors and strengthening of the traditional timber peg connections was examined together with the reduction of the mass of the 
temple. These interventions will be referred herein as “stiffened-floors” and “reduced-mass” respectively. As mentioned in Section 2.3, 
a common intervention on the Nepalese temples is to remove the existing bricks in the perimetry of the plinth base and replace them 
with new material. It was deemed important to examine the effectiveness of this intervention which is implemented even though it is 
irreversible, while its benefits have not been proven yet. This intervention will be hereafter called “new-stairs”. 

3. Development of the computational model 

A three-dimensional finite element model (Fig. 6) based on the macro-modelling approach has been developed in the commercial 

Fig. 3. (a) The top tier of the Nepalese Pagodas usually sits on timber beams [49]. The traditional timber peg connections between the main 
masonry wall and the peripheral wall: (b) [48] and (c) [49]. 
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software ABAQUS [53] to analyse the seismic response of the Jaisedewal temple. The complex geometry of the temple was retrieved 
from drawings received by the Department of Archaeology in Nepal before collapse (Fig. 1) and was precisely incorporated in the 
numerical model. Due to the symmetry of the structure, loading was applied only along the horizontal (X-X’) direction (Fig. 6). The 
structural members of the temple, i.e. timber parts and masonry walls, were simulated with 3D solid continuum elements (Fig. 6). A 
sensitivity study was considered in order to determine the size of the elements that yields the best compromise between accuracy and 
computational cost. In particular, it was found that with element size in the range of 450 mm the computational cost remained 
manageable in terms of analysis time while no reduction in the accuracy of the results was observed. The top masonry walls of the 
temples do not directly sit on the underlying masonry core and this could affect the performance of the temple to earthquake loads. An 
example of this connection detail is displayed in Fig. 3a, while the representation of the connection in the developed model is shown in 
Fig. 6e. This type of construction creates a discontinuous loading path. In fact, there were numerous examples of temples which 
survived the earthquake, but the top part collapsed (Fig. 7) [54,55]. Thus, special care was given to accurately reproduce this type of 
connection in the numerical model (Fig. 6). The timber elements were modelled as linear elastic while the masonry walls were 
modelled with nonlinear elements based on the Concrete Damage Plasticity (CDP) constitutive law [53]. This nonlinear constitutive 
law is suitable for the analysis of quasi-brittle materials, such as unreinforced masonry (URM), and to reproduce the main failure 
mechanisms of masonry i.e., cracking in tension and crushing in compression. This numerical approach has been used extensively to 
simulate historical URM structures [50,56–59]. The CDP constitutive law assumes different yield strength in tension and compression 
and stiffness degradation is incorporated in the post-yield phase. The degradation of the elastic stiffness is characterized by two 
damage variables, dc and dt for compression and tension respectively, and their evolution is a function of the plastic strains. If E0 is the 
initial (undamaged) elastic stiffness of the material, the stress–strain (σ − ε) relations under uniaxial tension and compression are: 

Fig. 4. (a) Vegetation attracted by the soil the soil layer existing in the tiers of the Nepalese temples [46]. (b) Rotten timber elements observed 
during inspections of the roofs of the Pagodas [51]. (c) and (d) Local material and techniques are used for the restoration of the roofs [51]. 

Fig. 5. A common intervention on the Nepalese temples is to remove the existing bricks in the perimetry of the plinth base and replace them with 
new material. 
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Fig. 6. The developed initial model: (a) meshing, (b) vertical cross-section. (c) Horizontal cross section right above the top level of the peripheral 
wall. (d) and (e) display close-up details of the upper structure. Brickwork with mud mortar is shown with green colour and timber elements with 
grey colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. (a) Different cases of collapse of the top part of the Nepalese temples during the Gorkha earthquake that hit Nepal in 2015, (a) [54], (b) and 
(c) [55]. 
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σt = (1 − dt)E0(εt − εpl
t ) (1)  

σc = (1 − dc)E0(εc − εpl
c ) (2)  

where εpl is equivalent plastic strain; the subscripts ‘t’ and ‘c’ denote tension and compression respectively. The damage variables can 
take values from zero, representing the undamaged material, to one, which represents total loss of strength. In the developed model, 
the damage variables are up to 0.9. This is to allow for limited residual strength. Under uniaxial load the stress–strain response follows 
a linear elastic relationship until the value of the failure stress, σt0 and σc0 respectively for tension and compression is reached (Fig. 8). 
The failure stress corresponds to the onset of micro-cracking on the masonry walls. Beyond the failure stress, the formation of micro- 
cracks is represented macroscopically with a softening stress–strain response, which induces strain localization. The CDP model as-
sumes non-associated plastic flow rule. The flow potential used for this model is the Drucker-Prager hyperbolic function [53]. The 
parameters to define the flow potential, yield surface and viscosity are given in Table 1. In particular, σb0/σc0 is the ratio of initial 
equibiaxial compressive yield stress to initial uniaxial compressive yield stress; a default value equal to 1.16 was used. The parameter 
Kc denotes the ratio of the second stress invariant on the tensile meridian to that on the compressive meridian for the yield function. A 
default value of the Kc equal to 0.666 was used (Fig. 9). This value distorts the Drucker-Prager surface rendering it closer to the Mohr- 
Coulomb criterion. The dilation angle was assumed to be equal to 10 degrees. This is in accordance with the experimental [60] and 
numerical studies undertaken on similar structures [31,56,59]. The default flow potential eccentricity (ε) was taken equal to 0.1. This 
implies that the material has almost the same dilation angle over a wide range of confining stress values. Material models exhibiting 
softening behaviour and stiffness degradation often lead to severe convergence difficulties in implicit analysis programs. A common 
technique to overcome some of these convergence difficulties is the use of a visco-plastic regularization of the constitutive equations. 
Herein the viscosity parameter was 0.0005. 

Due to the lack of experimental studies regarding the investigated temple a literature review on similar structures was performed to 
define the material properties for the numerical model. Several researchers collected detailed assessment data to characterize the 
material properties and the overall state of the temples in the aftermath of the Gorkha earthquake. Ambient vibration measurements 
were obtained on three Nepalese temples for the calibration of the corresponding numerical models concluding in an estimation of 
modulus of elasticity for the mud-mortar in the brick masonry multi-tiered temples in the range of 400–800 MPa [61]. Wood et al. [40] 
calibrated the numerical model of a five-tiered Nepalese Pagoda based on ambient vibration studies to represent the pre-earthquake 
condition and a value of 485 MPa was used for modulus of elasticity which falls close to the lower limit proposed by the work of Jaishi 
et al. [61], that is 400 MPa. Similarly, Shrestha et al. [27], while studying the seismic response of the Jagannath Temple, had to re- 
evaluate their initial estimation of the modulus of elasticity from 509 MPa and decreasing it by 80% in the upper wall due to 
cracks, and by 50% in the remaining walls in order to match the experimentally obtained fundaments periods. UNESCO commissioned 
the development of a finite element model in order to get insight into the seismic vulnerability of the Gopinath temple in Hanuman 
Dhoka’s Durbar Square [49]. Though, initially a value of 800 MPa was used for the modulus of elasticity for the mud-mortar, the 
calibration of the model based on the ambient vibration measurements showed that a value of 150 MPa, well below the one originally 
used, was more realistic. Therefore, the modulus of elasticity of the Nepalese Pagodas could be classified in three levels: a) 150 MPa, b) 
400 MPa and c) 800 MPa. In this study the first two levels were investigated and will be referred to as ‘low’ and ‘higher’ properties. 
Particularly, for the case of the brick walls, the modulus of elasticity was taken equal to 150 MPa and 400 MPa for the “low” and 
“higher” cases. Moreover, the value of compressive and tensile strength for the brick walls were chosen equal to 1 MPa and 0.05 MPa 
respectively [49]. The ability of the masonry walls to carry tensile forces is rather limited [62]. It is thus reasonable to assume the 
tensile strength as only 5% of the compressive strength. The modulus of elasticity for timber was 12,500 MPa [49]. The density of the 
brick walls and the timber elements were selected as 1800 kg/m3 and 800 kg/m3 respectively as proposed by [49,63]. The mass of the 
roof system (tiles, soil layer and timber members) was estimated in accordance with Nienhuys [46]. A mass of 1500 kg was assigned at 
the top of the structure to account for the decorative members at that level (Fig. 1a). The density of the tiles and the soil layer beneath 
was assumed equal to 1400 kg/m3. The material properties used for the development of the model are shown in Table 2. The masses of 
the three tiers were incorporated in the model as extra masses at the top of the masonry walls where the roofs were mounted to. 

Fig. 8. The response of Concrete Damage Plasticity constitutive law to uniaxial loading in (a) tension, and (b) compression.  
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The developed model will be referred to as “retrofitted model” or “initial model” whether any intervention has been applied to the 
upper structure of the temple or not, respectively. In particular, the initial model corresponds to the condition of the Jaisedewal temple 
prior to the Gorkha earthquake without any intervention on the upper structure. For this case, the wooden slabs were modelled as 
flexible providing limited diaphragmatic action to the structure (Fig. 6). The timber pegs that connect the peripheral walls with the 
main masonry core were also included in the numerical simulation (Fig. 6). As explained in Section 2.4, the interventions examined 
were namely stiffened-floors, reduced-mass and new-stairs. When the intervention stiffened-floors was applied, the floors were 
considered to be rigid enough to provide diaphragmatic action at the floor levels (Fig. 10a and b). Moreover, wooden planks were 
added to connect the main masonry core with the peripheral wall aiming to exclude the concentration of stresses around the con-
nections of the existing timber pegs (Fig. 10a and b). As described in Section 2.3, the intervention of the new stairs is realized by 
replacing the existing material (that is mud mortar masonry) in the perimetry of the plinth base with new material (e.g. Lime Surkhi 
brick-wall [52]). This was numerically implemented by considering the modulus of elasticity of the stairs at the perimetry of the plinth 
base as 1000 MPa (Fig. 10d), which is higher that the values assigned to the rest of the plinth and the temple, which is 150 MPa or 
400 MPa. The reduced-mass intervention was implemented by considering a 60% mass reduction of the roofs as per the instructions of 
Nienhuys [46]. 

Modal, pushover and time-history analyses were performed to assess the seismic response of the structure. The reference models for 
low material properties of the upper structure are the Initial_E150_2 and Retrofitted_150_2 and for higher properties are Initial_E400_2 
and Retrofitted_E400_2 where 150 and 400 refer to the low and high modulus of elasticity respectively. Different modelling config-
urations of these reference models were developed in order to understand better the influence of the existence of the plinth base and 
the two further interventions (that is new-stairs and reduced-mass). All the different modelling configurations are reported in Table 3. 

4. Modal analysis 

Firstly, modal analyses were performed for the initial and retrofitted models to investigate their dynamic characteristics. The 
influence of the material properties of the masonry walls (that is low or higher) and the simulation of the plinth base on the dynamic 

Table 1 
The main parameters for the Concrete Damage Plasticity model.  

Dilatation angle [◦] Eccentricity σb0/σc0 Kc Viscosity 

10 0.1 1.16 0.666 0.0005  

Fig. 9. Yield surfaces in the deviatoric plane, corresponding to different values of Kc [53]. C.M.: compressive meridian and T.M.: tensile meridian.  

Table 2 
Material properties used for the numerical models developed. E: modulus of elasticity, v: Poisson’s ratio, fc: compressive strength and ft: tensile 
strength.   

E [MPa] v d [kg/m3] fc [MPa] ft [MPa] References 

Mud-mortar brick masonry 150–400 0.24 1,800 1 0.05 [49,61,63] 
Timber 12,500 0.3 800 – – [49]  
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characteristic of the temple were investigated. 
The periods of vibration of the first ten modes as calculated for different configurations of the initial and the retrofitted models are 

presented in Fig. 11. For all the different configurations examined, it was found that the first four modes were translational in the two 
horizontal directions of the temple, that is x and y (see Fig. 6a for a definition of the axes), while the fifth was torsional. The rest modes 
were local. It is noted that for the retrofitted models, the mode shapes did not alter significantly, but the obtained periods decreased up 
to 30%. Similarly, when the plinth base was ignored in the model, the first period of the temple reduced by approximately 10% but the 
type of the first ten modes did not change in comparison to the models containing the plinth base. Furthermore, the obtained periods, 
when higher material properties were considered, were profoundly reduced in comparison to the analyses with low material properties 
(see Fig. 11). 

The first period of vibration for the initial (Initial_E150_2) and retrofitted (Retrofitted_E150_2) models, when low material prop-
erties were considered and the plinth base was modelled, were 0.76 s and 0.58 s respectively. The first mode of these two models is 
shown in Fig. 12. For the initial model Initial_E150_2, the peripheral walls tend to deform out-of-plane (OOP) due to the limited 
capacity of the wooden beams that connect the peripheral wall to the main masonry core. Consequently, this connection is flexible. The 
retrofitted model Retrofitted_E150_2 shows an enhanced behaviour when the first mode shape was examined (Fig. 12b). The pe-
ripheral wall moves along with the main core of the structure and the tendency for OOP deformations observed in the initial structure 
(Fig. 12a) has now been diminished. 

Fig. 10. The developed retrofitted model with stiffened-floors: (a) cross-section and (b) detail of the upper structure. (c) Horizontal cross section 
right above the top level of the peripheral wall (d) The retrofitted model with the interventions stiffened-floors and new-stairs implemented. 
Brickwork with mud mortar is shown with green colour. Timber elements existing at the Jaisedewal temple before any intervention are shown with 
grey colour while timber elements added in the retrofitted model are displayed with yellow colour. Red colour denotes the new-stairs at the 
perimetry of the plinth base replaced with new material. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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5. Pushover analysis 

In order to better understand the nonlinear response of the case study to the earthquake loads, nonlinear static analysis with 
incrementally increasing horizontal loads was performed. The loads were applied proportionally to the mass of the structure 
attempting to imitate the horizontal forces of the seismic excitation. The horizontal load was increased until the structure attained its 
capacity in order to obtain the failure patterns of the temple. The pushover analysis was undertaken to evaluate whether it can provide 
reliable assessment of the Nepalese Pagodas which are tall structures with complex geometry. The findings from the pushover analysis 
were compared with the ones from the nonlinear time-history analysis in Section 6. 

Fig. 13 shows the failure patterns for the initial (Initial_E150_2) and retrofitted (Retrofitted_E150_2) models, when low material 
properties are considered and the plinth base is modelled, as obtained from the pushover analysis. The results are presented for 0.5% 
drift ratio at the top of the main core, which is the value of drift ratio that corresponds to the yield limit for URM structures as defined in 
[64]. 

At the Initial_E150_2 model, concentration of damages occurs around the timber pegs which connect the main core to the pe-
ripheral wall (Fig. 13a). Due to the lack of diaphragmatic action at the level of the timber floors, the structure experiences extensive 
damage at the corners of the peripheral walls. Furthermore, the failure of the timber joist connections leads to OOP deformations in the 
middle of the peripheral wall, responsible for the development of cracks at these areas. Consequently, it can be inferred that the 

Table 3 
The different modelling configurations examined.  

Reference Name Plinth 
Base 

Upper Structure Properties 
[MPa] 

Plinth Base Properties 
[MPa] 

Interventions max Drift Ratioa 

[%] 

Initial_E150_1 No 150 – – 1.17 
Initial_E150_2 Yes 150 150 – 1.30 
Initial_E400_1 No 400 – – 0.41 
Initial_E400_2 Yes 400 150 – 0.56 
Initial_E400_3 Yes 400 150 New-Stairs 0.44 
Retrofitted_150_1 No 150 – Stiffened-Floors 0.30 
Retrofitted_150_2 Yes 150 150 Stiffened-Floors 0.47 
Retrofitted_150_3 Yes 150 75 Stiffened-Floors 0.61 
Retrofitted_150_4 Yes 150 150 Stiffened-Floors / New-Stairs 0.36 
Retrofitted_150_5 Yes 150 150 Stiffened-Floors / Reduced- 

Mass 
0.40 

Retrofitted_E400_1 No 400 – Stiffened-Floors 0.12 
Retrofitted_E400_2 Yes 400 400 Stiffened-Floors 0.18 
Retrofitted_E400_3 Yes 400 150 Stiffened-Floors 0.30 
Retrofitted_E400_4 Yes 400 75 Stiffened-Floors 0.43 
Retrofitted_E400_5 Yes 400 400 Stiffened-Floors / New-Stairs 0.17 
Retrofitted_E400_6 Yes 400 400 Stiffened-Floors / Reduced- 

Mass 
0.15  

a Maximum drift ratio recorded at the top of the main core during the time-history analysis (see Section 6). 

Fig. 11. The first ten modes as calculated for different configurations of: (a) the initial and (b) the retrofitted models.  
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damages on the initial structure originate mostly from local effects. Similar failure patterns were observed in all the investigated 
modelling configurations of the initial model. 

Fig. 13b shows the failure patterns for the retrofitted model Retrofitted_E150_2 as obtained from the pushover analysis for 0.5% 
drift ratio at the top of the main core. The main damages manifest as diagonal cracks on the main core. The tendency of the peripheral 
wall for OOP deformations has been eliminated and the cracks at the corners of the peripheral walls are limited. A limitation of the 
retrofitted structure is that the wooden pillars participate more in carrying horizontal loads, thus higher stresses are transmitted to 
their foundation causing the formation of cracks. Consequently, the foundation of the wooden pillars needs to be checked if it can 
safely carry these extra horizontal loads. After the retrofit has taken place, the whole temple follows the deformed shape of the main 
masonry core and the impact of local failure modes is limited. 

6. Nonlinear time-history analysis 

With the aim to further assess the seismic response of the Jaisedewal temple time-history analyses were performed. It is noted that 
the Jaisedewal temple collapsed during the Gorkha earthquake and thus the seismic records obtained from this earthquake were 
considered for the time-history analyses. 

The epicentre of the earthquake was near the Gorkha region, 80 km from the Kathmandu Valley. Seismic records from the Kath-
mandu Valley came from the rock site (KTP station) as well as from the sedimentary sites TVU, PTN, THM, and KATNP [65]. The 
recorded waveforms produced significant spectral accelerations in the range of short periods (up to 1 s) but also for longer periods (i.e. 
up to 6 s) (Fig. 14a). The largest maximum peak ground acceleration (PGA = 0.25 g) was recorded at the EW component of the KTP 

Fig. 12. The first mode shape of the (a) initial (Initial_E150_2) and (b) retrofitted (Retrofitted_E150_2) models with mass participation ratios in the x 
direction (see Fig. 6a for the definition of x axis) 51% and 57% respectively. For each model a perspective view and a cross section at the top level of 
the peripheral wall are demonstrated in left and right respectively. The OOP motion of the peripheral wall is denoted with a red dashed line. The 
contours demonstrate the normalized modal displacement. 
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station. The response spectra of the main records of the Gorkha earthquake are presented in Fig. 14a. The record coming from the EW 
component of the TVU station [65] was chosen for the time-history analyses performed in this work (Fig. 14b). The distance between 
the TVU station and the Jaisedewal temple is 3 km. The chosen record has PGA of 0.23 g and more importantly, it produces spectral 
accelerations of up to approximately 0.8 g at the period of 0.7 s, which coincides with the fundamental period of the Jaisedewal temple. 
It is highlighted that the long duration of the Gorkha earthquake containing multiple pulses (Fig. 14b) was extremely destructive for 
the Nepalese monuments. As will be shown below, the Jaisedewal temple reached its capacity in the very first pulses of the excitation, 
while the next pulses pushed the structure even further making the total collapse inevitable. 

During the time-history analysis, the initial model (Initial_E150_2) suffers excessive damage from the first seconds of the motion 
(Fig. 15b). Damage occurs to almost the entire structure and accumulates during the earthquake until collapse. It is underlined that 
excessive relative deformation is observed between the main masonry core and the peripheral wall. This behaviour points out the lack 
of proper connection among the structural elements which leads to OOP deformations and possible toppling of the peripheral wall. 

Fig. 13. The distribution of tensile damage dt for cross-section (top) and perspective view (bottom) of the deformed structure when drift ratio 0.5% 
is attained during the pushover analysis for (a) the initial (Initial_E150_2), and (b) the retrofitted (Retrofitted_E150_2) models. 

Fig. 14. (a) The response spectra corresponding to the horizontal components of the main records of the Gorkha earthquake Nepal (April 25, 2015), 
and (b) the record used for the time-history analysis. 
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Moreover, an important observation is that the top part of the structure experiences excessive nonlinearity which leads to high drift 
ratios. In particular, the top of the structure is extremely vulnerable to earthquake vibrations since it does not sit on the main masonry 
core but is supported by the timber beams. Such failure mode has also been observed in different temples during the Gorkha earth-
quake (Fig. 7) [54,55]. It is noted that the pushover analysis failed to capture this type of failure which highlights the necessity to 
perform time-history analysis to accurately evaluate the seismic response of the investigated structural typology. Similar findings were 
obtained for the initial model with higher material properties (Initial_E400_2) and for the models without the plinth base (Ini-
tial_E150_1 and Initial_E400_1); excessive nonlinearity in the temple and thus collapse is inevitable (Fig. 15), while the corresponding 
drift ratio time-histories are exhibited in Fig. 16. In particular, the maximum drift ratio at the top of the main core for the initial model 
with low (Initial_E150_2) and higher (Initial_E400_2) material properties reaches 1.30% and 0.56% respectively. Consequently, the 
initial model of the temple without any enhancements reveals the high vulnerability of the temple in strong seismic excitations such as 
the Gorkha earthquake. The numerical results coincide with the actual behaviour of the Jaisedewal temple during the Gorkha 
earthquake, which led to the collapse of the structure. 

As a further step, the initial model with the new-stairs intervention implemented (Initial_E400_5) was analysed. This model rep-
resents the temple without any interventions at its upper structure while interfering only with the plinth base. In this case, as well, the 
collapse found to be inevitable (Fig. 15e). Therefore, if interventions are applied only to the plinth base (that is the new-stairs 
intervention), the seismic response of the temple is not enhanced and further retrofit measures at the upper structure should be 
considered. 

The deformed shape of the retrofitted model with low properties (Retrofitted_E150_2) at the end of the time-history analysis is 
displayed in Fig. 17b. It is noted that even after the retrofit has taken place, the top part of the structure deforms excessively and 
collapse of that part of the structure seems highly likely. Nevertheless, the response of the rest of the structure has been enhanced and 
the collapse of the temple is avoided. In particular, the structure presents a box-type behaviour with all the structural elements 
following the motion of the main core. Therefore, concentration of stresses and OOP deformations are less profound, and the cracks 
caused by these local failure modes are rather limited. In particular, the OOP deformation of the peripheral wall is zero at the ret-
rofitted structure. Overall, the structure exhibits regions of tensile failures which implies that cracks should be expected on the 
structure during a similar seismic excitation. The drift ratio of the main core for the Retrofitted_E150_2 model is exhibited in Fig. 18b 
and the maximum recorded drift ratio is 0.47%, a reduction of 64% in comparison to the Initial_E150_2 model. The analysis with the 
Retrofitted_E150_2 model terminates before the whole record is applied. This is due to excessive nonlinearities at the top part of the 

Fig. 15. The distribution of tensile damage dt for cross-section of the deformed structure during the time-history analysis for different configu-
rations of the initial model. (a) and (b) are given for time t = 35 s, while (c), (d) and (e) correspond to the end of the time-history analysis. Epl refers 
to the modulus of elasticity assigned to the plinth base. The new-stairs intervention is implemented in (e). 
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structure. For the retrofitted model with higher properties (Retrofitted_E400_2), the collapse of the temple is avoided as well (Fig. 19b) 
and the recorded drift ratio at the top of the main core reduces by 68% with respect to the Initial_E400_2 model. Nevertheless, regions 
with cracks can still be observed along the structure but are of limited extent. 

The deformed shape of the retrofitted models without the plinth base (Retrofitted_E150_1 and Retrofitted_E400_1) is presented in 
Fig. 17a and Fig. 19a respectively. It can be concluded that when the plinth base is neglected, the inflicted nonlinearities are less 
profound and consequently the damage on the temple is underestimated leading to an unrealistic assessment of the monument. 

As explained in Section 2.1, usually the plinth base is of lower material properties in comparison to the upper structure. In order to 
investigate the impact of the properties of the plinth base to the seismic response of the monument different scenarios were examined 
where the plinth base is of lower properties with respect to the temple. More specifically, for the retrofitted model with low properties, 
the Retrofitted_E150_3 model was developed. In this model the modulus of elasticity for the temple and the plinth base are 150 MPa 
and 75 MPa respectively. Indeed, the response of the structure changes when the properties of the plinth base deteriorate. Specifically, 
excessive damage takes place along the structure (Fig. 17c) and the maximum drift ratio is 0.61% (Fig. 18c). It is mentioned that the 
analysis with the Retrofitted_E150_3 model terminates prematurely because of excessive damage at the top part of the structure. 

The influence of the properties of the plinth base to the seismic response of the monument was analysed also for the retrofitted 
model with higher properties. For this purpose, two models were developed, Retrofitted_E400_3 and Retrofitted_E400_4, with the 
modulus of elasticity of the plinth base being 150 MPa and 75 MPa respectively. It is reminded that the modulus of elasticity of the 
temple for these two models is 400 MPa. As a matter of fact, the damage extend to a greater range at the temple as the properties of the 
plinth base drop (Fig. 19c and d). In addition, the drift ratio increases from 0.18% (Retrofitted_E150_2) to 0.30% (Retrofitted_E400_3) 
and 0.43% (Retrofitted_E400_4) (Fig. 20c and d). 

At this point the effectiveness of the interventions new-stairs and reduced-mass was assessed. In particular, the application of 
retrofitted plinth base does not seem to have any significant impact at the response of the temple for neither of the retrofitted models 
with low and higher properties (Retrofitted_E150_4 and Retrofitted_E400_5) (Fig. 17d and Fig. 19e). On the other hand, the reduced- 
mass intervention is found to enhance the seismic response of the temple (Retrofitted_E150_5 and Retrofitted_E400_6) (Fig. 17e and 
Fig. 19f). In particular, the reduction of the mass of the roofs does not significantly affect the plastification along the structure but the 
damages at the top part are less profound and collapse might be prevented. When the interventions new-stairs and reduced-mass were 
integrated in the retrofitted models, the additional reduction of the drift ratio at the top of the main core is only limited, that is 2–8%. 

7. Discussion 

Based on the results from the numerical analyses, it was found that the existence of flexible connections along the Jaisedewal 
temple needs to be taken into consideration during the modelling in order to retrieve a realistic simulation of the seismic behaviour of 
the structure. Modelling the top part of the temples, that typically sits on timber elements and is not connected directly to the rest of the 

Fig. 16. Time-history of drift ratio at the top of the main core for different configurations of the initial model.  
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main masonry core, is of paramount importance in order to obtain a precise evaluation of the damage patterns of the structure. The 
time-history analysis revealed the weak points of the initial (i.e. without any strengthening) structure. The capacity of the temple is 
exceeded during the very first seconds of the applied excitation. The damage propagates along the whole structure during the next 
seconds of the record and the collapse is considered inevitable. A retrofitting scheme to improve the seismic capacity of the structure is 
regarded essential. 

The retrofitted model presented an enhanced seismic response of the Jaisedewal temple. Nevertheless, the effectiveness of the 
interventions depends on the strength of materials of the temple and the plinth base. In particular, for the temple with higher me-
chanical strength properties, the proposed retrofit reduced the inflicted damage to a minimum level. On the other hand, for the 
structure with low strength properties, the applied retrofit prevented the collapse of the temple but still damage is expected for a 
similar seismic excitation. Special care should be given to the top part of the structure that is not directly connected with the main core 
and was proven to be extremely vulnerable to seismic motion. For the retrofitted models with stiffened-floors, the collapse of the top of 
the structure is not prevented and further appropriate interventions ought to be examined. This result is in good agreement with in situ 
inspections of Nepalese monuments after the 2015 Gorkha earthquake. In particular, the top tier roof of the South Taleju Tower, even 
though it was earlier stiffened in a previous repair and restoration campaign that took place in the period 2013–2015, toppled during 
the seismic excitation of April 25, 2015 [51] (Fig. 21). 

Regarding the response of the plinth base under the seismic excitation, no damage was observed in the core of the plinth in the time- 
history analyses of the initial and the retrofitted model. Failure occurs only at the connections of the wooden pillars with the base. This 
behaviour is confirmed from in situ inspections of the Nepalese Pagodas [29,49]. Even in the cases where temples collapsed, no 
damage had occurred at the plinth base. Nevertheless, although no damage takes place at the plinth itself, the properties of the plinth 
affect the response of the upper structure as shown from the time-history analyses. In particular, the response of the temple severely 
deteriorates, and damages extend to a greater range of the temple as the properties of the plinth base drop. When reduced material 
properties are considered for the plinth base with respect to the temple, the drift ratio at the top of the main core increased by 30% 
(Retrofitted_150_3), 67% (Retrofitted_E400_3) and 139% (Retrofitted_E400_4). Consequently, special attention is needed to be given to 
evaluate the properties of the plinth and the investigations should not be limited only to the assessment of the upper structure. 
Moreover, the incorporation of the plinth base in the numerical model alters the periods of the structure. Thus, when extracting the 
elastic properties of the temple based on ambient vibrations, the plinth base is suggested to be included in the numerical model, 

Fig. 17. The distribution of tensile damage dt for cross-section of the deformed structure during the time-history analysis for different configu-
rations of the retrofitted model with low material properties for the upper structure. (b) and (c) are given for time t = 35 s, while (a), (d) and (e) 
correspond to the end of the time-history analysis. Epl refers to the modulus of elasticity assigned to the plinth base. The new-stairs and reduced-mass 
interventions are implemented in (d) and (e) respectively. 
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otherwise the modes of the structure might not be calculated appropriately. 
As explained in Section 2.3, the new-stairs intervention is a common practise when rehabilitation schemes are considered for 

Nepalese Pagodas. Herein, it was numerically shown that its benefits to the structure are insignificant. Taking into consideration that 
this intervention affects the authentic style of the monument and is visible, it can be concluded that its drawbacks outperform any 
advantages that it has to offer. Consequently, this intervention is recommended to be dealt with scepticism and perhaps could be 
avoided. 

The mass-reduction of the floors of the temple does not significantly affect the plastification along the structure but the damages at 
the top part are less profound and the collapse might be prevented. By reducing the mass at the top of the temple, the seismic load 
transmitted there is reduced and thus the inflicted damage decreases. Thus, it can be inferred that the mass-reduction intervention 
could be implemented possibly in conjunction with extra measures to further secure the top part of the temple. 

The novel structural analysis tools which were used in this study extended traditional methods and highlighted the mechanisms 
that have allowed the surviving monuments to avoid structural collapse and destruction during strong earthquakes. Also, by better 
understanding the seismic performance of historic Nepalese pagodas, better decisions on the conservation and rehabilitation tech-
niques could be made. There is much to learn from the forgotten architectural and structural principles developed by the past century 
builders. The manuscript showcases a clear strategy on the numerical approaches to be used for evaluating the seismic safety of historic 
monuments in order to prioritise rehabilitation or strengthening and reduce risk to life and livelihoods. It is clear that monuments and 
historic buildings represent our historic heritage, the witnesses of our history. We have inherited them from the previous generations, 
and it is our duty to preserve and to transfer them to the future generations. However, the question arises on whether to repair and 
retrofit them with the aim of preserving the cultural heritage and archaeology or to repair and retrofit them to withstand severe 
earthquakes and save human lives. This is a multi-dimensional question which requires the assessment of the socio-economic status of 
a region. From the present study, it became essential to develop conservation strategies and policies based on scientific evidence before 
we proceed with the restoration of cultural heritage assets in Nepal. Such strategies should involve a multi-disciplinary approach from 
engineers, archaeologists, economists, social scientists, etc. Furthermore, although this study has mainly focused on Jaisedewal 
Temple, lessons learned here can be transferred to other temples in the region or even to other tall and slender structures such as 
historic towers and minarets. 

8. Conclusions 

During the strong 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, several historical monuments suffered extensive 
damage and numerous temples collapsed. For the Nepalese Pagodas, although a significant amount of work has been done to 

Fig. 18. Time-history of drift ratio at the top of the main core for different configurations of the retrofitted model with low material properties for 
the upper structure. 
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understand their seismic vulnerability, investigations on repair and retrofit options to safeguard these structures from future earth-
quakes is lacking. In this study, the effectiveness of low-cost, low-interference and reversible repair and strengthening options for the 
Nepalese Pagodas was evaluated. New materials and construction techniques have been developed since the temples were first built 
centuries ago. Local engineers and architects working for the restoration of the temples in Nepal were engaged in different aspects of 
this study to implement a multi-disciplinary assessment and recommend repair and retrofitting solutions which were numerically 
investigated to assess their effectiveness to withstand large in magnitude earthquakes. These technical recommendations are based on 
the principles of earthquake engineering and involve reducing the mass of the structure; improve the bonding of the structural ele-
ments and connections between structural components; as well as improve the overall resistance of the structure to lateral forces. The 
three-tiered Jaisedewal temple, typical example of the Nepalese architectural style, was chosen as a case study. A nonlinear three- 
dimensional finite element model of the Jaisedewal temple was developed in the commercial software ABAQUS based on the 
macro-modelling approach. Also, modal, pushover and time-history analyses of the temple were performed. The plinth base, that the 
Nepalese Pagodas usually sit on, has attracted little research and thus its influence on the seismic response of the temple was inves-
tigated herein. From the results analysis it was found:  

• Pushover analysis cannot simulate the real kinematic nature of a seismic excitation but can provide a rough estimation of some 
distinctive failure patterns. In particular, pushover analysis was unable to capture the collapse of the top part of the Jaisedewal 
temple.  

• Time-history analysis was deemed essential to accurately reproduce the response of the Jaisedewal temple during a seismic 
excitation.  

• The exposed foundation or otherwise called the plinth base influences the dynamic response of the structure. Even though no 
damage appears at the core of the plinth base, its strength influences the seismic response of the temple. Thus, the plinth base is 
highly recommended to be incorporated in the numerical simulation. Also, special attention should be given for the evaluation of 
the mechanical characteristics of the plinth and the investigations should not be limited only to the assessment of the upper 
structure.  

• Stiffening the connections along the temple was found to enhance the seismic behaviour of the structure and a 64% to 68% 
reduction of the drift ratio on the top of the main core was achieved. 

Fig. 19. The distribution of tensile damage dt for cross-section of the deformed structure at the end of the time-history analysis for different 
configurations of the retrofitted model with higher material properties for the upper structure. Epl refers to the modulus of elasticity assigned to the 
plinth base. The new-stairs and reduced-mass interventions are implemented in (e) and (f) respectively. 
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• Currently, for the reconstruction of the temples, the perimetry of the exposed foundations is rebuild with new bricks bonded 
together with high strength mortar. Herein, it was numerically shown that performing such intervention does not improve the 
seismic vulnerability of the structure; the drift ratio decreased only by 2% to 8%. Now, taking into consideration that this 

Fig. 20. Time-history of drift ratio at the top of the main core for different configurations of the retrofitted model with higher material properties for 
the upper structure. 

Fig. 21. The top tier roof of the South Taleju Tower toppled during the 2015 Gorkha earthquake [51].  
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intervention affects the authentic style of the monument and is visible, it can be concluded that its drawbacks outperform any 
advantages that it has to offer. Consequently, this intervention is recommended to be avoided.  

• While reducing the masses at the roof of the Jaisedewal temple only slightly enhanced the overall response of the monument, i.e. 
the drift ratio at the top of the main core was reduced by 5%, this intervention decreased the inflicted damage at the top part of the 
structure. Thus, this intervention should be implemented in conjunction with other measures to further strengthen the top part of 
the temple. 

Overall, the Nepalese Pagodas are historical monuments characterised by peculiarity and architectural significance. Therefore, to 
develop a holistic scheme for their seismic intervention, further studies need to be undertaken. These studies should mainly focus on 
understanding the soil characteristics of the area, the soil-structure interaction phenomena during strong earthquakes, performing 
destructive and non-destructive tests to understand the mechanical response of the timber beams, masonry units and mortar joints etc. 
Moreover, educating and preparing the local engineers, planners and policy makers is essential so that they take control of the 
reconstruction processes and heritage protection. 
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