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Abstract — Visualisation of Pareto Front (PF) 

approximations of many-objective optimisation problems 

(MaOP) is critical in understanding and solving a MaOP. 

Research is ongoing on developing effective visualisation 

methods with desired properties, such as simultaneously 

revealing dominance relations, PF shape, and the diversity of 

approximations. State-of-the-art visualisation methods in the 

literature often retain some of the preferred properties, but 

there are still shortfalls to address others. A new visualisation 

method is proposed in this paper, which covers the majority 

of the desired properties for visualisation methods. The 

proposed method is based on displaying PF approximations 

via projections on a reference vector versus distances to the 

same reference vector. The reference vector is created using 

nominal Ideal and Nadir points of existing nondominated PF 

approximation sets. MaF benchmark problems are used to 

demonstrate the effectiveness; results show that the proposed 

method exhibits a more balanced performance than the state-

of-the-art in capturing desired visualisation properties. 

Keywords — Many-objective Optimisation, Performance 

indicator, Diversity, Reference vectors, Benchmark testing 

I. INTRODUCTION  

Approximation sets and the approximated Pareto Front 
(PF) landscape of many-objective optimisation problems 
(MaOP) consist of vectors in an m dimensional objective 
space where m is the number of objective functions. It is 
nontrivial to visualise these quantities mainly because the 
number of axes in such a visualisation exceeds three, and a 
large amount of data – usually complex – is needed to be 
displayed simultaneously. However, visualisation of the 
approximations is crucial in optimisation research [1]. 
Effective visualisations of approximations may assist the 
decision-making process and support the work of 
interactively searching for optimised solutions. It can also 
be used to examine and improve the performance of 
optimisation algorithms as visual comparisons may convey 
important qualitative information, for example the 
dominance relationships of different approximations, the 
process of convergence towards the resulting PF as well as 
the diversity of the MaOP solutions. The graphical display 
of the approximated PF landscape is also helpful in 
identifying characteristics and challenges of the 
optimisation problem itself, such as distance of 
approximations to the constraint boundaries and local 
minima [1-2]. 

Visualisation of high dimensional data sets often 
involves compressing and mapping information into two- or 
three-dimensional spaces that can be displayed readily with 
traditional means of figures or charts, where properties of 
point data are easier to be analysed and understood. 
Although such mappings aim to maintain high dimensional 

properties as much as possible, some information is 
inevitably lost during the mapping process. Hence, an 
effective visualisation process consists of data compression 
and extraction of specific critical properties from the high-
dimensional dataset, while omitting less essential features 
[1]. 

Effective visualisation methods should have the 

following desired properties, as outlined in [2]:  

1) Dominance relation: shall preserve dominance relation 

between solutions by visualisation,  

2) PF shape: should be able to display the PF shape.  

3) Objective range: should reveal the ranges of objectives. 

4) PF distribution: should exhibit the distribution of 

solutions. 

5) Robustness: should maintain robustness when mapping 

data of high dimensions to 2D or 3D space 

6) Handling large sets: it may present large approximation 

sets. 

7) Handling multiple sets: it may simultaneously visualise 

multiple approximation sets. 

8) Scalability: it should be scalable to any number of 

objectives 

9) Simplicity: it should be simple to construct.  

An additional desired property is introduced in this paper:  

10) Uniqueness: the visualised image should be unique 

independent of the sequence of objective functions utilised 

in the display. 

While they may be effective in their respective targeted 
desired properties, current visualisation methods possess 
only some of, and limitedly, the above-desired capabilities 
[2-5]. He and Yen [6] sort existing visualisation 
methodologies into five major groups. One representative 
method, out of each group, is chosen and tested for 
representing three commonly accepted PF patterns for 
visualisation approaches, i.e., simplex plane, sphere, and 
knee shape. Numerical results reveal that none of the five 
methods can satisfactorily display the expected basic 
patterns [6]. Specifically, the major weakness of the current 
state of the art methods is that they only retain some of the 
above-mentioned desired properties. Parallel Coordinates 
[7], for example, fulfils the demands for displaying 
Dominance Relation, Robustness, Scalability and 
Simplicity, but is not addressing the rest of the properties. 
Hence, research work is needed to expand the capability of 
methods that possess as many of the preferred properties 
simultaneously as possible.  

This paper proposes a new visualisation method, which 
targets most of the desired properties for visualising high 
dimensional MaOP approximations. It is achieved via a 



 

 

Projection of solution vectors versus the solution vectors' 
Distance to a reference vector in the objective space - ProD. 
The reference vector is a vector that would link a nominal 
Ideal point and Nadir point. The actual Ideal point and Nadir 
point of a PF are nontrivial to be found; instead, 
nondominated approximations are used to find nominal 
Ideal and Nadir points. 

The rest of the work is organised as follows. Section II 
includes a brief literature survey on relevant, up-to-date 
methods of visualisations in MaOP. Section III covers the 
proposed formulation and reasoning for ProD. Section IV 
includes testing and simulation results showing the 
effectiveness of ProD. The last two sections cover the 
discussion, Section V, and conclusions, Section VI. 

II. EXISTING VISUALISATION METHODS 

It is nontrivial to develop a visualisation method for 
MaOP, which satisfies all the requirements listed in Section 
I simultaneously. Compromises are made in many cases. 
Various visualisation methods exist, for displaying 
dominance relations of approximations of MaOPs; a review 
on the topic can be found in [5] and [7].  

Filipič and Tušar [2] suggest a taxonomy of visualisation 
methodologies, consisting of two major categories: 
displaying a simple PF approximation set and showing 
repeated approximation sets. 

Fig. 1 shows the results of a PF of a unit cube using 
different visualisation methods. Scatter plot [2]: A 
straightforward visualisation method frequently adopted 
where all vectors of approximations of non-dominated data 
points are projected to a 2D display by omitting higher 
dimensions of the vectors other than the two displayed. 
Similar plots are generated for all combinations of two 
objective functions, and as a result, a scatter plot matrix is 
formed. Although the method is simple, robust, and able to 
reveal the objective range and handle multiple sets, it is not 
scalable to high dimensional MaOPs [2]. Neither can it 
depict dominance relations of approximation sets. PF shape 
and its distribution are only shown to a limited degree [2]. 

Parallel coordinates [7]: see Fig. 1 (a). High dimensional 
vectors are mapped onto a 2D figure using m equally spaced 
parallel axes in this method. The vectors are drawn as 
polylines through position on each axis corresponding to 
each component of the vector. Parallel coordinates are 
simple to construct and scalable to any dimensions of 
MaOP. No information is lost in the mapping process. The 
main weaknesses are three-fold: the method fails to display 
the shape of the PF approximation and possesses limited 
capability in handling large amounts of approximation data 
and simultaneous visualisation of several approximations 
[2]. Radar Chart [8] can be considered a further developed 
version of parallel coordinates with similar strengths and 
weaknesses, in which axes are placed radially. Radial 
Coordinate Visualisation (RadViz) [9]: see Fig. 1 (b). The 
m-dimensional vectors of approximations are mapped onto 
a two-dimensional plane by uniformly placing each m-
dimensional vector's origin along a circle as various anchor 
points. Each approximation set is expressed by assuming 
that each anchor i is connected to a spring of force 
proportional to objective function fi. An m-dimensional 
vector is identified inside the circle. The positions of the 
vectors are found and displayed on the two-dimensional 
plot. The method is simple and robust, may handle several 

sets of approximations simultaneously, and can be readily 
extended to any dimensions. However, RadViz fails in 
revealing the pattern of the PF front and the dominance 
relations between solution sets [2]. Multiple disparate 
vectors may share the same equilibrium position in the plot 
creating chaotic and unforeseeable patterns or data 
distribution. In contrast, the two vectors are neither 
neighbours nor belonging to any natural groups of vectors. 
RadViz has been further developed into a 3D version [10]. 
The above-stated shortcoming is also inherited in the 3D 
version of the method. PaletteViz: [3] High-dimensional 
and non-dominated objective vectors are mapped onto 
multiple two-dimensional Radviz plots in which vectors are 
sorted after their boundary to core location in their original 
high-dimensional space. As is the case for RadViz, the main 
weakness is that multiple disparate vectors may share the 
same equilibrium position, causing difficulties in 
interpreting data distribution.  

2D Polar coordinates [11]: see Fig. 1 (c). The objective 
space is divided into subregions using reference vectors, 
which are evenly mapped to a 2D plane following the 
sequence of generated reference vectors. The best 
approximation from each subregion is chosen and plotted on 
the reference vector in a 2D map. The method can reveal a 
PF's basic patterns while it displays more complex PF 
shapes with reduced success [11]. Moreover, neighbour 
points on PF are disparately located in the display, and the 
outcome is dependent on the numbering of objectives, 
causing a non-unique result. Level diagrams [12]: see Fig. 1 
(d). Euclidean distance of approximations to the ideal point 
is displayed as functional values of each objective. The main 
drawback here is that the method must utilise an equal 
number of separate plots like the number of objective 
functions. The number of figures for visualising MaOP 
approximations can be overwhelming. Pryke et al. [13] use 
a Heatmap visualisation where a tabulation of colour chart 
is formed. Objectives are taken in columns, and high 
dimensional vectors are taken in rows. Although the method 
is robust and scalable, it fails in showing PF shape, objective 
range, and distribution. Large or multiple data sets can 
hardly be displayed, as discussed in [2]. Yamamoto et al. 
[14] suggest Principal Component Analysis reduce the 
number of objectives necessary to be visualised. The 
challenge is that number of objectives after reduction may 
still exceed three, which makes visualisation difficult [14]. 
Lotov et al. [15] propose a visualisation method called 
"interactive decision maps" to visualise Pareto front 
approximations up to four or five objectives. With more 
cognitive effort, it is claimed that up to eight objectives can 
be revealed visually. 

Other visualisation methods also exist. Freitas et al. [16] 
propose the Aggregation Trees approach where positively 
correlated objective functions are merged, and the total 
number of objective functions is thus reduced. Chiu and 
Bloebaum [17] introduce Hyper-radial visualisation (HRV) 
method. The mapping from high dimensions to 2D is done 
by expressing 2D vectors in Hyper-radial distance from the 
original vector to the ideal point. Koochaksaraei et al. [18] 
suggest a Chord diagram, where objective functions with 
their respective equal arc length on which scales are 
indicated and arcs are placed along with the circle's 
peripherals. Agrawal et al. [19] suggest a Hyperspace 
Diagonal Counting method to compress and group high 
dimensional vectors into 3D space mapping. T. Kohonen 



 

 

[20] and S. Obayashi and D. Sasaki [21] utilise Self-
Organised Maps to visualise solutions with many 
objectives, using trained neural networks to find nearby 
solutions. Yoshimi et al. [22] have further developed the 
methodology to present the result in a spherical form which 
improves the display of boundary points. Hence, the above 
methods target specific desired properties only (hence not 
cover all the desired properties described in Section I). 

III. PROPOSED VISUALISATION METHOD – PROD 

 In this section, a new visualisation method, ProD, is 
proposed to identify PF patterns and monitor dominance 
relations as well as evaluate the diversity of approximations 
for MaOPs. 

It is proposed that high dimensional vectors of PF 
approximations of a MaOP in objective function space are 
evaluated and displayed in their projections on and distances 
to a reference vector in the objective space. It is created by 
linking the nominal ideal point and Nadir point calculated 
based on existing nondominated approximations. The 
nominal ideal point is an auxiliary point with the least 
objective functions among current nondominated dataset(s) 
as coordinates. In contrast, the nominal Nadir point, consists 
of coordinates of the largest of objectives. Fig. 2 shows a 
schematic view in 2D space on how projections on, and 
distance to, the reference vector of a PF approximation 
vector are defined. The projection �∥  is formulated as 
follows: 

�∥ = [�1 �2  … �
] ∗  
�������� ����������������������������������������⃑
�
�������� ����������������������������������������⃑ � (1) 

in which �� , � ∈ �1, 
� are objective functions, 
 is the number 
of objective functions, and the reference vector is defined 
as: 


�������� ���������������������������������������������⃑ = ��� � !� �� −  #���$ !� ������������������������������������������������������������⃑  (2) 

The distance to the reference vector is expressed as: 

�% = sin �)�*�+, + �,, + ⋯ + �/, (3) 

where angle )  between candidate vector and reference 
vector is calculated as: 

θ = ��12+ 3 [�+ �,  … �/] ∗  
�������� ���������������������������������������������⃑
4�+, + �,, + ⋯ + �/, ∗ �
�������� ���������������������������������������������⃑ �5 (4) 

From this point onwards, it is assumed that the origin is 
moved to the nominal Ideal Point. The results are displayed 
in a two-dimensional plot named ProD (Projection on  a 
reference vector versus Distance to the reference vector).  

As mentioned in the Introduction section, visualisation 
in high dimensional space compresses information and 
extracts specific fundamental properties from the dataset 
while omitting less critical details. The core idea of ProD is 
to compress all data of the same �∥  and �%  values into a 
single data point. In the 3D case, a data point in ProD 
contains or represents all raw data points on the PF surface 
that form a ring, which has an equal distance to the reference 
vector, the plane of which is normal to the reference vector; 
this is illustrated in Fig. 3. In high dimensions, such data 
points being compressed are located on a hyper ring. 

Compared with definitions from the taxonomy of 
visualisation methodologies [2], ProD is classified into the 
category of visualisation of repeated approximation sets, 
which means it is a visualisation method for PF pattern 
recognition, convergence, and diversity monitoring. 

It should be noted that the idea of expressing candidate 
solutions in the form of projections and distances to a 
reference vector in the objective space is frequently used in 
the formulation of MaOP algorithms, such as MOEA/D 
[23], however , to the best of our knowledge, this has not 
been used for compressing high dimensional data for 
visualisation purposes. 

The normalisation of objective functions is performed 
prior to establishing ProD. Hence, each objective is assured 
to be in comparable range by employing coordinate values 
of nominal Nadir and Ideal points. Normalisation leads to a 
change of the final PF shape, and it sometimes creates more 
complicated ones. See more detailed discussions in Section 
IV. In practice, ProD can be used based on both normalised 
and non-normalised data, where the user can decide on the 

  
(a) Parallel coordinate (b) RadViz. 

 

 

 
(c) Polar coordinates  (d) Level diagram 

Fig. 1.  Visualisation of the true Pareto front of 5-D DTLZ2 using different visualisation methods. (a) Parallel 
coordinates. (b) RadViz. (c) Polar coordinates (f) level diagram.  
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approach to use (for example, simpler patters may reveal 
dominance relations better). 

  The primary benefit of the proposed visualisation 
approach is that it possesses in a balanced manner most of 
the desired properties of a visualisation method highlighted 
in Section I. ProD creates a unique image of PF 
approximations; the objective range is also visualisable. 
Moreover, it can handle large as well as multiple 
approximation sets. In the next section, ProD’s ability to 
visualise PF shape and dominance relations between 
approximation sets is demonstrated. 

IV. NUMERICAL RESULTS 

This section is divided into three main parts. First, three 
representative B-norm surfaces in 3D, 5D and 10D with 
corresponding B parameter values are visualised in ProD, 
imitating Pareto front of convex form with knee point, 
hyperplane, and concave shape; this will demonstrate the 
ability of ProD in revealing basic patterns of high 
dimensional PFs (B-norm functions are often named as F-
norm functions in mathematics, see. Eq. 5. The functions are 
termed as B-norm functions in this paper to avoid confusion 
with the objective function vector F). Secondly, true PFs of 
thirteen scalable benchmarks of MaF 1-7 and 10-13 [24],  
used in the CEC'2017 competition on Evolutionary Many-
Objective Optimisation [24], are selected and visualised by 
ProD. MaF Benchmark 8 and 9 are omitted here because 
their shapes are readily visualised with the two decision 

variables chosen [24]. MaF 14 and 15 are also omitted, 
mainly because their PF shapes are identical to those of MaF 
1 and 4. Also, the purpose of their primary use is on studying 
large-scale problems [24], which is not the subject of this 
paper. Special attention is paid to the displaying 
effectiveness of ProD in showing PFs of irregular shape, 
partial coverage, and degenerate form. Finally, ProD is 
utilised to display approximations of NSGA III [1] between 
iterations, which captures the process of convergence, hence 
dominance relations. ProD is also used to evaluate the 
quality of PF approximations of MaF benchmark problems 
analysed using three well known MaOP algorithms: NSGA 
III, GrEA [25] and IBEA [26]. The convergence and 
diversity of the approximations are assessed. Due to space 
limitations, only the most characteristic MaF benchmark 
cases are shown in this paper. 

 

A. PF form of B-norm types visualised in ProD showing 

its ability in revealing basic PF patterns 

A prerequisite to a visualisation method's capability is to 
display three basic surfaces of MaOP patterns of any 
dimensions, i.e., knee, linear and sphere [1], [3], which in 
the current work are expressed as B-norm surfaces with 
different B parameter values. See Fig. 4(a)(c)(e) for 
illustration. 

B-norm functions create a family of symmetric surfaces 
in high dimensional space, which are governed by Eq. 5,  

 
 

Fig. 2.  A schematic view: Projection on (�∥) and Distance to (�%) 

reference vector of a data point in 2D space.  

    
(a) PF pattern in 3D, B=0.5 (c) PF pattern in 3D, B=1.0 (e) PF pattern in 3D, B=2.0 (g) PF pattern in 3D, B=3.0 

    
(b) ProD, B=0.5 (d) ProD, B=1.0 (f) ProD, B=2.0 (h) ProD, B=3.0 

    Fig. 4.  ProD images for imitated knee point surface (b), unit simplex plane (d), sphere (f), and stronger curved concave shape (h). 

 

Fig. 3.   A schematic view: Compression of data in ProD in 3D space. 
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6�17 + �27 + ⋯ + �
7 81 79 = 1 (5) 

in which B is a parameter determining the curvature.  

In [27], Bn-PFt is used to generate more equally spaced 
reference points on B-norm surfaces in high dimensions is 
introduced, which is utilised in the creation of actual Pareto 
fronts in this paper. 

Fig. 4(b), (d), and (f) display the capability and 
consistency of ProD to represent the three basic types of PF 
surfaces in three B parameter values corresponding to knee, 
plane, and sphere shapes in 3D 5D and 10D problems. The 
number of candidates covering the PF shown in Fig. 4 is 
listed in Table 1.  

TABLE 1 NUMBER OF CANDIDATES GENERATED ON PARETO FRONT. 

Number of objectives 3 5 10 

Number of solutions used to 
generate authentic Pareto 

Front 
496 10626 92376 

In ProD, convex B-norm surfaces (B<1.0) in any 
dimensions bend upwards with some folded shape that 
resemble “clouds” on parts of the curves. See Fig. 4(a), (b). 
This is because the distribution of data is not fully 
symmetric about the reference vector. The folding degree 
reduces gradually, and the “cloud” disappears when B goes 
towards 1.0, which corresponds to the unit simplex plane. 
Unit simplex planes (B=1.0) in any dimensions appear as 
distinct horizontal line segments, where data is distributed 
symmetrically about the reference vector. See Fig. 4(c), (d). 
For the B-norm surface of concave sort (B>1.0), the curves 
bend downwards, and the form of curves is folded except 
for hyperspheres (B=2.0) which appear as distinct circular 
arcs bending downwards. See Figs. 4 (e), (f).  

When B<2.0, higher dimensional curves locate lower in 
ProD, while for B>2.0, the opposite occur. See Fig. 4(g) (h). 
For B=2.0, curves of all dimensions fall together in distinct 
circular arcs. These observations are explained as follows: 
The mid-point of the B-norm surface of any B value has the 
property of �+ = �, = ⋯ = �/  due to symmetry. When 
setting these equalities into Eq. 5, we have �+ = �, = ⋯ =�/ = 
2+ :9 . The distance of the midpoint to the Ideal point 
is:  

�
 = 6�12 + �22 + ⋯ + �
2 81 29 = 
12�1−27�
 (6) 

Eq. 6 indicates that midpoint coordinates on the B-norm 
surface decrease with the increasing number of objectives 
for B<2.0 and increases with the rising number of objectives 
for B>2.0 while falling together for B=2.0. See Fig. 4 for 
comparison.  

The results of PFs in 10D show limited number of data 
points for low �⊥ values, which is due to the limited number 
of available intermediate reference points adopted in PF 
representation [1]. With 92376 reference points in total, 
only one intermediate point is generated when using the Das 
and Dennis method [28].  

A comparable visualisation method to ProD is 2D Polar 
coordinates which displays PF shape of convex type as a 
rhombus shape with bent edges while of concave type as 
ellipses [6]. Since real-life PFs may have a mixture of 
several primary forms, e.g., PF of MaF7, Polar coordinates 
may create an indistinct pattern visually. 

B. PF patterns of irregular shape, of partial coverage 

and in a degenerate form in objective space 

True PFs of MaF benchmark problems, when presented 
in ProD, show that the visualisation method can convert PF 
of irregular shape, partial coverage, and degenerate form in 
high dimensional objective space into simple patterns in 
two-dimensional space.  

Fig. 5 shows both the scatter plot for PF of 3D MaF1 
(Fig. 5(a)) and the results of ProD of true PF of 3D (red), 5D 
(blue) and 10D (green) (see Fig. 5(b)). Three important 
points are discussed here in more detail. First, all three PFs 
consist of distinct horizontal line segments, indicating that 
MaF1 has a PF pattern of a simplex plane that is 
symmetrically distributed about the reference vector. 
Second, all three PF patterns are shown to cover only 
partially the objective space. Taking the 3D case as an 
example: the maximum �⊥ value read in ProD is 0.82. If the 
PF covers the objective space completely, �⊥ value would 
have been 1.633, which implies that the PF of MaF1 covers 
only partially the objective space. This maximal �⊥ value is 
obtained by considering the equation of simplex plane of the 
general form: 

�1 + �2 + �3 = �
 
(7) 

For �+ = �, = 1.0  and �? = 0 , �/ = 2.0 , resulting �+,@AB = 2.0  (when �, = �? = 0� . The angle )  between 

reference vector and �+ axis is given by Eq. 8, where the unit 

 
(a)  MaF2 in 3D 

(b) ProD images in normalized data. (c) ProD images in unnormalized 
data. 

Fig. 6.  ProD for Benchmark-MaF2. 

(a) PF of MaF1 in 3D (b) ProD for 3D, 5D and 10D 
Fig. 5.  PF displayed in ProD for Benchmark-MaF1. 
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vector in �+  direction is [1 0 0]  
and reference vector is [1 1 1]: 

θ = ��1−1 C [1 0 0] ∗ [1 1 1]
√12 ∗  √12 + 12 + 12E = 54.7° 

�⊥,
�J = sin�)� ∗ �1,max = 1.663 

(8) 

Similar analysis can be done for any number of 
dimensions. The implication is that ProD may reveal the 
range of objectives and detect whether PF covers partially 
or fully the objective space. Third, curves locate higher up 
as the number of objective functions increases in contrast to 
what is the case with a unit simplex plane, indicating 
distances of solutions to ideal points increase in higher 
dimensions for this benchmark. Hence, �/  in Eq. 7 
increases more rapidly than the impact of the increasing 
number of objectives (From Eqs. 6 and 7, we have �//√m P 1). 

PF of MaF2 turns out to be a partial sphere. See Fig. 6(a). 
When PF data are non-normalised, all three PF solutions in 
ProD are in pure circular arcs falling together, revealing that 
MaF2 are hyperspheres, see Fig. 6(c). With normalised data, 
PF patterns are more complicated, see Fig. 6(b). In this case, 
normalisation alters the PF shape. 

PF of MaF7 is discontinuous and has four ‘flakes’ in 3D 
scatter plot (see Fig. 7(a)), but its image in ProD reveals that 
it consists of three groups of surfaces, see Fig 7 (b). The first 
piece locates closest to �+ − �, plane, the third one with the 
highest �?  values while the second one has two flakes 
situating in between, which are nearly the same surface. 
ProD of Fig. 7(b) also discloses that each data group appears 
as a thicker line indicating near symmetry about the 
reference vector, but not perfect. It is worth noting that 
ProDs of 5 and 10 objectives unveil five and more clusters 
of solutions, which means that PF patterns in higher 
objective space in this benchmark might have more clusters 
than observed in 3D space. See Fig. 7 (d). 

C. Dominance relations between candidate solutions and 

diversity of approximations visualised in ProD 

Benchmarks of MaF are analysed at various given 
amounts of iterations as well as the final stage of 

convergence using NSGA III, GrEA and IBEA. The results 
at various iterations and at the final convergence stage are 
displayed in ProD and compared in convergence and 
diversity. ProD reveals a necessary, but insufficient on its 
own, condition for a good diversity of approximations, i.e., 
the whole valid range in ProD must be covered by data. 
However, a good diversity is not guaranteed, therefore 
diversity metrics could be used to further investigate. It 
follows that, areas not fully covered by data have 
unsatisfactory  diversity. 3D scatter plots are also shown to 
assist understanding of PF pattern in the actual benchmark 
problems. 

1) Selected algorithms and related parameters 
The adopted algorithms are acquired from PlatEMO 

[29]. NSGA III is a reference-point and nondominated 
sorting based genetic algorithm for MaOP. GrEA adopts 
grids drawn in high dimensional objective space to 
strengthen the selection pressure towards optimal direction 
while maintaining an extensive and uniform distribution 
among solutions. IBEA may adopt several binary 
performance indicators to select offspring as parents for the 
next round of iteration.  

TABLE 2 - NUMBER OF SOLUTIONS GENERATED IN CHOSEN MAOP 

ALGORITHMS AND ACTUAL PARETO FRONT 

Number of 
objectives 

Number of solutions for 
algorithms 

Number of solutions 
used to generate 

authentic Pareto Front 

3 210 496 

5 210 10626 

10 220 92376 

The number of candidate solutions adopted in each of 
the chosen algorithms, hence used for estimating the true 
PF, are listed in Table 2. The parameters applied in the three 
algorithms are based on default values acquired from 
PlatEMO version 2.7 [27].  

2) Approximations between iterations reveal dominance 

relations between approximation sets 
In this section, the ability of ProD to visualise the 

convergence process at a given time and over time is tested, 
which demonstrates ProD’s ability in revealing dominance 
relations among PF approximation sets. NSGA III is used to 
illustrate that ProD can display the ongoing convergence of 

 
(a) MaF1 3D-scatter plot (b) MaF1 3D ProD 

(c) MaF1 5D ProD (d) MaF1 10D ProD 
Fig. 8.  ProD showing the convergence process of Benchmark MaF1. 

(a) MaF7 in 3D in scatter plot (b) MaF7 in 3D 

(c) MaF7 in 3D in scatter plot (d) ProD plot 
Fig. 7.  ProD for Benchmark-MaF7 
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an algorithm as the evaluation progresses. Other MaOP 
algorithms could be used for this purpose as well.  

Fig. 8 displays PF approximations on MaF1 after 
various number of iterations. Results show the convergence 
process during the algorithm execution. In Fig. 8(c), a 
notable feature is the absence of data points for small �⊥ 
values in 5D and 10D cases, a common phenomenon that 
occurred in most test cases, which is due to the limited 
amount of reference points created and used in NSGA III in 
these areas. In Fig.8(d), the absence of data points in the 
10D case is observed both for small and large �⊥ values, 
indicating that NSGA-III based on a small number of 
reference points can only find partial PF solutions [1]. The 
above observations imply that ProD reveals a necessary but 
insufficient condition for diversity, i.e., areas with no 
coverage with data have poor diversity. However, areas with 
good coverage do not necessarily mean having sufficiently 
good diversity. 

Fig. 9 shows the convergent process of approximations 
of MaF7. A striking observation here is the limited diversity 
of solutions in cases of high dimensionality. Besides, unlike 
for 3D and 5D cases, NSGA III in the 10D case shows that 

convergence stops after about 120,000 iterations. See Fig. 
9(d). 

Fig. 10 shows the convergence of MaF10 towards the 
final goal, although the pattern of PF in ProD is irregular. 
Fig. 10(d) indicates, as in the earlier example, lack of data 
points in 10D approximations in low �⊥ value range.  

3) Comparison on approximations of various MaOP 

algorithms, showing the ability of ProD in revealing 

dominance relations and diversity properties 
The approximations of three MaF Benchmarks are 

shown and discussed here, i.e., MaF1, MaF3, MaF7 and 
MaF10. Approximations from the three chosen algorithms 
after a various number of iterations are displayed and 
compared in ProD.  

Fig. 11 (b) shows the diversity and convergence of 3D 
MaF1 after 2520 functional evaluations. Visually, the 
approximation set from IBEA has the best convergence for 
this 3D case after this number of assessments. GrEA ranks 
as the second-best, while NSGA III suffers a relatively 
slower speed of convergence. In terms of diversity, no 
superior algorithm can be identified among the three 
selected. Similar is the case for 5D, after 6720 function 
evaluations. However, the diversity of IBEA seems to be 
higher for a low and intermediate range of �⊥ values. 
Simultaneously, NSGA III suffers in providing satisfactory 
diversity in the low range of �⊥ values. For the 10D case, 
after 154000 evaluations, the situation is significantly 
changed. Most approximations of NSGA III are nearly 
converged to the PF, but solutions concentrate in a narrower 
region, indicating poor diversity. For IBEA, most solutions 
are converged, but there are some outliers of not fully 
converged candidates, while its diversity might be better 
than it is the case for NSGA III. For GrEA, a larger portion 
of candidates are not converged to PF but those already 
converged show better spread stretching far to areas away 
from the reference line or center region, indicating better 
coverage of the objective space. 

Fig. 12 depicts ProD for the convergence process of 
approximations of Benchmark MaF3 calculated using the 
three MaOP algorithms. In the 3D case, see Fig. 12 (a), the 
approximations of NSGA III have the best diversity. Most 
of the solutions of IBEA and GrEA locate near �+ and �, 

(a) MaF7 3D-scatter plot (b) MaF7 3D ProD 

(c) MaF7 5D ProD (d) MaF7 10D ProD 
Fig. 9.  ProD showing the convergence process of Benchmark MaF7
before normalisation on objectives. 

(a) MaF10 3D-scatter plot (d) MaF10 3D ProD 

(c) MaF10 5D ProD (d) MaF10 10D ProD 
Fig.10.  ProD show the convergence process of Benchmark MaF10. 

(a) MaF1 3D-scatter plot (b) MaF1 3D ProD 

(c) MaF1 5D ProD (d) MaF1 10D ProD 
Fig. 11.  ProD show the convergence process of Benchmark MaF1 
without normalisation on objectives. 
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plane, see Fig. 12(a), the diversity of them is thus 
inadequate. In ProD, solutions of NSGA III cover well the 
folded image of the true PF. The solutions of IBEA and 
GrEA are only located at the bottom of the folded PF image 
with a relatively good distribution. Still, the area of the 
lower range of �⊥ values is not covered, which indicates 
poor diversity. The results for 5D and 10D on MaF3, yield 
similar observations. 

Approximations from the 3D case of MaF7 after 16800 
functional evaluations show almost equally good results, see 
Fig. 13(b). However, the convergence of NSGA III is 
somewhat weaker than it is for the other two algorithms. See 
Fig. 13(b). For the 5D case, after 16,800 evaluations, the 
presentation becomes less clear. However, one can still 
conclude that IBEA yields the best results in convergence 
and diversity while NSGA III generates the least converged 
approximations. See Fig. 13(c). For the 10D case, see Fig. 
13(d), IBEA gives the best results in diversity compared to 
the other two algorithms. But none of the three algorithms 
generates satisfactory approximations in terms of diversity. 

PF approximations of Benchmark problem MaF10 
depict folded patterns. For the 3D case, after 31,500 
functional evaluations, the three competing algorithms 
appear in layers, and none of them is fully converged. See 

Fig. 14(b). Although they all generate similar good diversity 
results, IBEA yields the best results in convergence, 
followed by IBEA and then NSGA III. Similar conclusions 
can be made about the three competing algorithms in 5D 
after 42,000 functional evaluations and 10D after 176,000 
iterations. See Fig. 14(c)(d).  

V. DISCUSSION 

ProD can display convergence of an algorithm and 
overall dominance relations between approximation sets 
that are not too close in performance. When the sets' 
performance is comparable or similar, ProD has difficulty 
discriminating the good or poor ones, and a performance 
indicator, in this case, must be used in conjunction.  

ProD may reveal PF shapes in high dimensional spaces 
in general. It can show PF patterns of symmetry/asymmetry 
about the reference vector, linearity, convexity/concavity, 
and their coverage in objective space. 

It is recognised that ProD relies on knowing the ideal 
and nadir points, but these are unknown in real-world 
problems. However, ProD can be used to visualise the 
approximations on benchmark problems for the 
development of new MaOP algorithms, where PFs are 
known, and Ideal and Nadir points are well defined. For 
unknown PFs, the nominal Ideal and Nadir point may be 
estimated based on available data of approximations. 

The normalisation of PF approximations may alter the 
shape of the PF. In practice, ProD can be used with both 
normalised and unnormalised data; users may select an 
appropriate approach that leads to a preferred – e.g., the 
most straightforward – PF pattern. 

Multiple solutions in �∥ may occur for given �% values in 
ProD, resulting in the folded shape of PF. These occur when 
PFs are asymmetric about the reference vector so that data 
with the same �% values may have different projections �∥ 
on reference vector, resulting in several data points lying 
vertically on the same �%. Moreover, most real-life MaOP 
would likely have PFs with highly irregular patterns 
resulting in the formation of “clouds” in ProD; this causes 
uncertainty when used to assess dominance relations 

(a) MaF3 3D-scatter plot (b) MaF3 3D ProD 

(c) MaF3 5D ProD (d) MaF3 10D ProD 
Fig.12.  ProD showing the convergence process of Benchmark MaF3.  

(a) MaF7 3D-scatter plot (b) MaF7 3D ProD 

(c) MaF7 5D ProD (d) MaF7 10D ProD 
Fig.13.  ProD showing the convergence process of Benchmark MaF7. 

(a) MaF10 3D-scatter plot (b) MaF10 3D ProD 

(c) MaF10 5D ProD (d) MaF10 10D ProD 
Fig. 14.  ProD showing the convergence process of Benchmark MaF10 
without normalisation on objectives. 
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between approximations when the performance of 
competing approximations is similar; this can be mitigated 
with the use of suitable performance indicators. Future work 
may also include local diversity indicators to counteract the 
loss of such information due to the data compression nature 
of ProD. 

VI. CONCLUSION AND FUTURE WORK 

A new visualisation method, ProD, is proposed to 
visualise high dimensional vectors of approximation sets of 
MaOP. All data are visualised in terms of projections on, 
and distance to, a reference vector; a vector linking the 
nominal Ideal point and nominal Nadir point based on 
approximations. Results show that ProD exhibits a more 
balanced performance compared to the state-of-the-art 
methods to capture the desired properties of a visualisation 
method. Satisfactory performance is observed in portraying 
convergence of PF approximations, thus in revealing 
dominance relationships. 

ProD reveals a necessary, but insufficient condition on 
its own, for diversity, i.e., areas with no coverage with data 
in ProD have poor diversity. However, areas with good 
coverage do not necessarily mean good diversity. It was also 
shown in this paper that approximation sets of similar 
performance may be hard to distinguish via using ProD, 
which can be mitigated by the use of numerical performance 
indicators. 

In future work, ProD should be compared with a wider 
range of visualisation methods and tested on more PF 
patterns of higher complexity e.g., of highly irregular 
distributions, as well as real world problems. Methods for 
estimating usable nominal Ideal and Nadir points can also 
be explored. 
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