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While facultative sex is common in sexually reproducing species, for reasons of tractability most
mathematical models assume that such sex is asynchronous in the population. In this paper, we
develop a model of switching environments to instead capture the effect of an entire population
transitioning synchronously between sexual and asexual modes of reproduction. We use this model to
investigate the evolution of the number of self-incompatible mating types in finite populations, which
empirically can range from two to thousands. When environmental switching is fast, we recover the
results of earlier studies that implicitly assumed populations were engaged in asynchronous sexual
reproduction. However when the environment switches slowly, we see deviations from previous
asynchronous theory, including a lower number of mating types at equilibrium and bimodality in
the stationary distribution of mating types. We provide analytic approximations for both the fast
and slow switching regimes, as well as a numerical scheme based on the Kolmogorov equations
for the system to quickly evaluate the model dynamics at intermediate parameters. Our approach
exploits properties of integer partitions in number theory. We also demonstrate how additional
biological processes such as selective sweeps can be accounted for in this switching environment
framework, showing that beneficial mutations can further erode mating type diversity in synchronous
facultatively sexual populations.

I. INTRODUCTION

Evolution is a fundamentally noisy affair [1]. It is
therefore no surprise that over the last century theorists
have increasingly sought to mathematically understand
the effects of randomness on evolutionary models. Such
noise has many distinct forms. The foundations of math-
ematical population genetics are rooted in models that
capture how genetic drift (demographic noise), emerg-
ing from uncertainty in the order of birth and death
events in finite populations, can drive population dynam-
ics [2]. Meanwhile a more ecologically-oriented approach
has been to consider the noise that might arise from un-
certainty in environmental conditions [3, 4] (environmen-
tal noise), with a particular emphasis in the evolutionary
literature on transitions between discrete environmen-
tal states [5, 6] (capturing, for instance, an organism’s
switching behavioural responses to the fluctuating en-
vironment). However, in the last decade in particular,
there has been an increasing interest in mathematically
understanding the dynamics of populations subject to
both demographic noise and environmental switching [7–
10].

Beyond simply presenting a mathematical challenge,
developing analytic techniques to attack such systems is
important for understanding a host of problems in biol-
ogy. One simple yet acute example is that of a popu-
lation switching between environments in which selec-
tion is present in one environment and absent in the
other [11]. Here one must understand the interplay of
quasi-deterministic dynamics on the one hand (in the se-
lective regime, where noise generates small fluctuations
around average trajectories) and entirely noisy dynamics

in the other (where genetic drift alone governs the pop-
ulation’s behaviour). In this paper we will consider just
such an evolutionary problem, demonstrating how it can
be modelled and, more importantly analysed, quantita-
tively.

Mating types are self-incompatible gamete classes that
can be understood as ancestral forms of the more famil-
iar sperm-egg system [12, 13]. Unlike populations with
true sexes however (which are defined by the size di-
morphism between their gametes) the number of mat-
ing types (which are morphologically similar) is not re-
stricted to two [14]. Instead, mating types are expected
to experience negative frequency dependent selection,
with rare types favoured due to their increased opportu-
nities for finding a compatible mate of a distinct, non-self
mating type. This has an important dynamical conse-
quence; novel mutant mating types, which are initially
rare, should nearly always successfully establish within
a resident population, and therefore the number of mat-
ing types in a species is predicted to increase through
time [15]. However, while species with many mating
types are possible rising to many thousands in some
fungi [16], species with more than 10 are rare and most
have just two [17, 18]. This disagreement between sim-
ple evolutionary reasoning and empirical evidence sets
the stage for a classic evolutionary paradox [19].

Although many theories have been proposed to ex-
plain this discrepancy (reviewed in [19]), most rely on
a deterministic selective advantage for two mating types,
such as increased mating success between two types in
pheromone signaling and receiving roles [20], or decreased
cytoplasmic conflict between two types in donor-receiver
organelle inheritance roles [21]. In contrast, [15] demon-
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strated that under differing assumptions about the ga-
mete encounter rate dynamics, the strength of selection
for more than two types could be reduced. It was then
verbally suggested that demographic stochasticity may
play a role in further limiting the number of mating types.
However without the analytic tools to quantify this effect,
the hypothesis that genetic drift could govern mating
type number through a balance between mutations and
stochastic extinctions was somewhat neglected within the
mating type literature, despite being well-established in
the related but distinct system of self-incompatibility al-
leles in plants [22].

More recently, simulations were used to show that in a
population that switched between sexual and asexual en-
vironments, mating type extinctions became more likely,
with negative frequency dependent selection absent in
the asexual regime, and the population dynamics en-
tirely dominated by genetic drift [23]. Extending this
logic, [24, 25] showed analytically that an increased rate
of asexual to sexual reproduction would lower the num-
ber of mating types expected under a mutation extinction
balance, and indeed that available empirical data showed
a positive correlation between the rate of sexual repro-
duction and the number of mating types in these species.

For mathematical simplicity these latter models [24,
25] considered sexual reproduction to be occurring asyn-
chronously, i.e., with each reproductive event having a
fixed probability of sexual vs asexual reproduction. How-
ever this simplification fails to capture a biologically rele-
vant aspect of reproduction in these species; sexual repro-
duction tends to be triggered by changing environmental
conditions [26], such as falling nutrient levels [27] or other
stress cues [28], and is thus synchronized in time across
the entire population [29]. With such dynamics better
captured by a switching environment model, it is inter-
esting to ask what quantitative differences this increased
level of biological realism might generate. More impor-
tantly, this shift in modelling framework also enables us
to explore a richer array of biological questions.

In addition to demographic stochasticity, selective
sweeps have been suggested as a mechanism that may in-
crease mating type extinction rate and, therefore, further
limit the number of mating types [30]. However the ef-
fect of these selective sweeps on mating type number can
only be seen in asexual environments, where beneficial
mutations are linked to the mating type background on
which they arise [31]. In a sexual or even partially sexual
environment, genetic recombination breaks down associ-
ations between beneficial mutations and mating types,
allowing the mutations to spread through the popula-
tion without distorting mating type frequencies. Quan-
tifying the effect of selective sweeps on these dynamics
therefore requires a shift in modelling approach, away
from simplified mathematical assumptions of asynchro-
nisity and towards more biologically realistic switching
environments [30]. In this paper we focus on this prob-
lem, describing a modelling framework and developing a
mathematical analysis suitable for the task.

This article is organized as follows: in Section II,
we present the switching-environments model in which
a population transition between entirely sexual and en-
tirely asexual reproductive modes. Section III is dedi-
cated to studying how the distribution of mating types
changes as a function of the switching and mutation
rates. We focus in particular on the regimes of fast, slow
and intermediate environmental switching. In Section IV
we demonstrate how this new modelling framework al-
lows us to address the issue of selective sweeps. Finally,
we present the conclusions in Section V.

II. MODEL DEFINITIONS

A. Population dynamics

We consider a population genetics model similar to
that proposed in [24]. The model describes a popula-
tion of N individuals. The population is unstructured
(i.e., there is no notion of space), and the population size
is taken to be constant. These assumptions mean that
not all aspects of natural biological systems are captured
in full detail. At the same time austerity in the model
setup enables us to carry out the theoretical analysis.
The individuals are each of a particular mating type.

The different mating types are labelled by the index
i. The population follows a dynamics similar to the
Moran model (i.e., coupled birth-death events in con-
tinuous time) but now allowing three possible types of
events: asexual reproduction, sexual reproduction, and
mutation. Each reproduction event implies the removal
of one individual so that the size of the population re-
mains constant. Mutation events imply the introduc-
tion of a new mating type. We write ni for the num-
ber of individuals of mating type i, and M for the total
number of mating types in the population. These are
time-dependent quantities. The number of mating types
ranges from M = 1 (all individuals are of the same type)
to M = N (each individual is of a different mating type).
In the model by Constable and Kokko in [24] both sex-

ual and asexual reproduction were possible at any time,
each occurring with a fixed rate. In this paper we instead
consider the more biologically realistic scenario of a pop-
ulation that engages in sexual reproduction in response to
changing environmental conditions. While the environ-
ment itself may be described by a continuous quantity
(such as temperature) the population’s response to the
environment is binary (whether to engage in sexual re-
production or not). We therefore develop a model that
switches stochastically between two different states, de-
noted S and A, respectively. We write σ ∈ {S,A} for the
environmental state. When the environment is in state
S, only sexual reproduction is possible, and when it is
in state A, only asexual reproduction is possible. We
assume that the switching between these two environ-
mental states occurs independently of the composition of
the population, with rate λS→A from S to A, and λA→S
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for switches from state A to S. The switching processes
can be written as

S
λS→A−−−−→ A, and A

λA→S−−−−→ S. (1)

We note that this choice of two discrete environments sets
the spatial scales over which we expect our model to be
valid; namely those over which environmental conditions
(that trigger sexual reproduction) are tightly correlated.
In the sexual environment S, we assume that any pair

of individuals can reproduce, provided they belong to two
different mating types. For example, one parent may be
of mating type i, and the other parent of any other non-i
mating type. The probability that this occurs for two
individuals sampled at random from the population is
ni(N − ni)/N

2. The offspring inherits the mating type
of either parent with equal probability 1/2. To keep the
population size fixed, another individual (type j) is simul-
taneously chosen uniformly at random to die. The rate
for events in which an offspring of type i is generated and
an individual of type j removed from the population is
then

T S
ij =

1

2

ninj

N2
(N − ni) . (2)

We express time in units of generations, so that there are
of the order of N events in the population per unit time.
This means that rate in Eq. (2) has an extra factor N in
comparison to the rate used in [24].

In the asexual environment A, reproduction follows the
standard neutral Moran model. One individual is cho-
sen uniformly at random to reproduce, and the offspring
inherits the mating type of the parent. As above, an-
other individual is simultaneously chosen at random to

Sexual reproduction:

Mutation:

Asexual reproduction:

Mutation:

i j k i

i

i

i

i

j

j

j

j

i i

Environment

Environment

FIG. 1. Illustration of the full model and the events occur-
ring in the population: sexual reproduction, asexual repro-
duction, and mutation. In each of these events one individual
is replaced by another of a different mating type. Transitions
between environments occur independently of the state of the
system at rate λS→A from σ = S to σ = A, and λA→S from
σ = A to σ = S.

die. The rate for events in which an individual of type i
reproduces and an individual of type j is removed is then
given by

T A
ij =

ninj

N
. (3)

Following [24], we describe mutations as events in
which one individual changes to a new mating type not
currently present in the population. This leads to the
rate

T m
j = mg

nj

N
(4)

for mutation events from type j to a new type. The
parameter mg sets the typical number of mutations per
generation in the population. The raw mutation rate is
given by m = mg/N . Defined in this way, Eq. (4) can
also be interpreted biologically as capturing migration
events from a highly diverse mating type pool.
The dynamics of the model above are summarised in

Figure 1. We will refer to this as the ‘full model’ in the
remainder of the paper. It describes a Markovian process.
At each point in time its state is described by the state
of the environment (S or A), and by the state vector of
the population, n = (n1, n2, . . . ). The i-th entry in this
vector indicates how many individuals of mating type i
are present in the population. We have

∑

i ni = N , and
the number of non-zero entries in n indicates the number
of mating types currently present in the population.

B. Environmental dynamics

Given that the environmental switching is independent
of the composition of the population, the long-time prob-
abilities to find either environmental state can be written
down straight away,

P st
A =

λS→A

λS→A + λA→S
,

P st
S =

λA→S

λS→A + λA→S
. (5)

To ease the notation, we write pS = P st
S for the proba-

bility to find the environment in state S. This indicates
the rate of sexual reproduction.
The average time the environment spends in each of

the two states between switches is given by

τA =
1

λA→S
and τS =

1

λS→A
. (6)

The average time to switch from one state to the other
and back, is then

τ = τA + τS . (7)

Time is measured in generations of the population, so it
takes the environment τ generations to transition from
S to A and back to S. Equivalently, 1/τ such commutes
occur per generation.
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M + 1
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M - 1
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FIG. 2. Schematic representation of the reduced model, where
the focus is on the dynamics of the number of mating types M
instead of the individuals. This model is described by effective
birth and death rates T+

M,σ and T−
M,σ, with σ ∈ {S,A}.

C. Reduced model

In order to analyse the dynamics of the population, we
will focus on a reduced model, describing only the num-
ber of mating types M . This number changes over time
through the birth-death and mutation events in the pop-
ulation. In a birth-death event the number of mating
types can decrease by one (if the individual that dies
is the last individual belonging to a particular mating
type). When a mutation event occurs, the number of
mating types in the population increases by one (unless
the mutating individual is the last of its type). We are
interested in the stochastic process for M , and will de-
scribe it with effective rates

M
T+

M,σ
−−−→ M + 1 and M

T−
M,σ

−−−→ M − 1. (8)

For example, T−
M,A is the rate with which a mating type is

driven to extinction when the environment is in state A,
and when there are currently M mating types present in
the population. Figure 2 illustrates this approach. The
reduced model focuses on the dynamics of the number of
mating types M , without regard for the numbers ni of in-
dividuals belonging to each mating type. The stochastic
process for M is of course dependent on the composi-
tion of the vector state n in the full model, and as such,
the reduced model constitutes an approximation of the
dynamics in the full model.
The analytical challenge is to derive suitable expres-

sions for the T±
M,σ. While this is difficult for the case of

switching environments, progress can be made by focus-
ing on the case of a fixed environmental state, σ = A
or σ = S. In this case, the population will tend to a
stationary state, described by the joint distribution of
the number of mating types, M , and the vector of abun-
dances n. This distribution can be obtained analytically
using an approach similar to that of [24].

We then proceed to use this distribution to calculate
the rates T±

M,σ for the dynamics of M . To do this, we
focus on marginals for specific values of M and use meth-
ods from number theory [32, 33] to sum over partitions
n of the N individuals into mating types. Importantly,
this approach accounts precisely for all possible transi-
tions in which a change on state n leads to an increase or
decrease in the number of mating types M . Our calcula-
tion of these rates relies on fixed environmental states A
or S. To make this clear in the notation we write T±

M |σ

for the rates computed in this way. Further details of
the calculation can be found in Sections ?? and ?? of
the Supplementary Material. The outcome of this ap-
proach is an analytical solution for the rates T±

M |σ. For

environment σ = A, we find

T−
M |A = (N − 1)

[
N−1
M−1

]

[
N
M

] , (9)

and

T+
M |A = mg(N − 1)

[
N−1
M

]

[
N
M

] , (10)

where
[
N
M

]
is the unsigned Stirling number of the first

kind [34]. For environment σ = S, the rates become

T−
M |S =

1

2BN,M

[

(N − 1)BN−1,M−1

−
((N − 1)!)2

N

N−M+1∑

n1=1

n1

(N − n1)

BN−1−n1,M−2

((N − 1− n1)!)2

]

,

(11)

and

T+
M |S = mg

(

1−
BN−1,M−1

BN,M

)

, (12)

where Bk,ℓ = Bk,ℓ(y1, . . . , yk−ℓ+1) is the incomplete Bell
polynomial [35]. The arguments yi are the sequence
yi = (i − 1)!(N − 1)i−1, with (N − 1)i−1 the falling
factorial of (N − 1) with respect to (i − 1), given by

(N − 1)i−1 =
∏i−2

j=0(N − 1 − j). Further details can be
found in Section ?? in the Supplementary Material. In
Figure 3 we demonstrate the accuracy of the predictions
for the rates T±

M |σ when compared against direct mea-

surements of the rates from simulations of the full model
with fixed environmental state.
We now proceed to discuss the properties of these rates

as a function of M . We first focus on the rates T+
M |σ, i.e.,

events in which the number of mating types increases.
The introduction of new mating types occurs when one
individual mutates from one mating type to another. In
order for M to increase in this process, the mutating in-
dividual must not be the only representative of its type.
As a consequence T+

M |σ tends to decrease with increasing
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(b)(a)

FIG. 3. Theoretical predictions of rates T+

M|σ and T−
M|σ

against numerical simulations of the full model with fixed en-
vironments, σ = S and σ = A respectively. Parameters are
N = 16 and mg = 1.6.

M : if a large number of mating types is present in the
population, then it is likely that some of these will only
be represented by a small number of individuals, and pos-
sibly by a single member of the population. A mutation
event involving this individual then does not lead to an
increase of the number of mating types.

In birth-death events the number of mating types can
decrease, irrespective of whether reproduction is sexual
or asexual. A reduction of M occurs when the individual
that dies in such an event is the only representative of
its mating type. Given that the size of the population is
fixed, this is more likely to be the case when the number
of mating types is large, hence the rate T−

M |σ increases

with M .

Using these rates we can obtain the stationary distribu-
tion for the number of mating types under fixed environ-
mental conditions using standard results for continuous-
time Markov chains [38]. We have

P st
M |σ =

T+
M−1|σ · · ·T

+
1|σ

T−
M |σ · · ·T

−
2|σ

P st
1|σ, (13)

with

P st
1|σ =

[

1 +
T+
1|σ

T−
2|σ

+ . . .+
T+
N−1|σ · · ·T

+
1|σ

T−
N |σ · · ·T

−
2|σ

]−1

. (14)

Using this expression, we can write the stationary distri-
bution in closed form for environment σ = A,

P st
M |A =

mM−1
g

(N − 1)!

[
N
M

]

(
mg+N−1

mg

) . (15)

For environment σ = S, we use Eq. (13) with rates given
by Eqs. (11) and (12). In Section ?? of the Supplemen-
tary Material we show that these predictions for P st

M |S

and P st
M |A are in good agreement with numerical simula-

tions.

III. STATIONARY DISTRIBUTION FOR THE

NUMBER OF MATING TYPES UNDER

ENVIRONMENTAL SWITCHING

While in previous studies [24, 25, 30] the frequency of
facultative sexual reproduction was measured by a sin-
gle parameter (the probability of a reproduction event
being sexual), the switching environment model requires
two parameters, λA→S and λS→A. Importantly, while
the probability of finding the population in a sexual
state remains constant for a fixed ratio λA→S/λS→A (see
Eq. (5)), the population dynamics qualitatively changes
as the values of these parameters are changed. This is
illustrated in Figure 4, where typical time courses of the
number of mating types present in the population are
shown (left panels) along with the corresponding station-
ary distributions P st

M (right panels). We next give a brief
overview of the behaviour of the model.

In general we see in Figure 4 that while the number of
mating types fluctuates, the number is typically higher
when reproduction is sexual. In the sexual environment,
rare mating types experience a reproductive advantage,
with their per capita reproductive rate proportional to
(N − ni) (see Eq. (2)). This means that novel mutants
(or migrants) establish in the population with high prob-
ability [39]. In contrast, in the asexual environment mu-
tants have no particular advantage as all mating types
reproduce with the same per capita rate (see Eq. (3)). In
this case, given sufficient time, mating types are driven
to extinction as a result of neutral genetic drift.

Figure 4 shows three different regimes of environmental
switching. In the upper panels the environment is slow
compared to the typical time scales of the population
dynamics. The stationary distribution of the number of
mating types can then be bi-modal, as shown in panel
(b). Here mating type numbers greater than M = 1 in
the asexual regime are only maintained by mutation (or
migration) providing a supply of new types. The distri-
bution of M becomes unimodal when the typical time
scale of environmental switching becomes comparable to
the time scale of the evolutionary process in the popula-
tion (panels (c) and (d)), and it remains unimodal when
the environment is much faster than the population dy-
namics (panels (e) and (f)).

In the following sections we seek to quantify these dy-
namics mathematically. We begin by considering the lim-
its of slow and fast environmental switching (Figure 4
(a,b) and (e,f), respectively), as these prove analytically
tractable. We then go on to consider the range of in-
termediate switching. In order to illustrate the accuracy
of our approximations as compared to simulations, we
will use parameters compatible with manageable com-
puting time (e.g. low population sizes and high mutation
rates, for which the dynamics more rapidly approach a
stationary distribution). In Section III C 4 we will explore
more biologically reasonable parameter regimes that are
prohibitively expensive to investigate through simulation
alone.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Sample path of the temporal evolution, and stationary distribution of the number of mating types M . The environment
switches between σ = S (entirely sexual reproduction) and σ = A (entirely asexual reproduction). Coloured regions in (a), (c),
and (e) represent the σ = A environment. Data is shown for different switching regime. Panels (a) and (b) illustrate the case of
slow switching (λA→S = λS→A = 10−5), panels (c) and (d) of intermediate switching (λA→S = λS→A = 10−3), and panels (e)
and (f) of fast switching (λA→S = λS→A = 10−1). Simulations have been carried out by using the Gillespie algorithm [36, 37]
in the full model. The stationary distributions shown in panels (b), (d), and (f) have been obtained by time-averaging a long
run until t = 107, with a time t = 105 left to equilibrate. Parameters used: N = 30 and mg = 0.3.

A. Slow environmental switching

When the environmental switching is slow (Figure 4
(a) and (b)) the system spends sufficient time in each en-
vironment for the number of mating types to reach sta-
tionarity. While placing an exact mathematical bound on
this slow switching limit is non-trivial, “sufficient time to
reach stationarity” requires at least that τA, τS ≫ m−1

g

(i.e. that the population spends enough time in each en-
vironment for mutation/migration events to occur) and
τA ≫ N (i.e. that the population spends enough time in
the asexual environment for extinction events to occur).
One then expects the overall distribution of the number
of mating types P st

M to be the weighted average of the
stationary distributions from each environment. Mathe-
matically, this means

P st
M = (1− pS)P

st
M |A + pSP

st
M |S . (16)

This result can be obtained analytically from the mas-
ter equation of the system (see below in Eq. (22)) in the
limit of slowly switching environments, see Section ??

in the Supplementary Material. This approximation was
also used in [7] for a game theory model with switching
payoff matrices. The probability pS = P st

S is given in
Eq. (5), while the probability P st

M |S and P st
M |A are the

stationary distributions for M assuming that the envi-
ronmental state is fixed to S or A, respectively. These
are given in Eqs. (13) and (14).

In Figure 5 (a) and (b), we compare this prediction for
the limit of slow environmental change against numerical
simulations. We show the distribution P st

M as function of
the fraction of time pS spent in the sexual environment.

The upper panels in Figure 6 illustrate the behaviour of
P st
M in the regime of slowly varying environments. In par-

ticular we show how this stationary distribution changes
with the rate pS . We have now chosen a larger popula-
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tion than in Figure 5, and we show results for different
mutation (or migration) rates mg. As seen in the figure,
the distribution is unimodal if the environment is pre-
dominantly in one of its two states (i.e., pS is close to
zero or one). The distribution is bimodal when the en-
vironment spends similar fractions of time in each state
(pS ≈ 1/2), independent of the rate at which new mating
types are added. We also see that the mode of the distri-
bution for P st

M is lower if reproduction is always asexual
(pS = 0) than in the case of obligately sexual reproduc-
tion (pS = 1). As mg increases (new mating types arrive
more frequently), the distribution gets wider around its
peak, and the most probable number of mating types is
shifted to higher values. Naturally, for very high (and bi-
ologically unrealistic) values of mg the mode of P st

M will
be equal to the population size N .

B. Fast environmental switching

The simulation data in Figure 4 (e) and (f) illus-
trates the behaviour of the population in the limit of
very fast environmental switching. As addressed, this
limit is observed when environmental switching is much
faster than the birth-death population dynamics (i.e.
τA, τS ≪ N−1, where N is the typical time, measured
in generations, between birth-death events) such that
a reproducing individual only “sees” a sexual environ-

(a) (b)

(c) (d)
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FIG. 5. Stationary distribution P st
M as function of M and

pS , for slow switching regimes (upper row) and fast switch-
ing regimes (lower row). Panels (a) and (c) show the result
obtained from numerical simulations for parameters N = 16,
mg = 0.16 with λA→S = 10−6 (for (a)) and λA→S = 103 (for
(c)). Panels (b) and (d) show the corresponding theoretical
predictions in Sections IIIA and III B, respectively.

ment with probability pS . Unlike in the regime of slow-
switching environments, the stationary distribution P st

M
then only exhibits one peak.
To estimate the P st

M in this regime, we follow the ana-
lytical approach developed in [7] for game theoretic mod-
els and calculate weighted averages of the transition rates
T σ
ij for all pairs i, j,

T fast
ij = (1− pS)T

A
ij + pST

S
ij . (17)

This leads to

T fast
ij =







Asexual reproduction
︷ ︸︸ ︷

(1− pS)ni +
pS
2

ni

N
(N − ni)

︸ ︷︷ ︸

Sexual reproduction












nj

N
︸︷︷︸

Death




 , (18)

and one recovers the limit studied in [24] for the case
of asynchronous facultative sex. This is a model with a
constant environment with an effective sex rate pS . This
sex rate determines the effective birth and death rates,

T+,fast
M and T−,fast

M . Further details of the derivation of
these rates are given in Sections ?? of the Supplementary
Material. We find

T−,fast
M =

1

2BN,M

[

(2− pS)(N − 1)BN−1,M−1

−
pS
N

(N − 1)!(NpS
− 1)!×

N−M+1∑

n1=1

n1

(NpS
− n1)

BN−1−n1,M−2

((N − 1− n1)!)2

]

, (19)

and

T+,fast
M = mg

(

1−
BN−1,M−1

BN,M

)

, (20)

where the Bk,ℓ = Bk,ℓ(y1, . . . , yk−ℓ+1) are incomplete
Bell polynomials as before. However, the yi are now given
by yi = (i− 1)!(NpS

− 1)i−1, where NpS
is

NpS
=

2− pS
pS

N. (21)

The stationary distribution for M is then obtained using

Eqs. (13) and (14), with the replacement T±
M |σ → T±,fast

M .

We test these theoretical predictions in Figure 5 (c)
and (d), and find good agreement with simulations. The
behaviour of the model is further explored in Figure 6
(d-f), where we show the stationary distribution for the
number of mating types in the limit of fast environments,
for varying values of the facultative sex rate and for dif-
ferent mutation rates. For the parameters in Figure 6 the
distributions are not too dissimilar from the ones in the
slow switching regime (panels (a-c)). However, one main
difference is the absence of bi-modality when pS ≈ 1/2.
Additionally, we find the distribution is wider around its
peak.
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FIG. 6. Theoretical prediction for stationary distribution P st
M , for slow switching (upper row), and fast switching (lower row)

as function of the number of mating types (M) and the average fraction of time spent in the sexual environment, pS . The
theoretical predictions for the two switching regimes are calculated from Eqs. (16) and (18), respectively. Panels (a) and (d)
show the case of low mutation rate (mg = 0.5), panels (b) and (e) are for intermediate mutation rate (mg = 5), and panels (c)
and (f) for high mutation rate (mg = 50). Population size is N = 50.

C. Transition between slow and fast switching

regimes

In the previous sections, we studied the stationary dis-
tribution of the number of mating types in the limits of
slow and fast environmental dynamics. The differences
between these limits are most pronounced at interme-
diate facultative sex rates (pS ≈ 1/2). We now focus
on the regime of intermediate environmental switching.
The time scale of the environmental dynamics is set by
the cycle time τ , defined in Eq. (7), and we are therefore
interested in situations where τ is comparable to the time
scales of the evolutionary process in the population.

1. Stochastic simulations

Results from simulations are shown in Figure 7. We
focus on the case pS = 1/2. Cases with pS close to zero
and one are explored in Section ?? of the Supplemen-
tary Material. As shown in Figure 7, in the intermedi-
ate switching regime the stationary distribution P st

M does
not exhibit a clearly defined peak as in the fast switching
regime, but rather it exhibits a wider distribution, with
two peaks in some cases. When the population size is
low (see first row of Figure 7), the distribution gets wider
compared to the limiting cases (slow and fast switching

regimes), and exhibits two peaks only when the muta-
tion rate is low (see Figure 7 (a) for high values of τ ;
this is the same distribution shown in Figure 4 (b)). For
higher population sizes (see second row), the distribution
makes a transition from a unimodal shape (fast switch-
ing regime) to bimodal (slow switching regime) for all
values of the mutation rate used in the figure. In be-
tween (intermediate switching regime) the distribution is
wider around its peak until it bifurcates in two. This
situation is also observed for higher population sizes (see
lower row), however, each of the two peaks become more
narrow.

2. Generator-matrix approach

We have shown that in the single environment case,
we are able to successfully reduce the combined dynam-
ics of the number of mating types to an approximate
one-step birth-death process for the number of mating
types, M (see Section IIC). We have further shown how
this can be used to predict the population behaviour in
the slow-switching limit (where the system takes on the
average behaviour of the two independent environments,
see Section IIIA), and in the fast-switching limit (where
the system behaves as if it were in a single, effective envi-
ronment, see Section III B). We now seek to extend this
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FIG. 7. Simulation results of the stationary distribution P st
M as function of M and τ , the average time of one switching period.

Parameters used: upper row, N = 30; middle row, N = 100; lower row, N = 1000. Left column, m = 0.01; middle column
m = 0.1; right column, m = 0.5. We set λS→A = λA→S throughout. Numerical simulations were conducted by time-averaging
a long run until time t = 107, with a time t = 106 left to equilibrate.

approach to the intermediate regime.
We begin by supposing that the dynamics of the full

model (which involves transitions in the mating type
abundances, n) can be approximated as a coupled birth-
death process in M and σ. The master equation for this
process takes the general form

dP (t)

dt
= P (t)Q, (22)

where the entries of the row vector P (t) are the proba-
bilities of finding the system at a certain state (M,σ) at
time t. It is convenient to arrange the states such that
this vector takes the form

P = (P1,S , . . . , PM,S , . . . , PN,S
︸ ︷︷ ︸

state σ = S

, P1,A, . . . , PM,A, . . . , PN,A
︸ ︷︷ ︸

state σ = A

),

(23)

so the first half of entries correspond to states (M,σ =
S), and the second one to states (M,σ = A). In both
environments we have 1 ≤ M ≤ N , with the bounds
corresponding to the extreme cases of the whole popula-
tion being of the same type (M = 1), or each individual
of a different type (M = N). The matrix Q is of size

2N ×2N , and it is convenient to write it in the following
block structure,

Q =

(
Q(S,S) Q(S,A)

Q(A,S) Q(A,A)

)

. (24)

The N × N blocks Q(S,A) and Q(A,S) describe tran-
sitions between the environmental states. Given that
the model does not include events in which both the
environmental state and the number of mating types
changes at the same time, these blocks are diagonal

in M . We have Q
(S,A)
M,M ′ = λS→AδM,M ′ and similarly
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FIG. 8. Theoretical prediction of P st
M obtained as the solution of Eq. (26), i.e., the null space of matrix QT . Parameters used

are the same as in the second row of Figure 7.

Q
(A,S)
M,M ′ = λA→SδM,M ′ . We must now find an approxima-

tion for the transitions within each environment, Q(S,S)

and Q(A,A). Ultimately there are no correct choices for
these matrices as they are simply approximations of the
full model. Below we follow one particular approach,
while alternatives are discussed in Section III C 3.
We begin by assuming that on transitioning to the

sexual environment, the system rapidly relaxes to quasi-
stationary state in which the dynamics of mating-type
number are well-approximated by the transition rates in
the sexual environment at equilibrium (see Section IIC).
Thus Q(S,S) is tri-diagonal (only involving transitions
that increase or decrease the number of mating types
by one) with entries

Q
(S,S)
M,M+1 = T+

M |S ,

Q
(S,S)
M,M = −T+

M |S − T−
M |A − λS→A,

Q
(S,S)
M,M−1 = T−

M |S . (25)

We can proceed analogously to construct the matrix
Q(A,A) in the asexual environment.
Next, we calculate the stationary distribution P st for

this approximate system, by setting the right hand side
of Eq. (22) to zero,

P stQ = 0. (26)

The solution has to be normalised appropriately, i.e, we
must impose

∑

M,σ P
st
M,σ = 1. The marginal distribution

for the number of mating types is obtained as P st
M =

∑

σ∈{A,S} P
st
M,σ. The block structure of Q reduces the

complexity of the problem, and, as a consequence, the
stationary state can be obtained numerically relatively
easily.
Compared to numerical simulations, the theoretical ap-

proach presented here brings a considerable simplifica-
tion for estimating the stationary distribution P st

M . For
the cases shown in Figure 7, simulations quickly become

costly as both N and the switching rates increase, be-
cause more events occur per unit time. This is not a
major obstacle, however, when solving Eq. (26). The
matrix structure of Q allows a fast numerical computa-

tion of P st even for large values of N . In cases in which
the distributions P st

M,σ fall off quickly with M one can
truncate the range of M to values much smaller than N ,
additionally accelerating the analysis.

We now proceed to define more precisely when exactly
we expect this approach to work. We know that the key
assumption is that the system has sufficient time in each
environment to relax to the quasi-stationary distribution
obtained in that environment when switching is absent.
This assumption is required so that that we can approx-
imate the rates T±

M,σ by T±
M |σ (a comparison to the case

in which numerically-determined rates T±
M,σ are used in

the generator matrix is presented in Section ?? of the
Supplementary Material).

In the sexual environment, this assumption is valid
across a large parameter range (strong selection for even
mating type frequencies very rapidly brings the system
to a quasi-stationary distribution around one of the sys-
tem’s fixed points). However in the asexual environment,
relaxation to the stationary distribution takes far longer
(this relaxation is driven entirely by genetic drift, which
operates on a much slower timescale). Thus the require-
ment that this relaxation time is less than the typical
time spent in the asexual environment provides the key
restriction for the parameter range over which we expect
the generator-matrix approximation to work. Assuming

that the system in the sexual environment reaches M
(S)
o

mating types before transitioning to the asexual envi-
ronment, we now calculate the mean time taken for the

system to relax from M
(S)
o to M

(A)
o mating types in the

asexual environment, whereM
(S)
o andM

(A)
o are the mode

number of mating types in the fixed sexual and asexual
environments, respectively. Using the results of [40] for a
neutral multi-allelic Moran model, we find that the condi-
tion that the system spends sufficient time in the asexual
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environment is given by

τA ≫ τr

(

M (S)
o ,M (A)

o

)

, (27)

where

τr (M
′,M) = −N

M ′−1∑

s=M ′−M

(−1)s−M ′+M ×

(
s− 1

M ′ −M − 1

)(
M ′

s

)
s

M ′
log

( s

M ′

)

(28)

is the mean time taken for the system to transition from
a state with M ′ to M mating types in the asexual envi-
ronment. Therefore, if the condition (27) is fulfilled, we
expect that the system will have sufficient time to relax
in the asexual environment to its quasi-stationary distri-
bution for which T±

M |A are accurate approximations for

T±
M,A.
In Figure 8, we show the predictions obtained using

this approach for the same parameters as in Figure 7
(middle row). The parameters used are within in the
range in which the generator-matrix approach is in good
agreement with numerical simulations (see Eq. (27)). We
note that this does not require very slow environmental

switching per se; if the modes M
(S)
o and M

(A)
o are suf-

ficiently close, then intermediate switching rates allow
the system to relax to the quasi-stationary distribution
in the asexual environment. In fact, for the parameters
used in Figure 8 the mean time τr is about ten times
lower than τA for intermediate switching regimes. Thus

if mg is large (such that M
(A)
o is large) or N low (such

that M
(S)
o is low) we can still expect to see a good agree-

ment between the generator-matrix approach and theory
(see Figure 9). In biological terms we can therefore view
the generator-matrix approach as being most useful when
considering small populations, with migration (large mg)
taking place between spatially segregated patches.

In Section ?? of the Supplementary Material we show
in more detail how the distribution P st

M obtained from
the generator-matrix approach compares against numer-
ical simulations for different values of mg and pS . We
illustrate in Section ?? how P st

M,σ obtained from this ap-
proach behaves as function of pS for both σ = S and
σ = A. We also show that one can derive closed-form
solutions of the stationary distributions P st

M,σ in terms of

rates T±
M |σ in the limits of slow and fast environmental

dynamics (Section ??). In the slow-switching limit we
obtain the result presented in Eq. (16). In this limit the
system spends a long time in each environmental state,
and thus, using the rates T±

M |σ in the reduced model is a

good approximation. For the fast-switching limit, how-
ever, this approximation is no longer valid; the system
has insufficient time to relax to the quasi-stationary dis-
tribution in the asexual environment under which T±

M |A

are accurate approximations for the transition rates, and
so the theoretical prediction of P st

M differs from the result
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FIG. 9. Mode of stationary distribution of the number of
mating types, P st

M , as function of mg for pS = 0.5 and popu-
lation size: (a) N = 100 and (b) N = 1000. The prediction
of the fast-switching limit in the full model is the approxima-
tion in Section III B, whilst the prediction of the generator-
matrix approach in the fast-switching limit is described in
Section ?? of the Supplementary Material. The predictions
of single environments with pS = 0 and pS = 1 correspond to
the non-switching cases in Section ??. These serve as refer-
ence of how distant the modes in switching environments are
located with respect to the modes in fixed sexual and asexual
environments.

presented in Section III B. Thus the generator-matrix ap-
proach can be understood as providing an approximation
for the regime of slow-to-intermediate switching that im-
proves on the slow-switching limit in Section IIIA.

3. Alternatives to the generator-matrix approach

We have seen in Section III C 2 that while we can ob-
tain a good approximation for the dynamics in the sexual
environment in the environmental switching model, the
approximation of the dynamics in the asexual environ-
ment is more challenging. This is perhaps surprising as
in the asexual environment the dynamics of mating type
frequencies are essentially given by a multi-allelic neutral
Moran model, for which a wealth of well-established an-
alytic results are available [40]. In this section we discuss
two alternatives to the generator-matrix approach that
leverage these results and demonstrate how, although ini-
tially plausible, each leads to their own set of issues.
First, we consider utilising standard results for the

mean extinction time of a neutral allele. Assuming that
on leaving the sexual environment with M ′ mating types
the frequency of each mating type is evenly distributed
as ni ≈ N/M ′ (valid when N is large), the mean time
to transition from M ′ to M mating types is given by
Eq. (28) in the absence of mutation. Given an initial
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number of mating types M ′, the mean time to subse-
quently transition from M to M − 1 is then given by
τr(M

′,M−1)−τr(M
′,M). While this expression clearly

features a dependence on the initial number of mating
types in the asexual environment, M ′, we find that this
dependence is weak and in fact drops out in the limit of
large M ′. Assuming then that mg is small, such that the
probability that the probability of transitioning from M
to M+1 in the asexual environment is negligible, we can
approximate the birth-death transitions in the asexual
environment as

T+
M |A ≈ 0,

T−
M |A ≈

1

τr(M ′,M − 1)− τr(M ′,M)

∣
∣
∣
∣
M ′→∞

. (29)

Here we have approximated the effective extinction rate
of mating types, T−

M |A, by inverse of the mean time to

transition from M to M − 1.
While this may at first seem entirely reasonable, we

find in fact that this model largely underestimates the
number of mating types seen in the full model. The
central problem is that while the mean transition time
implied by Eq. (29) does indeed approximate the mean
transition time in the full model, the full distribution
of transition times is poorly predicted. Equation (29)
assumes that the waiting time for a transition from M
to M − 1 is exponentially distributed, with a non-zero
probability of transitioning after a very small time in
the asexual environment. However, the real distribution
of transition times is peaked at a particular time, with
transitions at very small times being impossible (it takes
a minimum of N/M ′ reproductive events to drive a mat-
ing type extinct). In this way the approach suggested in
Eq. (29) allows more frequent extinctions than actually
observed, and thus a lower number of mating types in
the stationary distribution than we see in simulations.
A second approach is to ignore the distinct asexual en-

vironment entirely, but to instead allow arbitrary transi-
tions from a state M ′ to all states M < M ′. Again, we
assume that mg is small, and ignore the possibility of an
increase in the number of mating types in the asexual en-
vironment. In the sexual environment, we have contribu-
tions to the probability that the number of mating types
increases or decreases by one, as in Section III C 2. When
the system enters the asexual environment, we now ask
what is the probability of transitioning from M ′ → M
before the system reverts to the sexual environment. In
this way we can circumvent any direct modelling of the
asexual environment while slightly increasing the com-
plexity of the single-environment model by adding non-
local transitions.
While the above approach may at first seem analyti-

cally challenging, progress is in fact possible. In [40], an
expression was developed for the probability that exactly
M alleles remain in a population at some time t. All we
need to do is integrate this function over the probability
of transitioning from the asexual to the sexual environ-
ment at time t (i.e., the exponential distribution with

parameter λA→S). We find then that accounting for the
asexual environment yields the following contribution to
the probability per unit time of transitioning from M to
M ′:

λS→AΦ(M
′,M) , (30)

with

Φ(M ′,M) =

M ′−M∑

s=1

(−1)M
′−M−s

(
M ′ − s

M ′ −M − s

)

×

(
M ′

s

)

F
( s

M ′

)

,

where

F
( s

M ′

)

=
s

M ′
−

1

2

∞∑

l=0

{

(−1)l
[

Pl

(

1− 2
s

M ′

)

−

Pl+2

(

1− 2
s

M ′

)]
2NλA→S

2(1 +NλA→S) + l(3 + l)

}

(31)

and Pl (y) are Legendre polynomials.
The above technique provides an analytically elegant

alternative to the generator-matrix approach. Unfortu-
nately, it turns out to be numerically impractical. Equa-
tion (31) involves the infinite sum over Legendre poly-
nomials, and the slow convergence of these terms is a
known numerical issue [41]. Convergence is especially
problematic when NλA→S is large, a range (large pop-
ulation size) that is particularly interesting biologically.
Therefore while this second approach has the best po-
tential for providing an analytic approximation to the
number of mating types at intermediate regimes, its ulti-
mate success relies on an improved analytic or numerical
method for tackling Eq. (31), which lies outside the scope
of this paper.

4. Regime of small mg and large N

Having developed approximations for the intermediate
regime when mg is large and N is small, we here investi-
gate the range and extent of the intermediate switching
regime when mg is small and N is large, reflecting a more
panmictic population in which mg can readily be inter-
preted as a mutation rate. In Figure 10 we plot the mode
number of mating types in the stationary distribution as
a function of the probability of being in a sexual envi-
ronment, pS , for varying mean residency times in the
sexual state, τS . We see that for pS ≈ 1 (almost obli-
gate sex) the number of mating types is well described
by the fast-switching theory of Section III B. However as
pS is lowered, we begin to see departures from this theory,
with the number of mating types consistently lower than
that predicted by the fast-switching limit. These depar-
tures are ever more extreme as the time spent in the sex-
ual environment (and consequently for fixed pS , also the
time spent in the asexual environment) increases. We can
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FIG. 10. Mode of stationary distribution of the number of
mating types, P st

M , as function of the probability of being in
a sexual environment, pS , for parameters N = 104 and mg =
10−3. The prediction of the fast-switching regime is based
upon the results studied in Section III B. For longer residency
times in the sexual environment (i.e., longer τS), simulations
of the full model (dashed lines) demonstrate a lower num-
ber of mating types, in qualitative agreement with the results
of Section III C 2. Discrepancy between the fast-switching
limit and the simulations increases as pS increases, when the
system enters the intermediate switching regime. As pS ap-
proaches zero, the system enters the slow-intermediate regime
described by the generator-matrix approach (see Eq. (27)), in
which only one mating type can be maintained.

therefore see that fast-switching theory very much rep-
resents an upper-bound on the mode number of mating
types expected for a general set of parameters.

While it is computationally impractical to investigate
population sizes much larger than N = 104, or muta-
tion rates much lower than 10−3 (as in Figure 10), we
are nevertheless interested in what general patterns we
might expect to see as we go beyond this regime. In Fig-
ure 11 we investigate how the mode number of mating
types varies with population size. Broadly our results fit
our intuition developed thus far; when the time spent in
the asexual environment is very short (see panel (b)) the
system is well-approximated by the fast switching theory,
while when the time spent in the asexual environment is
very long (see panel (c)) the generator-matrix approach
works well (in fact, τr in Eq. (28) is less than one percent
of τA for all the values of N shown in panel (c)). Mean-
while at intermediate switching regimes we see that the
magnitude of departure from the fast-switching theory
increases as time spent in the asexual environment in-
creases (see panels (a) and (d)). However we also see now
that as N increases, the simulation results for intermedi-
ate switching rates begin to approach the fast-switching
limit. In the context of Eq. (28), this is perhaps unsur-
prising; the timescale on which extinctions occur in the
asexual environment is linearly dependent on N , and so,
as this population size increases, the range of switching
rates that can still be considered fast also increases.
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FIG. 11. Mode of stationary distribution of the number of
mating types, P st

M , as function of the population size N for
mg = 10−3 for different values of pS and τS . The fast-
switching prediction is based upon the results studied in Sec-
tion III B, whilst the generator-matrix approach upon the pre-
diction of the framework presented in Section III C 2. Simula-
tions were run up to time t = 108, with measurements starting
t = 103 to ensure stationarity.

IV. SELECTIVE SWEEPS IN THE SWITCHING

ENVIRONMENTAL MODEL

In the previous section we demonstrated that explicitly
accounting for switching environments led to both quan-
titative and qualitative changes in the model predictions.
In this section we will show how this change in modelling
formalism allows us to tackle a richer array of biological
questions, without necessarily sacrificing tractability.

Suppose that mutations arise in the population at loci
unlinked to the mating type locus at an average rate µ.
We will further suppose that the mutant allele is under
directional (frequency independent) selection, such that
individuals carrying the mutation have a selective ad-
vantage s over individuals carrying the resident allele. If
s < 0, the mutation will be selected against and will be
rapidly lost from the population. If s > 0 the mutation
will be selected for and (in the absence of stochastic ex-
tinction effects) will sweep to fixation. However the focus
of interest for this study is the frequency of the mating
type alleles. The impact of this selective sweep will have
very different effects on the mating type frequencies de-
pending on the environment, sexual or asexual, in which
it occurs.

If this mutation arises while the system is in the sexual
environment, it quickly spreads to all the present mating
types via genetic recombination and has no effect on the
number of mating types M . For instance, say that mu-
tation occurs in an individual of mating type i. While
that individual experiences a selective advantage s, upon
sexual reproduction with a non-self mating type (say of
mating type j 6= i), its progeny may inherit: (1) the
resident mutation and mating type i; (2) the beneficial
mutation and mating type i; (3) the resident mutation
and mating type j; (4) the beneficial mutation and mat-
ing type j. The beneficial mutation will thus have the
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opportunity to spread to every other mating type class.
In this way, the beneficial mutation will rapidly spread
through the mating type populations without apprecia-
bly distorting their relative frequencies.
Conversely, if this mutation arises while the system is

in the asexual environment, it is confined to the mat-
ing type on which it occurs (genetic recombination is
absent). For instance, if a mutation occurs in an indi-
vidual of mating type i (such that that individual ex-
periences a selective advantage s) its progeny will also
inherit the beneficial mutation and the mating type i.
The frequency of mating type i will thus increase in the
population, generating large distortions away from equal
mating type frequencies (xi = 1/M ∀ i). Denoting by y
the frequency of individuals carrying the beneficial mu-
tation, their dynamics in the large N limit will be given
by

dy

dt
= sy(1− y) =⇒ y(t) =

1

1 + e−st(N − 1)
. (32)

Let us suppose again that the beneficial mutation occurs
in an individual of mating type 1. Then, assuming that
initially the mating types were in approximately equal
abundances, the dynamics for the mating type frequen-
cies xi is given by

x1(t) = y(t) +
1

M
(1− y(t)) , (33)

xi(t) =
1

M
(1− y(t)) , ∀ i ≥ 2 . (34)
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FIG. 12. Illustration of the dynamics of mating type frequen-
cies xi = ni/N when selective sweeps are accounted for. In
the sexual environment (0 < t < 500) mating type frequen-
cies are held at approximately equal values by negative fre-
quency dependent selection. Beneficial mutations at unlinked
loci spread to each mating type subpopulation through re-
combination, and thus do not affect this even mating type
distribution. In the asexual environment (500 < t < 1500), in
the absence of beneficial mutations (500 < t < 1000) mating
type frequencies fluctuate due to genetic drift alone. However
when beneficial mutations occur (t = 1000), the mating type
background on which they arise can hitchhike to fixation, re-
ducing the number of mating types to one. Data is obtained
from Gillespie simulation with N = 5× 104 and s = 0.02.

These dynamics are illustrated in Figure 12. We see
that as the mutation sweeps through the population, the
total number of individuals of mating types i ≥ 2 de-
creases, and thus, stochastic extinctions of these mating
type classes become more likely. Over only slightly longer
timescales, fixation of a single mating type is all but guar-
anteed, with the mean time until the fixation of a single
mutant given approximately by 2 log(N)/s in large pop-
ulations. We now leverage the results of the previous
section to provide a more simple approach using the re-
duced model. We explain this below.
In addition to the effective birth-death and switch-

ing environment processes previously present in the
generator-matrix approach, we now consider the possi-
bility that the system transitions to a state of one single
mating type at constant rate ν when in the asexual envi-
ronment. The rate ν can thus be understood as a com-
pound parameter that captures the average rate at which
a beneficial mutation occurs in an asexual environment
µ(1−pS) and has sufficient time to sweep a single mating
type to fixation. The conditional mean fixation time for
a single mutant to fixate in large populations, tfix, can be
approximated by solving ẏ = sy(1− y) with y(0) = 1/N
and y(tfix) = 1−1/N to show tfix = 2 log(N)/s. Thus the
probability that a randomly arising beneficial mutation
has sufficient time to sweep a single mating type to fix-
ation is given by

∫∞

t=2 log(N)/s
(1/τA) exp(−t/τA) dt, and

we therefore have

ν = µ(1− pS)N
−2/(sτA) , (35)

We consider the rates T±
M |σ as before, first assuming a

fixed environment. For environment σ = A then, we
have

M
T+

M|A
−−−→ M+1, M

T−
M|A

−−−→ M−1 and M
ν
−→ 1, (36)

while for σ = S

M
T+

M|S
−−−→ M + 1, and M

T−
M|S

−−−→ M − 1.

The switching environment transitions are as in the pre-
vious sections (i.e., as in Eq. (1)). The stationary distri-
bution P st

M for this scenario can be estimated in a similar
way to the method presented in Section III C 2, by con-
structing the corresponding generator matrix Q in which

the selective sweeps process M
ν
−→ 1 is included (see Sec-

tion ?? of the Supplementary Material for details). Fig-
ure 13 shows the theoretical prediction of P st

M obtained
from this approach for both switching environments, con-
sidering an equal fraction of time spent in each environ-
ment (i.e., pS = 1/2).
The inclusion of selective sweeps brings interesting fea-

tures in both switching regimes. For the slow-switching
case (see upper row of Figure 13), we observe that the dis-
tribution still remains bimodal but with a considerably
higher peak at M = 1. As ν increases, the distribution
at both modes remains constant. On the other hand, for
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FIG. 13. Theoretical prediction of P st
M as function of M and ν for different values of m in slow and fast switching environments.

The parameter ν defined in Eq. (35) specifies a higher selective advantage s as it increases

. Population size N = 50. From left to right panels: mg = 0.5, 5, 50.

the fast-switching regime (see lower row of Figure 13), as
ν increases the mode transitions from a value M > 1 to
M = 1. In both regimes, the emergence of the peak at
M = 1 occurs when ν crosses certain point determined
by how high the mutation rate mg is. As mg increases,
this point will naturally be higher.

The approach employed here to predict P st
M is an ap-

proximation as it makes use of rates T±
M |σ that assume

a fixed environment. We compare it against numerical
simulations in Section ?? in the Supplementary Mate-
rial. We also explore the case of selective sweeps in a
fixed asexual environment in Section ??. Our theoretical
predictions capture the main effects on the distribution
of the number of mating types when selective sweeps are
included.

In the presence of selective sweeps we can then see
the following biological picture emerge. In order for the
populations to maintain more than a single (essentially
non-functional) mating type, one of two scenarios must
hold. In the first scenario we seemg ≫ ν. In this case the
rate of supply of new mating types (governed by mg) far
exceeds the extinction rate generated by selective sweeps
(governed by ν). This would be appropriate if we were
to consider mg as representing a migration rate between
geographically structured subpopulations. In the second
scenario we see s−1 > τA. In this case while selective
sweeps can initiate in the asexual environment, switching
is sufficiently fast that the sweeps cannot complete.

V. CONCLUSIONS

For reasons on tractability, most studies consider-
ing evolution in facultatively sexual populations focus
on asynchronous sex, in which individuals probabilisti-
cally engage in sexual reproduction [29]. This is also
true for models that have tried to capture the evolution
of mating type number under demographic stochastic-
ity [24, 25, 30]. In this paper we have released this re-
striction to consider the dynamics of the number of mat-
ing types under demographic stochasticity in populations
that switch synchronously between asexual and sexual
environments. In a coarse grained sense our model reca-
pitulates previous theoretical and empirical observations
that the number of mating types should be positively
correlated with increasing amounts of sexual relative to
asexual reproduction. However we have shown that the
additional consideration of sexual synchrony generates
both quantitative and qualitative differences from the
asynchronous model, as well as offering scope for asking
a richer array of biologically interesting questions.

With respect to quantitative differences between the
asynchronous and synchronous models, we have shown
the two models are only equivalent in the limit of fast
switching between environments. However as switching
becomes slower (and in particular as the amount of time
in the asexual environment becomes longer) mating type
extinctions become more likely in the synchronous model,
lowering the expected number of mating types in the sta-
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tionary distribution. For instance, in Figure 10 with a
probability of pS = 1/2 of being in the sexual environ-
ment, we see a reduction of more than 10 mating types
when the time spent in the sexual environment is large
(τS = 100) relative to the asynchronous (fast-switching)
theory. This reduction may explain previous overesti-
mates in the expected number of mating types when com-
pared with previous studies where asynchronous sexual
reproduction was assumed [24, 25]. In fact the mode
number of mating types can drop to just one type over a
range of biologically relevant parameters.

Qualitative differences between the asynchronous and
synchronous models are most apparent in small popu-
lations. In this scenario the parameter mg can be in-
terpreted as a per-generation migration rate (with mat-
ing types coming from a highly diverse pool), which we
expect biologically to be much higher than a mutation
rate. When switching is fast, we see as before that the
model tends to the limit of asynchronous switching. How-
ever, when switching is slow, a bimodal prediction for
the number of mating types is possible. Here the popu-
lation spends enough time in the asexual and sexual en-
vironments that the stationary distribution approaches a
superposition of those in the fixed environments; just a
single mating type is maintained in the sexual environ-
ment, while in the sexual environment ingressing mat-
ing types rapidly establish. We emphasise that this be-
haviour is not possible in the asynchronous model. While
local absences of particular mating types are common in
samples of fungi (e.g. Coccidioides [42]) and ciliates (e.g.
Tetrahymena pyriformis [43]), obtaining empirical distri-
butions of the number of mating types across geographic
locations is hindered by low sample sizes. However our
analysis agrees qualitatively with the observation that
the presence of more than one mating type is indicative of
more recent sexual activity [44]. Meanwhile observations
of all mating types present across geographic regions (as
for instance in Dictyostelium discoideum [45]) is consis-
tent not only with the observation of relatively high rates
of sexual reproduction, but also of a fast switching rate
between asexual and sexual reproductive modes.

From a modelling perspective, by allowing for syn-
chronous sexual reproduction we have also been able to
tackle the issue of selective sweeps. In [30] it was shown
that selective differences between mating types (induced,
for instance, by non-neutral mutations at loci linked to
the mating type locus) could rapidly reduce the number
of types observed. As the model was deterministic and
assumed asynchronous sexual reproduction, it could not
quantify how selective sweeps (caused by beneficial mu-
tations at loci unlinked to the mating type locus) might
affect the the number of types observed in isogamous
species. Experimentally however, such sweeps have been
shown to be strong drivers of mating type extinctions in
facultatively sexual species such as Chlamydomonas [31]
and Tetrahymena [46]. Accounting for this effect mathe-
matically, we have been able to show that although this
effect decreases rapidly with increasing population size,

a substantial extinction risk is present when the product
of the strength of beneficial mutations and the average
time spent in the asexual environment is greater than one
(sτA > 1).

By accounting for demographic stochasticity, syn-
chronous sex, and selective sweeps, our model suggests
that the persistence of self-incompatible mating types in
facultatively sexual populations may be even more pre-
carious than previously believed [39]. In fact, a range of
biologically plausible parameters suggest that just a sin-
gle (functionally asexual) mating type is most probable
at long times. Empirical phylogenies of isogamous species
such as within fungi [47] and ciliates [48] show that such
scenarios are relatively common. And yet despite this,
species with distinct mating types have remained sta-
ble over long evolutionary periods, with highly conserved
mating type loci [49].

In light of these results it is possible to reframe the
evolutionary question away from asking “Why do most
isogamous species have just two mating types?” and
towards “How do so many facultatively sexual species
maintain even two in the face of genetic drift and selec-
tive sweeps?”. Our bimodal results for small population
sizes with an effective migration rate point to a possi-
ble solution, suggesting a role for spatial structure. If
sex is not synchronised in time across a whole popula-
tion, but rather synchronised across a finite set of spa-
tial regions, mating type diversity may be maintained.
However, further work, perhaps involving metapopula-
tion models [50], would be needed to fully uncover how
geographic population structure might affect the evolu-
tion of mating type number.

Alternative modelling approaches could also investi-
gate how periodic switching (as opposed to the stochastic
switching that we have implemented) impacts our con-
clusions. From the results we have obtained, we would
conjecture that the population behaviour would be iden-
tical in the fast and slow switching regimes. However in
intermediate regimes, the mating type number would be
likely to decrease more slowly as a function of the propor-
tion of sexual reproduction under periodic switching, as
longer-than-average periods in the asexual environment
under stochastic switching offer more opportunities for
extinction. From a theoretical point of view it would
also be interesting to study a system with a continuous
time-varying rate of facultative sex, i.e. a model in which
pS(t) undergoes a random process, for example driven by
a stochastic differential equation.

More broadly, our results also point to some impor-
tant considerations in the general literature on the evo-
lution of sexual reproduction. While the facultative na-
ture of sexual reproduction in models that assume asyn-
chronous sex is captured by just a single parameter (the
probability of a sexual rather than asexual event), mod-
els of synchronous sex require the specification of two
parameters (the mean time spent in sexual and asexual
environments). For species in which sexual reproduc-
tive phases are induced in a seasonal or regular manner
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(such as Tetrahymena [51]), these parameters may be rel-
atively straightforward to estimate. However for species
in which sexual reproduction is irregular or very rare,
such as (Chlamydomonas [52] or Saccharomyces [53]) es-
timating these parameters independently may pose a far
greater challenge. Here ‘rates of sexual reproduction’ are
often estimated using genomic methods that can be used
to infer the long-time average number of sexual to asex-
ual reproductive events (equivalent to pS in our model),
but the of duration time spent in each state is left unspec-
ified [53, 54]. While difficult to obtain, we suggest that
obtaining estimates of these parameters is a worthwhile
endeavour, as we have shown specifying their precise val-
ues can have important evolutionary consequences.

One example, with a direct relation to the current
study, is the evolution of ‘mating type switching’, the
ability of individuals to change their expressed mating
type between asexual reproductive events. This has been
previously explored using simulations of populations with
synchronous sexual reproduction [23], with the number
of asexual generations between single sexual generations
varied. It was found that mating-type switching was
more likely to evolve as the number of concurrent asex-
ual generations increased (which distorted the relative
frequencies of non-switching mating types through drift,
and placed them at a selective disadvantage). While we
also see strong distortions in mating type frequencies here
when periods of asexual reproduction are long (large τA),
it should be noted that we also observe distorted frequen-
cies when the probability of being in the sexual environ-
ment is very small (pS = τS/(τS + τA)). Thus, long
periods of asexual reproduction may not be needed for
the evolution of mating type switching.

A second example is the enigma of the evolution of sex-
ual reproduction and genetic recombination itself [55]. It
has been suggested that facultative sex provides the best
of both worlds [56], engendering species with the ben-
efits of sexual reproduction (increased genetic diversity
and evolvability [57]) while minimising the costs (for in-
stance finding a suitable mate or the ubiquitous the costs
of recombination [58]). In this sense it has been further
suggested that in maximising the possibilities of finding
a mate, synchronous sexual reproduction may be better
still [29]. However, as we have shown, asynchronous sex
can lead to its own costs at the population level in terms
of an increased extinction probability of partners with
which to mate. Thus, in the absence of a mechanism

to provide assured sexual reproductive opportunities in
later generations (such as mating type switching), some
level of asynchronous sex may in fact be beneficial for
maintaining the diversity of compatible partners at the
population level.
In evolutionary modelling there is always a natural

tension between analytic tractability and biological re-
alism. The optimal point between these two extremes
is ultimately subjective, however, an increased level of
biological realism is arguably warranted if it: (i) gen-
erates qualitative differences; (ii) generates quantitative
differences or (iii) allows the exploration of more inter-
esting biological questions. Under these metrics, we have
shown that accounting for the synchrony of sex is an
important modelling consideration for investigating the
evolutionary dynamics of the number of mating types
in finite populations. We have demonstrated that while
analytic results can be derived in a relatively straight-
forward manner in the fast and slow switching regimes,
intermediate switching rates pose more of an analytic
challenge. While improvements on the slow-switching ap-
proximation through the generator-matrix approach are
possible under certain conditions, a more generally ap-
plicable approximation is difficult to obtain. This is, as
we have discussed, despite the relative simplicity of the
neutral dynamics in the asexual environment. Develop-
ing further analytic methods for dealing with systems
featuring both demographic stochasticity and switching
environments presents an interesting mathematical chal-
lenge, but also one that is ultimately required for a full
understanding evolution in facultatively sexual species.
It is our hope that in the coming years this challenge will
be taken up to yield new evolutionary insight on a host
of problems involving facultative sex.
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