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Abstract
1. Despite widespread recognition of its great promise to aid decision- making in envi-

ronmental management, the applied use of metabarcoding requires improvements 
to reduce the multiple errors that arise during PCR amplification, sequencing and 
library generation. We present a co- designed wet- lab and bioinformatic workflow 
for metabarcoding bulk samples that removes both false- positive (tag jumps, chi-
meras, erroneous sequences) and false- negative (‘dropout’) errors. However, we 
find that it is not possible to recover relative- abundance information from ampli-
con data, due to persistent species- specific biases.

2. To present and validate our workflow, we created eight mock arthropod soups, all 
containing the same 248 arthropod morphospecies but differing in absolute and 
relative DNA concentrations, and we ran them under five different PCR conditions. 
Our pipeline includes qPCR- optimized PCR annealing temperature and cycle num-

ber, twin- tagging, multiple independent PCR replicates per sample, and negative and 
positive controls. In the bioinformatic portion, we introduce Begum, which is a new 
version of DAMe (Zepeda- Mendoza et al., 2016. BMC Res. Notes 9:255) that ignores 
heterogeneity spacers, allows primer mismatches when demultiplexing samples and 
is more efficient. Like DAMe, Begum removes tag- jumped reads and removes se-

quence errors by keeping only sequences that appear in more than one PCR above 
a minimum copy number per PCR. The filtering thresholds are user- configurable.

3. We report that OTU dropout frequency and taxonomic amplification bias are 
both reduced by using a PCR annealing temperature and cycle number on the low 
ends of the ranges currently used for the Leray- FolDegenRev primers. We also 
report that tag jumps and erroneous sequences can be nearly eliminated with 
Begum filtering, at the cost of only a small rise in dropouts. We replicate published 
findings that uneven size distribution of input biomasses leads to greater dropout 
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1  | INTRODUC TION

DNA metabarcoding enables rapid and cost- effective identification 
of taxa within biological samples, combining amplicon sequencing 
with DNA taxonomy to identify multiple taxa in bulk samples of 
whole organisms and in environmental samples such as water, soil and 
faeces (Deiner et al., 2017; Taberlet, Coissac, Hajibabaei, et al., 2012; 
Taberlet, Coissac, Pompanon, et al., 2012). Following initial proof- 
of- concept studies (Fonseca et al., 2010; Hajibabaei et al., 2011; Ji 
et al., 2013; Thomsen et al., 2012; Yoccoz, 2012; Yu et al., 2012) has 
come a flood of basic and applied research and even new journals 
and commercial service providers (Alberdi et al., 2018; Callahan 
et al., 2016; Murray et al., 2015; Zepeda- Mendoza et al., 2016; 
Zizka et al., 2019). Two recent and magnificent surveys are Taberlet 
et al. (2018) and Piper et al. (2019). The big advantage of metabarcod-

ing as a biodiversity survey method is that with appropriate controls 
and filtering, metabarcoding can estimate species compositions and 
richnesses from samples in which taxa are not well- characterized a 
priori or reference databases are incomplete or lacking. However, this 
is also a disadvantage because we must first spend effort to design 
reliable and efficient metabarcoding pipelines.

Practitioners are thus confronted by multiple protocols that have 
been proposed to avoid and mitigate the many sources of error that 
can arise in metabarcoding (Table 1). These errors can result in false 
negatives (failures to detect target taxa that are in the sample, ‘drop-

outs’), false positives (false detections of taxa), poor quantification of 
biomasses and/or incorrect assignment of taxonomies, which also re-

sults in paired false negatives and positives. As a result, despite rec-

ognition of its high promise for environmental management (Abrams 
et al., 2019; Bush et al., 2019; Cordier et al., 2020; Hering et al., 2018; 
Ji et al., 2013; Piper et al., 2019), the applied use of metabarcoding 
is still getting started. A comprehensive understanding of costs, the 
factors that govern the efficiency of target taxon recovery, the degree 
to which quantitative information can be extracted and the efficacy 
of methods to minimize error is needed to optimize metabarcoding 
pipelines (Axtner et al., 2019; Hering et al., 2018; Piper et al., 2019).

Here we consider one of the two main sample types used in 
metabarcoding: bulk- sample DNA (the other type being environ-

mental DNA, Bohmann et al., 2014). Bulk- sample metabarcod-

ing, such as mass- collected invertebrates, is being studied as a 
way to generate multi- taxon indicators of environmental quality   

(Hering et al., 2018; Lanzén et al., 2016), to track ecological restoration 
(Barsoum et al., 2019; Cole et al., 2016; Fernandes et al., 2018; Wang 
et al., 2019), to detect pest species (Piper et al., 2019) and to under-
stand the drivers of species- diversity gradients (Zhang et al., 2016).

We present a co- designed wet- lab and bioinformatic pipe-

line that uses qPCR- optimized PCR conditions, three independent 
PCR replicates per sample, twin- tagging, and negative and positive 
controls to: (a) remove sequence- to- sample misassignment due to 
tag- jumping, (b) reduce dropout frequency and taxonomic bias in 
amplification and (c) reduce false- positive frequency.

As part of the pipeline, we introduce a new version of the DAMe 

software package (Zepeda- Mendoza et al., 2016), renamed Begum 

(Hindi for ‘lady’), to demutiplex samples, remove tag- jumped se-

quences and filter out erroneous sequences (Alberdi et al., 2018). 
Regarding the latter, the DAMe/Begum logic is that true sequences are 
more likely to appear in multiple, independent PCR replicates and in 
multiple copies than are erroneous sequences (indels, substitutions, 
chimeras). Thus, erroneous sequences can be filtered out by keeping 
only sequences that appear in more than one (or a low number of) 
PCR replicate(s) at above some minimum copy number per PCR, albeit 
at a cost of also filtering out some true sequences. Begum improves 
on DAMe by ignoring heterogeneity spacers in the amplicon, allowing 
primer mismatches during demultiplexing, and by being more effi-
cient. We note that this logic is less applicable to species represented 
by trace DNA, such as in water samples, where low concentrations of 
DNA template are more likely to result in a species truly appearing in 
only one PCR (Harper et al., 2018; Piaggio et al., 2014).

To test our pipeline, we created eight ‘mock’ arthropod soups, each 
consisting of the DNA of the same 248 arthropod taxa mixed together in 
the laboratory and differing in absolute and relative DNA concentrations, 
ran them under five different PCR conditions and used Begum to filter out 
erroneous sequences (Figure 1). We then quantified the efficiency of spe-

cies recovery from bulk arthropod samples, as measured by four metrics:

1. the frequency of false- negative OTUs (‘dropouts’, i.e. unrecov-

ered input species),
2. the frequency of false- positive OTUs (sequences not from the 

input species),
3. the recovery of species relative- abundance information (i.e. does 

OTU size [number of reads] predict input genomic DNA amount 
per species?) and

frequency and that OTU size is a poor predictor of species input biomass. Finally, 
we find no evidence for ‘tag- biased’ PCR amplification.

4. To aid learning, reproducibility, and the design and testing of alternative metabar-
coding pipelines, we provide our Illumina and input- species sequence datasets, 
scripts, a spreadsheet for designing primer tags and a tutorial.

K E Y W O R D S

bulk- sample DNA metabarcoding, environmental DNA, environmental impact assessment, 
false negatives, false positives, Illumina high- throughput sequencing, tag bias
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4. taxonomic bias (are some taxa more or less likely to be recovered?).

Highest efficiency is achieved by recovering all and only the input 
species, in their original frequencies. We show that with Begum fil-
tering, metabarcoding efficiency is highest with a PCR cycle number 
and annealing temperature at the low ends of the ranges currently 
used in metabarcoding studies, that Begum filtering nearly eliminates 
false- positive OTUs, at the cost of only a small absolute rise in false- 
negative frequency, that greater species evenness and higher con-

centrations reduce dropouts (replicating Elbrecht et al., 2017) and 
that OTU sizes are not reliable estimators of species relative abun-

dances. We also find no evidence for ‘tag bias’, which is the hypoth-

esis that the sample- identifying nucleotide sequences attached to 
PCR primers might promote annealing to some template- DNA se-

quences over others, exacerbating taxonomic bias in PCR (e.g. Berry 
et al., 2011; O'Donnell et al., 2016). All these results have important 
implications for using metabarcoding as a biomonitoring tool.

2  | MATERIAL S AND METHODS

In S06_Extended Methods, we present an unabridged version of this 
Methods section.

2.1 | Mock soup preparation

2.1.1 | Input species

We used Malaise traps to collect arthropods in Gaoligong Mountain, 
Yunnan province, China. From these, we selected 282 individuals 
that represented different morphospecies, and from each individual, 
we separately extracted DNA from the leg and the body. After clus-

tering, we ended up with two hundred and forty- eight 97%- similarity 
DNA barcodes, which we used as the ‘input species’ for the mock 
soups (S07_MTBFAS.fasta).

TA B L E  1   Four classes of metabarcoding errors and their causes. Not included are software bugs, general laboratory and field errors like 
mislabelling, sampling biases or inadequate sequencing depth

Main errors Possible causes References

False positives (OTU sequences in the 
final dataset that are not from target 
taxa)

Sample contamination in the field or laboratory Champlot et al. (2010) and De Barba 
et al. (2014)

PCR errors (substitutions, indels, chimeric sequences) Deagle et al. (2018)

Sequencing errors Eren et al. (2013)

Incorrect assignment of sequences to samples (‘tag jumping’) Esling et al. (2015) and Schnell et al. (2015)

Intraspecific variability across the marker leading to multiple 
OTUs from the same species

Virgilio et al. (2010) and Bohmann 
et al. (2018)

Incorrect classification of an OTU as a prey item when it was 
in fact consumed by another prey species in the same gut

Hardy et al. (2017)

Numts (nuclear copies of mitochondrial genes) Bensasson et al. (2001)

False negatives (‘Dropouts’, failure 
to detect target taxa that are in the 
sample)

Fragmented DNA leading to failure to PCR amplify Ziesemer et al. (2015)

Primer bias (interspecific variability across the marker) Clarke et al. (2014), Piñol et al. (2015) and 
Alberdi et al. (2018)

PCR inhibition Murray et al. (2015)

PCR stochasticity Piñol et al. (2015)

PCR runaway (loss of diversity caused by some sequences 
outcompeting others during PCR)

Polz and Cavanaugh (1998)

Predator and collector DNA dominating the PCR product and 
causing target taxa (e.g. diet items) to fail to amplify

Deagle et al. (2009) and Shehzad et al. (2012)

Too many PCR cycles and/or too high annealing temperature, 
leading to the loss of sequences with low starting DNA

Piñol et al. (2015)

Poor quantification of target species 
abundances or biomasses

PCR stochasticity Deagle et al. (2014)

Primer bias Piñol et al. (2019)

Polymerase bias Nichols et al. (2018)

PCR inhibition Murray et al. (2015)

Too many cycles in the metabarcoding PCR

Taxonomic assignment errors (a class of 
error that can result in false positives 
or negatives, depending on its nature)

Intraspecific variability across the marker leading to multiple 
OTUs with different taxonomic assignments

Clarke et al. (2014)

Incomplete reference databases
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2.1.2 | COI and genomic DNA quantification

To create the eight mock soups with different concentration even-

nesses of the 248 input species, we quantified DNA concentra-

tions of their legs and bodies, using qPCR and a reference standard 
curve on the QuantStudio 12K Flex Real- Time PCR System (Life 
Technologies, Singapore) with Leray- FolDegenRev primers (Leray 
et al., 2013; Yu et al., 2012). We then diluted each species to their 
target DNA concentrations (Tables 2; Table S3). After dilution, we 
also measured each species' genomic- DNA concentrations, to test 
whether species OTU size can predict species genomic DNA masses, 
which is a proxy measure for animal biomass.

2.1.3 | Creation of mock soups

We used 1.0 µl aliquots of the appropriately diluted leg and body 
DNA extracts of the 248 input species to create eight mock 
soups, achieving different profiles of COI- marker- concentration 

evenness: Hhml, hhhl, hlll and mmmm, where H, h, m and l repre-

sent four different concentration levels (Figure 1, Table 2). For 
instance, in the Hhml soups, approximately one fourth of the 
input species was added at each concentration level (H, h, m, l), 
whereas in the hlll soup, three quarters of the species were di-
luted to the low concentration level before being added. These 
soups thus represent eight bulk samples with different absolute 
DNA concentrations (leg vs. body) and species evennesses (Hhml, 
Hhml, hhhl, hhhl).

2.1.4 | Primer tag design

For DNA metabarcoding, we also used the Leray- FolDegenRev 
primer set, which has been shown to result in a high recovery rate 
of arthropods from mixed DNA soups (Alberdi et al., 2018; Leray 
et al., 2013), and we used OligoTag (Coissac, 2012) (Table S10) to 
design 100 unique tags of seven nucleotides in length in which no 
nucleotide is repeated more than twice, all tag pairs differ by at 

F I G U R E  1   Schematic of study. (a) Twin- tagged primers with heterogeneity spacers (above) and final amplicon structure (below). (b) Each 
mock soup (e.g. Hhml- leg) was PCR amplified three times (1, 2, 3) under a given PCR condition (A– H). Each of the three PCRs per soup used 
a different twin tag, following the Begum strategy. There were eight mock soups (Hhml/hhhl/hlll/mmmm X body/leg), where H, h, m and l 

indicate different DNA concentrations (details in Figure 2). PCR replicates 1 from each of the eight mock soups were pooled into the first 
amplicon pool (solid red lines), PCR replicates 2 were pooled into the second amplicon pool (black dashes) and PCR replicates 3 were pooled 
into the third amplicon pool (blue dashes). The entire set- up in B was repeated eight times for the eight PCR experiments (A– H), which thus 
generated (3 × 8 =) 24 sequencing libraries. (c) Key steps of the Begum bioinformatic pipeline. For clarity, primers and heterogeneity spacers 
not shown. The complete PCR set- up schematic, including positive and negative controls, is in Figure S9
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least three nucleotides, no more than three G and C nucleotides are 
present and none ends in either G or TT (to avoid homopolymers of 
GGG or TTT when concatenated to the Leray- FolDegenRev prim-

ers). We added one or two ‘heterogeneity spacer’ nucleotides to the 
5' end of the forward and reverse primers (De Barba et al., 2014; 
Fadrosh et al., 2014), which cause sets of amplicons to be se-

quenced out of phase on the Illumina plate, reducing basecalling 
errors. The total amplicon length including spacers, tags, primers 
and markers was expected to be ~382 bp. The primer sequences 
are listed in Table S10.

2.1.5 | PCR optimization

We ran test PCRs using the Leray- FolDegenRev primers with an an-

nealing temperature (Ta) gradient of 40– 64°C. Based on gel- band 
strengths, we chose an ‘optimal’ Ta of 45.5°C (clear and unique band 
on an electrophoresis gel) and a ‘high’ Ta value of 51.5°C (faint band) 
to compare their effects on species recovery.

We followed Murray et al. (2015) (see also Bohmann et al., 2018) 
and first ran the eight mock soups through qPCR to establish the 
correct dilution per soup so as to minimize PCR inhibition, to as-

sess extraction- negative controls and to estimate the minimum 
cycle number needed to amplify the target fragment across sam-

ples. Based on the qPCR amplifications, we diluted six of the eight 
soups by five, 10-  or 50- fold to minimize inhibition (S06_Extended 
Methods), and we observed that the end of the exponential phase 
for all eight soups was achieved at or near 25 cycles, which we define 
here as the ‘optimal’ cycle number. To test the effect of PCR cycle 
number on species recovery, we also tested a ‘low’ cycle number 

of 21 (i.e. stopping amplification during the exponential phase) and 
a ‘high’ cycle number of 30 (i.e. amplifying into the plateau phase).

2.1.6 | PCR amplifications of mock soups

We metabarcoded the mock soups under five different PCR 
conditions:

A, B.  Optimal Ta (45.5°C) and optimal PCR cycle number (25). A and 
B are technical replicates.

C, D.  High Ta (51.5°C) and optimal PCR cycle number (25). C and D 
are technical replicates.

E.       Optimal Ta (45.5°C) and low PCR cycle number (21).
F.      Optimal Ta (45.5°C) and high PCR cycle number (30).
G, H.  Touchdown PCR (Leray & Knowlton, 2015). Sixteen initial cy-

cles: denaturation for 10 s at 95°C, annealing for 30 s at 62°C 
(−1°C per cycle) and extension for 60 s at 72°C, followed by 20 
cycles at an annealing temperature of 46°C. G and H are tech-

nical replicates.

Following the Begum strategy, for each of the PCR conditions, each 
mock soup was PCR amplified three times, each time with a different- 
tag sequence on a different plate (Figure 1). The same- tag sequence 
was attached to the forward and reverse primers of a given PCR, 
which we call ‘twin- tagging’ (e.g. F1- R1, F2- R2, …), to allow detection 
and removal of tag- jumped sequences, which produce non- twinned 
tags (e.g. F1- R2, F2- R3, …). This lets us remove tag- jumped sequences, 
which assign species to the wrong samples (Schnell et al., 2015). In 
each PCR plate, we also included one positive control (with four insect 

TA B L E  2   The eight mock soups, each containing the same 248 arthropod OTUs but differing in absolute (Body/Leg) and relative (Hhml, 
hhhl, hlll and mmmm) DNA concentrations. Numbers in the table are the numbers of OTUs in each concentration category (H, h, m, l). Thus, 
the Hhml_body soup contains 50 species with a DNA concentration between 50 and 200 ng/µl, each added as an aliquot of 1 µl, and so 
on. The evenness of DNA concentrations in each mock soup is summarized by the Shannon index. Higher values indicate a more even 
distribution. A few species provided only a low level of DNA concentration but were included in the mmmm soup as such

DNA extraction from 
arthropod body part

DNA 
concentration 
evenness

Number of OTUs in each concentration category

Total 
number 
of OTUs Shannon index

High (H) high (h) medium (m) low (l)

50– 200 ng/μl 10– 48 ng/μl 1– 8 ng/μl 0.001– 0.1 ng/μl

Body Hhml 50 75 62 61 248 4.56

hhhl 0 187 0 61 248 5.17

hlll 0 61 0 187 248 4.08

mmmm 0 0 247 1 248 5.39

DNA 
concentration 
evenness

High (H) high (h) medium (m) low (l)

Total 
number of 
OTUs Shannon index5– 60 ng/μl 0.1– 3.0 ng/μl 0.009– 0.09 ng/μl

0.0001– 
0.008 ng/
μl

Legs Hhml 69 63 63 53 248 4.21

hhhl 0 195 0 53 248 5.04

hlll 0 71 0 177 248 4.13

mmmm 0 0 238 10 248 5.32
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species), three extraction- negative controls and a row of PCR nega-

tive controls. PCR and tag setups are in Table S9.

2.1.7 | Ilumina high- throughput sequencing

Sequencing libraries were created with the NEXTflex Rapid DNA- 
Seq Kit for Illumina (Bioo Scientific Corp.), following manufacturer 
instructions. In total, we generated 24 sequencing libraries (= 8 
PCR conditions (A– H) × 3 PCR replicates/condition) (Figure 1), of 
which 18 were sequenced in one run of Illumina's V3 300 PE kit on a 
MiSeq at the Southwest Biodiversity Institute, Regional Instrument 
Center in Kunming. The six libraries from PCR conditions G and H 
were sequenced on a different run with the same kit type.

2.1.8 | Data processing

We removed adapter sequences, trimmed low- quality nucleotides and 
merged read- pairs with default parameters in fastp 0.20.1 (Chen et al.,  
2018). To allow fair comparison across PCR conditions, we subsampled 
350,000 reads from each of the 24 libraries to achieve the same depth.

Begum is available at https://github.com/shyam sg/Begum (ac-

cessed 13 November 2020). First, we used Begum's sort.py (- pm 2 
- tm 1) to demultiplex sequences by primers and tags, add the sample 
information to header lines and strip the spacer, tag and primer se-

quences. Sort.py reports the number of sequences that have novel 
tag combinations, representing tag- jumping events (mean 3.87%). 
We then used Begum's filter.py to remove sequences <300 bp and to 
filter out false- positive (erroneous) sequences (PCR and sequencing 
errors, chimeras, low- level contamination). We filtered at 12 levels 
of stringency: ≥1– 3 PCRs × ≥1– 4 copies per PCR. For instance, ≥1 
PCR and ≥1 copy represents no filtering, as this allows even single 
sequences that appear in only one PCR (i.e. 0_0_1, 0_1_0 or 1_0_0), 
and ≥2 PCRs and ≥4 copies represents moderately stringent filter-
ing, as it allows only sequences that appear in at least two PCRs 
with at least four copies each (e.g. 32_4_0 but not 32_2_0).

We used vsearch 2.15.0 (Rognes et al., 2016) to remove de novo 
chimeras (- - uchime_denovo) and to produce a fasta file of represen-

tative sequences for 97% similarity Operational Taxonomic Units 
(OTUs; - - cluster_size) and a sample × OTU table (- - otutabout). We 
assigned high- level taxonomies to the OTUs using vsearch (- - sintax) 
on the MIDORI COI database (Leray et al., 2018) and only retained 
the OTUs assigned to Arthropoda with probability ≥0.80. In R 4.0.0 

(R Core Team, 2018), we set all cells in the OTU tables that contained 
only one read to 0 and removed the control samples.

2.1.9 | Metabarcoding efficiency

False- negative and false- positive frequencies

For each of the eight mock soups (Table 2), eight PCRs (A– H), and 
12 Begum filtering stringencies (Tables 3; Table S05), we used 

vsearch (- - usearch_global) to match the OTUs against the 248 
input species and the four positive- control species (S07_MTBFAS.
fasta), and we removed any OTUs in the mock soups that matched 
a positive- control species. False negatives (dropouts) are defined 
as any of the 248 input species that failed to be matched by one 
or more OTUs at ≥97% similarity, and false positives are defined 
as OTUs that matched no input species at ≥97% similarity. For 
clarity, we only display results from the mmmm_body soups; re-

sults from all soups can be accessed in the DataDryad archive (Yu 
et al., 2021).

Input DNA concentration and evenness and PCR conditions

We used non- metric multidimensional scaling (NMDS) (metaMDS 
(distance=”jaccard”, binary=FALSE)) in {vegan} 2.5– 6 (Oksanen 
et al., 2017) to visualize differences in OTU composition across the 
eight mock soups per PCR condition (Figure 1, Table 2). We evalu-

ated the effects of species evenness on species recovery by using a 
linear mixed- effects model to regress the number of recovered input 
species on each mock soup's Shannon diversity (Table 2), lme4::lme
r(OTUs~Evenness+(1|PCR) (Bates et al., 2015). Finally, we evaluated 
the information content of OTU size (number of reads) by linearly 
regressing input genomic- DNA concentration on OTU size.

Taxonomic bias

To visualize the effects of PCR conditions on taxonomic amplifica-

tion bias, we used {metacoder} 0.3.4 (Foster et al., 2017) to pairwise 
compare the compositions of the mmmm_body soup under different 
PCR conditions.

Tag- bias test

We took advantage of the paired technical replicates in PCRs A&B, 
C&D and G&H (Table 3) to test for tag bias. For instance, we used the 
same eight tags in PCRs A1/B1, A2/B2 and A3/B3, and these three 
pairs should therefore return very similar communities. In contrast, 
the 12 non- matching pairs (e.g. A1/B2, A2/B1, A3/B1) used differ-
ent tags and, if there is tag bias, should return differing communi-
ties. For each set of PCR replicates (A&B, C&D, G&H), we generated 
NMDS ordinations and used vegan::protest to calculate the mean 
Procrustes correlation coefficients for the same- tag (n = 3) and 
different- tag pairs (n = 12).

3  | RESULTS

The 18 libraries containing PCR sets A– F yielded 7,139,290 total 
paired- end reads, mean 396,627, and the six libraries of PCR sets 
G&H yielded 6,356,655 paired- end reads, mean 1,059,442. Each 
sample (e.g. Hhml_body in PCR_A) was sequenced in three libraries 
(Figure 1; Figure S5) and thus was represented by a mean of 132,209 
reads (= 396,627 mean reads per library X 3 PCRs/9 samples per 
library, since each library contains eight mock soups + one positive 
control) in PCR sets A- F and a mean of 353,147 reads in PCR sets G 
and H.
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3.1 | Effects of PCR condition and Begum  
filtering

Optimal and near- optimal PCR conditions (PCRs A, B, E) achieved 
lower false- negative (dropout) frequencies than did non- optimal 
PCRs (high Ta, high cycle number or Touchdown) (PCRs C, D, F, G, H) 
(Table 3; Table S5).

With no Begum filtering (≥1 PCR & ≥1 copy), false- positive OTUs 
were abundant, approaching the number of true OTUs (101– 187 false- 
positive OTUs vs. 248 true OTUs) (Table 3; Table S5). Applying Begum 

filtering at different stringency levels reduced the number of false- 
positive sequences by 3– 90 times. The cost of filtering was a greater 
loss of true OTUs but only by a small absolute amount in the optimal 
PCRs (A, B, E), rising from a dropout frequency of ~2% in the nonfiltered 

TA B L E  3   Species- recovery success by three Begum filtering stringency levels and five PCR conditions, using the mmmm_body soup. 
Recovered species are OTUs that match one of the 248 reference species at ≥97% similarity. False negatives (dropouts) are defined as 
reference species that fail to be matched by any OTU at ≥97% similarity. False- positive sequences are defined as OTUs that fail to match 
any reference species at ≥97% similarity. Begum filtering strongly reduces false- positive frequencies (dark-  to light- orange cells) at the cost 
of a small rise in dropout frequency (light-  to dark- blue cells), especially for optimal PCR conditions (PCRs A, B, E). With non- optimal PCR 
conditions (PCRs C, D, F, G, H), the trade- off is stronger; filtering to reduce false positives strongly increases dropouts (the blue cells are 
darker on the right- hand side of the table). See Section 3.1 for more details. Table S5 shows the same information for all 12 Begum stringency 
levels

Begum filtering parameters 

Optimum Ta 

+ optimum cycle 

number  

 

Optimum Ta 

+ low cycle 

number  

 

High Ta + optimum 

cycle number  

 

Optimum Ta 

+ high cycle 

number  

 

Touchdown PCR  

(62-  

16+20 cycles) 

Present in 1 PCR replicate with 1 copies per PCR (i.e. no filtering) A B E C D F G H 

Recovered species: OTUs matched to Refs ( 97% similarity) 241 243 243 240 239 241 236 235 

False-negative sequences (dropouts) 7 5 5 8 9 7 12 13 

% False negatives (dropouts) 3% 2% 2% 3% 4% 3% 5% 5% 

False-positive sequences 165 161 181 186 132 179 99 124 

% False positives 67% 65% 73% 75% 53% 72% 40% 50% 

Present in 2 PCR replicates with 4 copies per PCR A B E C D F G H 

Recovered species: OTUs matched to Refs ( 97% similarity) 234 229 232 217 204 203 161 171 

False-negative sequences (dropouts) 14 19 16 31 44 45 87 77 

% False negatives (dropouts) 6% 8% 7% 13% 18% 18% 35% 31% 

False-positive sequences 5 5 7 3 2 3 3 4 

% False positives 2% 2% 3% 1% 1% 1% 1% 2% 

Present in 3 PCR replicates with 3 copies per PCR A B E C D F G H 

Recovered species: OTUs matched to Refs ( 97% similarity) 231 228 235 198 192 183 126 136 

False-negative sequences (dropouts) 17 20 13 50 56 65 122 112 

% False negatives (dropouts) 7% 8% 5% 20% 23% 26% 49% 45% 

False-positive sequences 4 4 6 2 2 3 2 1 

% False positives 2% 2% 2% 1% 1% 1% 1% 0% 

F I G U R E  2   Non- metric 
multidimensional scaling (NMDS) 
ordination of eight mock soups, which 
differ in absolute (Body/Leg) and 
relative (Hhml, hhhl, hlll and mmmm) 
DNA concentrations of the input species 
(Table 2). Shown here is the output from 
the PCR A condition: optimum annealing 
temperature Ta (45.5°C) and cycle number 
(25), at Begum filtering stringency ≥2 
PCRs, ≥4 copies/PCR (Table 3). Point 
size is scaled to the number of recovered 
OTUs. Species recovery is lower in 
samples with more uneven species 
frequencies (e.g. hlll) and, to a lesser 
extent, lower absolute DNA input (leg)
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case to ~4%– 6% under all but the two most stringent filtering levels, 
where dropout frequencies were 5%– 11% (≥3 PCRs & ≥3 or 4 copies/
PCR). In contrast, in the non- optimal PCRs (C, D, F, G, H), Begum filter-
ing caused dropout frequencies to rise to much higher levels (5%– 55%). 
In short, it is possible to combine wet- lab and bioinformatic protocols 
to reduce both false- positive and false- negative errors.

3.2 | Effects of input DNA absolute and relative 
concentrations on OTU recovery

Altering the relative (Hhml, hhhl, hlll and mmmm) and absolute (body, 
leg) input DNA concentrations created quantitative compositional 
differences in the OTU tables, as shown by NMDS ordination 
(Figure 2). Soup hlll, with the most uneven distribution of input DNA 
concentrations (Table 2), recovered the fewest OTUs (Figure 2). The 
same effect was seen by regressing the number of recovered OTUs 
on species evenness (Figure S1).

As expected, OTU size does a poor job of recovering infor-
mation on input DNA amount per species (Figure S2). Although 
there are positive relationships between OTU size and DNA 
concentrations, the slope of the relationship differs depend-

ing on species relative abundances (Hhml vs. hhhl vs. hlll) and 
source tissues (leg vs. body), which reflects the action of mul-
tiple species- specific biases along the metabarcoding pipeline 
(McLaren et al., 2019). This interaction effect precludes the fit-
ting of a robust model that relates OTU size to DNA concen-

tration, since species- frequency and source- tissue information 
cannot be known a priori.

3.3 | Taxonomic amplification bias

Optimal PCR conditions (PCRs A, B, E) produce larger OTUs 
than do non- optimal PCR conditions (PCRs C, D, F, G, H), es-

pecially for Hymenoptera, Araneae and Hemiptera (Figure 4). 

F I G U R E  3   Test for tag bias in the mock soups amplified at optimum annealing temperature Ta (45.5°C) and optimum cycle number (25) 
(PCRs A and B). All pairwise Procrustes correlations of PCRs A and B. The top row (box) displays the three same- tag pairwise correlations. 
The other rows display the 12 different- tag pairwise correlations. If there is tag bias during PCR, the top row should show a greater degree 
of similarity. However, mean correlations are not significantly different between same- tag and different- tag ordinations (Mean of same- 
tag correlations: 0.99 ± 0.007 SD, n = 3. Mean of different- tag correlations: 0.98 ± 0.009 SD, n = 12. p = 0.046, df = 3.9, Welch's t- test). In 
Supplementary Information, we show the results for the high Ta (PCRs C & D) and Touchdown treatments (PCRs G & H)
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These are the taxa that are at higher risk of failing to be de-

tected by the Leray- FolDegenRev primers under suboptimal PCR   
conditions.

3.4 | Tag- bias test

We found no evidence for tag bias in PCR amplification. For instance, 
under optimal PCR conditions (A & B), pairs using the same tags (A1/
B1, A2/B2, A3/B3) and pairs using different tags (e.g. A1/B2, A2/
B1, A3/B2, …) both generated almost identical NMDS ordinations 
(Figure 3). Under non- optimal PCRs, we still found no evidence for 
tag bias, even though at higher annealing temperatures, some tag 
sequences might be more likely to aid primer annealing (Figures S3 
and S4). Note that we did not correct the p- values for three tests, 
underlining the lack of evidence for tag bias.

4  | DISCUSSION

In this study, we tested our pipeline with eight mock soups that dif-
fered in their absolute and relative DNA concentrations of 248 ar-
thropod taxa (Table 2, Figure 2). We metabarcoded the soups under 
five different PCR conditions that varied annealing temperatures 
(Ta) and PCR cycles (Table 3), and we used Begum to filter the OTUs 
under different stringencies (Figure 1, Table 3). We define high ef-
ficiency in metabarcoding as recovering most of a sample's compo-

sitional and quantitative information, which in turn means that both 
false- negative and false- positive frequencies are low, that OTU 
sizes predict species relative abundances and that any dropouts are 
spread evenly over the taxonomic range of the target taxon (here, 
Arthropoda). This pipeline can of course be applied to other taxa, 
with appropriate adjustments to primer design, length limits, taxo-

nomic reference database and controls.

F I G U R E  4   Taxonomic amplification bias of non- optimal PCR conditions. Pairwise- comparison heat trees of PCRs E, C, F and G versus 
the optimal PCR A (Table 3). Green branches indicate that PCR A (right side) produced relatively larger OTUs in those taxa. Brown branches 
indicate that PCR A produced smaller OTUs. Grey branches indicate similar OTU sizes. There are, on balance, more dark- green branches 
than dark- brown branches in the three heat trees that compare PCRs C, F and G (suboptimal) with PCR A (optimal), and the green branches 
are concentrated in the Araneae, Hymenoptera and Lepidoptera, suggesting that these are the taxa at higher risk of failing to be detected 
by Leray- FolDegenRev primers under suboptimal PCR conditions. Shown here are the mmmmbody soups, at Begum filtering stringency ≥2 
PCRs, ≥4 copies per PCR
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Our results show that metabarcoding efficiency can be made 
high for the recovery of species presence– absence, but efficiency 
is low for the recovery of quantitative information. Efficiency in-

creases when the annealing temperature and PCR cycle number are 
at the low ends of ranges currently reported in the literature for this 
primer pair (Table 3, Figure 4). We recovered Elbrecht et al.'s (2017) 
finding that efficiency is higher when species evenness is higher 
(Figure 2; Figure S1), and we found that OTU sizes are a poor pre-

dictor of input genomic DNA, which confirms the conventional wis-

dom that OTU size is a poor predictor of species relative abundances 
(Figure S2; McLaren et al., 2019). Finally, we found no evidence for 
tag bias during PCR (Figure 3; Figures S3 and S4).

4.1 | Co- designed wet- lab and bioinformatic 
methods to remove errors

The Begum workflow co- designs the wet- lab and bioinformatic com-

ponents (Figure 1) (Zepeda- Mendoza et al., 2016) to minimize multi-
ple sources of error (Table 1). Apart from the use of qPCR to optimize 
PCR conditions, the wet- lab and bioinformatic components are de-

signed to work together. Twin- tagging allows removal of tag jumps, 
which result in sample misassignments. Multiple, independent PCRs 
per sample allow removal of false- positive sequences caused by 
PCR and sequencing error and by low- level contamination, at the 
cost of only a small absolute rise in false- negative error (Tables 3; 
Table S5). qPCR optimization reduces false negatives caused by PCR 
runaway, PCR inhibition and annealing failure (Tables 3; Table S5; 
Figure 4). Moderate dilution appears to be a better solution for in-

hibition than is increasing cycle number, since the latter increases 
dropouts (Tables 3; Table S5). qPCR also allows extraction blanks 
to be screened for contamination. Size sorting (Elbrecht et al., 2017) 
should reduce false negatives caused by PCR runaway, and the lower 
recovery of input species in the leg- only soups (Figure 2) argues that 
large insects should be represented by their heads, not their legs, for 
DNA extraction.

4.1.1 | Begum filtering and complex positive controls

Increasing the stringency of Begum filtering reduces false- positive 
sequences at the cost of increasing false negatives (dropouts), 
 although fortunately, this trade- off is weakened under optimal PCR 
conditions (Tables 3; Table S5). The choice of a filtering stringency 
level for a given study should be informed by complex positive- 
control samples and should take into account the study's aims. If the 
aim is to detect a particular taxon, like an invasive pest, it is better 
to set stringency low to minimize dropout, whereas if the aim is to 
generate data for an occupancy model, it is better to set stringency 
high to minimize false positives. Positive controls should be made of 
diverse taxa not from the study area (Creedy et al., 2019) and span 
a range of concentrations. Alternatively, a suite of synthetic DNA 
sequences with appropriate primer- binding regions could be used.

In metabarcoding pipelines, it is common to apply heuristic fil-
ters to remove false- positive sequences. For instance, small OTUs 
are commonly removed (http://evomi cs.org/wp- conte nt/uploa 
ds/2016/01/phylo seq- Lab- 01- Answe rs.html, accessed 11 November 
2020). We did not do this because we wanted to isolate the effect of 
Begum filtering (and in fact we found that doing so slightly reduced 
species recovery). We did set to zero all cells in our OTU tables that 
contained only one read, and the only effect was to greatly reduce the 
number of false- positive sequences in the case when Begum filtering 
was not applied. Once any level of Begum filtering had been applied, 
those 1- read cells also disappeared (D. Yu, data not shown). Another 
common correction is to use the R package {lulu} (Frøslev et al., 2017) 
to combine ‘parent’ and ‘child’ OTUs that had failed to cluster. In this 
study, we could not do this because all input species had been in-

cluded in all eight soups, which means that OTU co- occurrence could 
not be used to identify parent– child pairings.

4.1.2 | Future work

Begum uses occurrence in multiple, independent PCRs to identify 
and remove erroneous sequences. This contrasts with solutions 
such as DADA2 (Callahan et al., 2016) and UNOISE2 (Edgar, 2016) 
that use only sequence- quality data to remove erroneous se-

quences. Unique molecular identifiers (UMIs) are also a prom-

ising method for the removal of erroneous sequences (Fields 
et al., 2019). It should be possible to combine some of these meth-

ods in the future.
A second area of research is to improve the recovery of quan-

titative information. Spike- ins and UMIs can be part of the solu-

tion (Deagle et al., 2018; Hoshino & Inagaki, 2017; Ji et al., 2020; 
Smets et al., 2016; Tkacz et al., 2018), but they can only correct 
for sample- to- sample stochasticity (‘row noise’) and differences in 
total DNA mass across samples. Such corrections allow the tracking 
of within- species change across samples, which means tracking how 
each individual species changes in abundance along a time series 
or environmental gradient. However, spike- ins and UMIs cannot 
be used to estimate species relative abundances within a sample, be-

cause spike- ins do not remove species biases in DNA extraction and 
primer- binding efficiencies. Thus, we caution against the uncritical 
use of metabarcoding to identify major and minor diet components 
(e.g. Deagle et al., 2019). Fortunately, methods for estimating spe-

cies relative abundances are being developed (Lang et al., 2019; Peel 
et al., 2019; Williamson et al., 2019).
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