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Abstract—A new framework is presented for training neural
networks that is based on the characterisation and stabilisation
of measurement variations. The framework results in a number
of useful properties that maximises the use of data as well as
aiding in the interpretation of results in a principled manner.
This is achieved via variance stabilisation and a subsequent
standardisation step. The method is a general approach that
may be used in any context where repeatability data is available.
Standardisation in this manner allows goodness of fit to be quan-
tified and measurement data to be interpreted from a statistical
perspective. We demonstrate the utility of this framework in the
analysis of advanced manufacturing data.

Index Terms—Variance stabilisation, neural network, multi-
layer perceptron, reduced chi-squre, chi-square per degree of
freedom, metal additive manufacturing

In this work a neural network is employed, as a generalised

regressor, to investigate the relationship between metal addi-

tive manufacturing (AM) process parameters and the resultant

meltpool geometrical properties for IN718 super alloy. The

analysis of additive manufacturing data is here presented as a

use case, but the framework itself is general and may be used

in any approach where repeatability data is available. Additive

manufacturing is a 3D printing process that builds components

in a layer-by-layer approach; the meltpool is the volume of

molten feedstock and substrate material. Understanding the

underlying physics and relationships between material and

meltpool is key to process optimisation, however opportuni-

ties for in-situ measurements are limited, hence fundamental

process understanding is lacking. The use of neural networks

in analysing advanced manufacturing process data presents

particular difficulties since gathering high quality data is ex-

pensive, complex and requires careful planning. This generally

results in datasets with a low number of samples [1], [2],

that need a systematic methodological approach to aid robust

interpretation.

This work was funded by the UK Engineering and Physical Science
Research Council (EPSRC) through Grant EP/P006566/1, and by the EU
H2020 programme INTEGRADDE Grant Agreement: 820776.

Recent articles have reported attempts at using neural net-

works, and in particular, the multilayer perceptron (MLP) [1]–

[4] in analysing AM data. However, the fundamental issues

of small data samples, and crucially, that of characterising

and accounting for uncertainties are not addressed. In this

work a new methodological framework is proposed, primarily

based on accounting for the properties of stochastic variations

in measurements, that makes full use of the available data,

allows for robust training, and aids in the interpretation of

results. From an application-specific perspective this enables

high confidence insights into the relationship between process

parameters and the fundamentals of transient thermomechan-

ical mechanisms during the AM process, such as meltpool

dynamics, and their influence on the final product properties.

Additive Manufacturing is a highly versatile manufacturing

approach that generates complex geometries directly from

digital design. Directed Energy Deposition Additive Manufac-

turing (DED-AM), which deposits powder or wire feedstock

through a nozzle and melts it with a laser, is one of the

most cost-effective AM methods and is specifically used

for producing large near-net-shape [5] freeform components

and for the repair of high-value components in aerospace,

biomedical and automotive industries.

The dataset used in this study was designed to have mul-

tiple repeated measurements that allow variations in meltpool

morphology to be investigated using Bland-Altman plots [6].

It was found that the stochastic variations in the measurement

variations are heteroscedasitc and correlate with the measure-

ment value itself. It is well known that for linear systems,

via the Gauss-Markov theorem, that the ordinary least squares

(OLS) solution results in the best linear unbiased estimate

(BLUE), when the uncertainties are uncorrelated, expectation

value of zero and equal variance (homoscedastic). Under

a relaxation of these assumptions, as with heteroscedastic

variations, the BLUE property can no longer be guaranteed.

It may be noted that normality of the residual distribution



is not a requirement to attain the BLUE estimator, however,

normality leads to other desirable properties that will be

discussed below. For non-linear estimation, as in the estimation

of neural network parameters, many of the properties derived

from linear estimation theory hold, at least asymptotically [7].

In the literature in general, two approaches, are commonly

used to deal with heteroscedasticity: weighted least squares

(WLS) and non-linear data transformations. Weighted least

squares appeals to the likelihood function, for normally dis-

tributed uncertainties, to derive a weight for each term of

the error function to be minimised [8]. The weight is the

inverse variance of the measurement uncertainty for each of

the dependent variable data points. In contrast, transformation

methods attempt to transform the data to a domain where the

assumptions of the estimation method are inherently met. Pre-

processing and transformation of data is not uncommon in the

use of neural networks, for instance, scaling, standardisation,

compression and decorrelation of input data [9]–[11]. In

this work we specifically consider variance stabilisation, to

transform the stochastic variations, such that the data meets

the ordinary least squares assumptions. To the authors knowl-

edge variance stabilisation has not been previously applied to

training of neural networks.

The main purpose of many transformation methods, where

the relationship between mean and variance is known (empir-

ically or theoretically) [12]–[14], is variance stabilisation to

obtain a measurement uncertainty that is constant. The method

of Box and Cox [15] defines a family of transformations

and optimises a joint likelihood function, with respect to the

transform and model parameters, that maximises the likelihood

of the residuals of a linear model being drawn from a

normal distribution. The method requires the estimation of

model parameters over a range of transformations. While the

underlying theory is not new, it poses a significant limitation

with respect to neural networks trained with gradient descent-

based optimisation methods, both in terms of computational

time and also, in terms of ensuring consistent minima are

found over the range of transformations.

To address this challenge, the use of a repeated measures

dataset allows a more pragmatic approach to be taken since

transformation of the difference of repeats can be made prior

to and independent of the estimation of model parameters.

Variance stabilising transforms generally have a small number

of parameters to be estimated. In this case we use a power

law with a single parameter, that is found empirically using a

Shapiro-Wilks test for normality.

As observed by Box and Cox, variance stabilising trans-

formations not only result in data that more closely meets

assumptions but can also be used to find a metric that more

succinctly expresses the results. Stabilisation and normalisa-

tion (in the sense of transforming to a normal distribution) al-

lows the distribution of the stochastic variations to be robustly

summarised with a single statistic; the variance (assuming

expectation to be zero). In terms of a neural network the

dependent output variable may be standardised by the standard

deviation of the variations resulting in an output space that has

TABLE I
PROCESS PARAMETERS SETTINGS. THE DATASET CONSISTS OF SAMPLES

FOR ALL COMBINATIONS OF THE THESE VALUES.

Laser Power (W) 100 150 200

Head Speed (mm/s) 1 & 2.5 1 & 2.5 1 & 2.5
Flow rate (g/min) 1,2, & 3 1, 2, & 3 1, 2, & 3

Fig. 1. Schematic of the meltpool measurement process from the x-ray images

a z-score style of statistical interpretation; the units may now

be expressed in standard deviations of ‘noise’. Standardisation

of the dependent variable in this manner also has implications

in interpreting reliability of the regression found by the neural

network in that the squared error cost function is now expected

to follow a reduced chi-square distribution. This property may

be used to objectively assess goodness of fit of the neural

network and may further be used, in this sense, as a stopping

criterion for the training process without the need for cross

validation.

I. METHODS AND DATA

A. Data

The data used in this case study is collected from Syn-

chrotron in situ x-ray imaging of the DED-AM process.

A DED-AM process replicator, which faithfully replicates a

commercial DED-AM system, was used to capture the key

physics during the laser matter interaction of IN718 on a

synchrotron beamline. Melt pool morphology (length, height

and volume) was mapped from a process map with a full

range of process parameters including laser power, traverse

speed and powder feedrate. Figure 1 shows a schematic of

the experimental set-up and details of the process may be

found in [16]. Experiments were performed at a number of

combinations of the process parameters shown in Table 1.

For each experiment 3 repeated measurements of the melt-

pool were made from the x-ray images for length and height.

Each measurement was made at fixed points, along each

track, spatially separated to ensure no correlation between

measurements due to dynamics. Volume estimates were also

calculated, as in [16], from the x-ray measurements.

B. Bland-Altman Plots

Bland-Altman plots were originally proposed as a method of

comparing the agreement between two measurement methods

by studying the mean difference [6], [17]–[20]. The x-axis

of the plots is the average of two measurements and the y-

axis show the difference between two measurements. Thus,



the spread in the y-axis direction shows the behaviour of

measurement variations as a function of the average of the

measurements. The method was further proposed as a method

of assessing measurement error [21] in terms of bias and

heteroscedasticity [22], [23] via repeated measurements.

It is assumed that errors due to the actual measurement

process are negligible in comparison to the natural variations

occurring in the meltpool. It is also assumed that the variations

in the meltpool are stochastic and not dynamically related

to previous measurements made along the same track, for

example due to material deposition variation.

C. Variance Stabilisation

Optimisation methods often attempt to minimise a least

squares loss function. Inherent in the assumptions of a least

square approach, via the link to the maximum likelihood

approach, is the assumption that the residuals are normally

distributed and have constant variance across the measurement

domain. Deviations from these assumptions leads to loss of

statistical efficiency in estimation of model parameters and

possible misleading results e.g. measurements with large un-

certainty can unduly weight regressions in comparison to more

accurate measurements with less stochastic perturbations.

An approach to handling data with non-constant variability

and non-Gaussian distribution, is to use variance stabilisation

techniques [15] to non-linearly transforms the variables to a

space where the noise has constant measurement accuracy;

known as the equal variance domain. After transformation the

data is in a form more closely matched to the assumptions

in an ordinary least squares setting and is here referred to as

transformed OLS (TOLS).

We define a transformation function, similar in nature to

that of Box and Cox [15], as f(x; θ) = xθ. The value of

θ for each measurement was found empirically such that a

Shapiro-Wilk test [24] indicated the difference of repeats has

a distribution that is Gaussian. Since this method is reliant

on the difference of repeats, the transformation function is

independent of the model and may be found prior to training.

It may be noted that this method requires the estimation of only

two parameters, the transform and a variance, from the entire

dataset in contrast to a method such as WLS that requires

multiple variance estimates from subsets of the full dataset.

D. Standardisation

In general measurements have an associated accuracy that is

dependent on the measurement process itself and other factors.

In this work we consider the variations in each measured

variable, as determined by the repeatability differences, to be

a summation of variances from all non-deterministic sources

and/or processes not directly associated with the process

parameter.

It is common to scale variables by their standard deviation as

a method of standardisation, however, this does not distinguish

between signal power and noise power. Due to stabilised re-

peatability measurements, with constant variance, signals may

be standardised by the standard deviation of the repeatability

noise, as in equation 1, such that

x̂n =
f(xn; θ)

σf(η;θ)
(1)

where xn is a single variable, η is the repeatability differences

and σf(η;θ) is estimated as

σf(η;θ) =

√

√

√

√

1

N

N
∑

n

(f(x′

n; θ)− f(v∗n; θ))
2 (2)

where x′

n is the n-th measurement and x∗

n is the corresponding

n-th repeated measurement. Since this is a repeated measure-

ment the mean difference is assumed to be zero.

In this form measurements may now be expressed in units

of standard deviations of ‘noise’ 1. This allows disparate,

and non-commensurate, measurements with differing units and

accuracies to be compared and considered in a principled

manner. For instance, differences in this standardised space

now have an interpretation that is similar to a z-score or a

Welch’s t-test.

E. Neural based Regression Analysis

To understand the relationship between the process param-

eters and the resultant meltpool morphology measures, neural

networks are employed as a generalised regressors. The struc-

tures used are multilayer perceptrons (MLPs) with a single

hidden layers, consisting of Tanh activation functions, and an

output layer consisting of a linear activation function. Three

separate networks were trained, with the process parameters

of laser power, head speed and powder flow rate as inputs;

outputs of each network were length, height and volume

respectively.

The network was trained by minimisation of the least

squares error

E =

N
∑

n=1

(g(pn;φ)− x̂n)
2 (3)

using the backpropagation algorithm, in stochastic mode,

where g(·,φ) is the network function, φ is the network

parameters, p is the input vector of process parameters and x̂n

is the stabilised and standardised meltpool measurements given

by (1). Due to the process of stabilisation and standardisation

the squared error is expected, at the optimal parameters,

to follow a reduced chi-squared distribution (chi-square per-

degree-of-freedom) given by

χ2
red = χ2

N−k =
E

N − k
(4)

where N is the number of training data points and k is the

number of degrees of freedom of the network. The work of

Bartlett [25] showed that for large networks the generalisation

1Noise in this sense refers to stochastic variations that are primarily natural
meltpool variations.



performance depends on the size of weights and not the size

of the network and gives some justification to using networks

with more parameters than the number of training data points.

Building on this work Ingrassia and Morlini [26] further

showed that the equivalent number of degrees of freedom,

k, in a multilayer perceptron is k ≤ p + 1 where p is the

number of hidden units. For estimation of error variance, with

with early stopping as a regularisation technique, they suggest

setting k = p+ 1.

In this work we make use of these properties and use χ2
red

as a measure of goodness of fit. For networks whose parameter

sets are providing a good fit to the data the value of χ2
red is

close to 1. The variance of a chi-squared distribution with v
degrees of freedom, χ2

v , is given by σ2 = 2v. Thus we consider

values in the two sigma range of

(1− 2
√

2/(N − k)) < χ2
red < (1 + 2

√

2/(N − k)) (5)

to be a good fit, given the limits of the sample size, with a

low risk of over- or under-fitting2. It should be noted that the

analysis in this work is primarily interested in regression to

gain insight into the relationship between the process param-

eters and meltpool morphology. As such the χ2
red criterion,

(5), is used purely as a goodness of fit measure and does not

necessarily relate to generalisation.

II. RESULTS

The following sections show the results of applying the

methodology described above to the AM data. In this ap-

plication we wish to robustly identify any relationships that

may exist between the process parameters of laser power,

heed speed and powder flow rate and meltpool morphology

summarised by length, height and volume measurements. In

total 18 experiments were carried out with the DED-AM

replicator, for all combinations of settings given in table I, with

3 repeat measurements giving a total of 54 training samples

for each of 3 networks mapping process parameters to length,

height and volume respectively.

A. Bland-Altman plots and Variance Stabilisation

Figure 2 shows the Bland-Altman plots for length, Height

and Volume. The results of Shapiro-Wilk tests for normality

are shown in table II; the results pre- and post- stabilising

transformations are shown for comparison.

Figures 2(b) and (c) show clear evidence of variability that

is related to the mean value (heteroscedastic), for height and

volume, with smaller repeatability differences for small values

and larger repeatability differences for large values. This type

of variance characteristic tends to result in distributions that

are leptokurtic (kurtosis > 3); sharp peak with long tails in

2The chi-square distribution is actually skew. For degrees of freedom above
50 it is acceptable to approximate the distribution as Gaussian. For degrees
of freedom below this the true two sigma upper limit will be greater than

1+2
√

2/(N − k). Thus, the upper limit is safe for goodness of fit, however,
some care must be taken with this approximation, especially with the lower
limit, when the number of hidden units is comparable to the size of the training
data set.

(a)

(b)

(c)

Fig. 2. Bland-Altman plots showing the noise properties as a function of
the mean value for (a) length , (b) Base-Surface Height and (c) Volume. The
horizontal lines show 1 and 2 standard deviations of the repeatability noise.

comparison to Gaussian. This is reflected in the Shapiro-Wilk

tests showing clear evidence (p-values<<0.001) to reject the

null-hypothesis of a normal distribution.

For the length measurements, figure 2(a), the measurement

errors do not show any clear relationship to the mean values.

The estimated kurtosis value is greater than 3 indicating

leptokurtic behaviour but with the amount of samples available

this estimate is an unreliable stand alone test. A transformation

was neverless found that improved the results of the Shapiro-

Wilks test.

Figure 3 shows the Bland-Altman plots after stabilisation

by (1). These results show that after stabilisation there is

no evidence of the meltpool variations being related to the

mean values. This is reflected in table II with all Shapiro-

Wilk scores closer to one after stabilisation and no evidence to

reject the null-hypothesis at the 3σ level. It may also be noted

that the kurtosis scores for height and volume are close to

3; however for the length measurments the kurtosis, although

slightly improved, remains leptokurtic.



TABLE II
SHAPIRO-WILK SCORES, P-VALUES AND KURTOSIS FOR RAW AND STABILISED DATASETS. STABILISED DATASETS ARE INDICATED WITH A T IN

PARENTHESIS. THE ESTIMATED STABILISATION PARAMETER FOR THE FUNCTION f(x) = xθ IS ALSO SHOWN.

S-W p-value kurtosis θ S-W (T) p (T) kurtosis (T)

height 0.84 2e−5 5.8 0.2 0.97 0.24 2.7

length 0.92 5e−3 5.3 1.6 0.94 0.02 4.9

volume 0.60 3e−9 10.9 0.1 0.98 0.46 2.4

(a)

(b)

(c)

Fig. 3. Bland-Altman plots showing the noise properties as a function of the
mean value for stabilised versions (a) length , (b) Base-Surface Height and
(c) Volume.

B. Regression Analysis

The properties given by the reduced chi-square were also

utilised in model order selection. For each network, multiple

training runs were performed from random initial conditions,

with increasing network size until a reduced chi-square, within

the range give by (5), was found. Training was performed

with a large number of epochs (1,000,000) to ensure that

a representative minimum of the squared error was found.

A learning rate of 0.000005 was used. This was chosen

empirically to give the highest rate that gave smooth error

curves.

TABLE III
THE ESTIMATED MODEL ORDER FOR MAPPING THE PROCESS

PARAMETERS TO MELTPOOL HEIGHT, LENGTH AND VOLUME AND THE AN

ASSOCIATED REPRESENTATIVE χ2

red
VALUE FOUND AFTER 1 MILLION

TRAINING EPOCHS. FOR HEIGHT NO MAPPING WAS FOUND THAT COULD

PROVIDE A SATISFACTORY FIT TO THE DATA.

N◦ hidden nodes χ2

red

height N/A >30
volume 7 1.13
length 5 1.36

Table III shows the results of systematically increasing the

number of hidden nodes of the neural network until a chi-

squared per degree of freedom could be found within the two

sigma range given by (5). For the mappings to the meltpool

height no reliable mapping was found.

Figure 4 shows the regression surfaces relating the stabilised

and standardised length measurements to the flow rate and

head speed at three power settings. For all power settings there

is no significant relationship between the powder flow rate

and the meltpool length and at low power (100W) there is no

head speed that is able to significantly change the length of

the meltpool. For a laser power setting of 144W there is an

increase in the meltpool length, that is approximately 2.5 times

the standard deviation of the noise, in reducing the head speed

from 2.5mm/s to 1mm/s and is thus on the limits of being a

significant change. At a laser power of 188W this change in

the meltpool length increases to approximately a 10 standard

deviation effect.

Figure 5 shows similar regression surfaces for the meltpool

volume. The ’base’ level for each regression is at approxi-

mately 33 standard deviations of noise. Thus, the meltpool

volume has significantly larger ratio of volume to variations

than the length. At laser power of 100W there is no combi-

nation of head speed or powder flow rate that significantly

changes the meltpool volume. At 144W both the powder flow

rate and the head speed can been seen to significantly change

the meltpool volume with decreased head speed and increased

powder flow increasing the meltpool volume. For the higher

laser power of 188w only the head speed has a significant

impact of the meltpool volume.

DISCUSSION AND CONCLUSIONS

In this work we have presented a new systematic method-

ological framework for training a MLP using repeatability

data. The framework is general in its approach and may

be applied to any datasets where repeatability information is



(a)

(b)

(c)

Fig. 4. Regression plots of head speed/flow vs standardised length at three
different power settings.

available. The approach uses variance stabilisation techniques

to transform the repeatability differences to a domain where

the variance is constant and has a distribution that is close

to Gaussian. The well established method of Box and Cox

[15] uses a similar transform, however, their approach attempts

to optimise a transform such that the residuals of a linear

model fit are stabilised. This is problematic in application

to neural networks, with non-linear optimisation by gradient

descent, both in terms of the computational load and in the

finding consistent parameter optimisations across transforms.

The transformation of repeatability differences allows the

stabilisation to be performed independent of the model and

prior to parameter optimisation.

Attempting to maintain the properties of constant variance

(a)

(b)

(c)

Fig. 5. Regression plots of head speed/flow vs standardised volume at three
different power settings.

and Gaussian distribution leads to a number of advantages

and properties. Firstly, the data more closely matches the

assumptions of least squares optimisation leading to more

statistically efficient estimation of the network parameters.

Statistical efficiency is of general importance but gains greater

significance in applications with small datasets, such is in AM,

where significant relationships between variables may require

the full use of the information contained in the data to be

revealed.

Secondly, the data may be standardised by the standard

deviation of the stochastic variations. This standardisation

means that the squared error cost function is now expected

to follow a reduced chi-square distribution at the optimal

solution. This may be utilised to assess the goodness of fit of



the regressions allowing poor fits to be rejected and not falsely

interpreted as showing a significant input-output relationship.

In this work, we further use this property as a criterion for

early stopping of training and thus makes full use of the small

dataset. We emphasise that this method is not necessarily

an indication of generalisation and is here purely used as a

goodness of fit measure for regression analysis.

Finally, standardisation, as above, allows output variables

to be interpreted in terms of standard deviations of noise.

This gives the output space a statistical interpretation that is

similar to a z-score and allows only significant changes to be

considered.

The framework has been employed on a repeated measures

dataset derived from experiments investigating the laser-matter

interface in advanced additive manufacturing processes. The

neural approach in this work uses the MLP as a generalised re-

gressor to gain insight into the dependencies between meltpool

morphology and the process parameters. The work of Caiazzo

and Caggiano [3] attempted to capture these dependancies, for

2024 Al Alloy, using a MLP but did not attempt to characterise

or account for the nature of meltpool variations.

Variations in the meltpool morphology were investigated,

independently of the model and prior to any training, using

Bland-Altman plots. The analysis shows clear indication of

heteroscedastic variations that correlate with the values itself

and does not meet the assumptions of a least squares minimi-

sation approach.

The variance of the measurements was stabilised by em-

pircally finding a non-linear transformation that maximised

the Shapiro-Wilk’s test score for normality. The properties

described above were then used to train neural networks to

find good fits to the data if possible. The results showed

that only the length and volume of the meltpool could be

meaningfully related to the process parameters using this data.

The framework also showed that the powder flow rate is not a

significant factor in determining the meltpool length but does

have significance in determining the volume of the meltpool.
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[11] K. Kuźniar and M. Zajac, “Some methods of pre-processing input
datafor neural networks,” Computer Assisted Methods in Engineering

and Science, vol. 22, p. 141–151, 2015.
[12] M. S. Bartlett, “The use of transformations,” Biometrics, vol. 3, no. 1,

1947.
[13] F. J. Anscombe, “The transformation of poisson, binomial and negative-

binomial data,” Biometrika, vol. 35, no. 3–4, p. 246–54, 1948.
[14] F. J. Anscombe and J. W. Tukey, “The examination and analysis of

residuals,” Technometrics, vol. 5, no. 2, 1963.
[15] G. E. P. Box and D. R. Cox, “An analysis of transformations,” Journal

of the Royal Statistical Society, vol. 26, no. 2, pp. 211–252, 1964.
[16] C. Yunhui, S. J. Clark, Y. Huang, L. Sinclair, C. L. A. Leung, S. Marussi,

T. Connolley, O. V. Magdysyuk, R. C. Atwood, G. J. Baxter, M. A.
Jones, I. Todd, and P. D. Lee, “In situ x-ray quantification of melt pool
behaviour during directed energy deposition additive manufacturing of
stainless steel,” Materials Letters, vol. 286, p. 129205, 2021.

[17] J. M. Bland and D. G. Altman, “Measuring agreement in method
comparison studies,” Stat. Methods. Med. Res., vol. 8, p. 135–160, 1999.

[18] J. M. Bland and D. G. Altman, “Statistical methods for assessing
agreement between two methods of clinical measurement,” Int. J. Nurs.

Stud., vol. 47, pp. 931–936, 2010.
[19] J. M. Bland and D. G. Altman, “Statistical method for assessing

agreement between two methods of clinical measurement,” Lancet,
vol. 327, p. 307–310, 1986.

[20] D. Giavarina, “Understanding bland altman analysis,” Biochemia med-

ica, vol. 25, no. 2, pp. 141–151, 2015.
[21] J. Bland and D. G. Altman, “Transforming data,” BMJ, vol. 312, p. 770,

1996.
[22] J. Bland and D. G. Altman, “Measurement error proportional to the

mean,” BMJ, vol. 312, p. 1654, 1996.
[23] M. Brehm, V. A. Scholtes, A. J. Dallmeijer, J. Twisk, and J. Harlaar,

“The importance of addressing heteroscedasticity in the reliability anal-
ysis of ratio-scaled variables: an example based on walking energy-cost
measurements,” Dev Med Child Neurol., vol. 54, no. 3, pp. 267–273,
2012.

[24] S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3–4, p. 591–611, 1965.

[25] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: The size of the weights is more important than the
size of the network,” IEEE trans. Inf. Theory, vol. 44, no. 2, pp. 525–
535, 1998.

[26] S. Ingrassia and I. Morlini, “Neural network modelling for small
datasets,” Technometrics, vol. 47, no. 3, pp. 1537–2723, 2005.


