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Abstract— Current performance indicators for assessing 

the diversity of many-objective optimisation approximations 

are often underperforming as the number of objectives 

increases, particularly for complex optimisation problems. In 

this article, a new pure unary diversity indicator is proposed, 

Inverse Ratio of Net Avertence angle (IRNA), which is 

formulated by minimising the sum of the included angles 

between approximation set and a set of reference vectors. It is 

achieved by effectively rotating the reference vectors system 

in all dimensions simultaneously with an optimised spatial 

angle. Any potential systematic bias in included angles is 

removed, and the highest possible diversity score of a solution 

set is obtained. Numerical results from evaluating 

performance on synthetic solutions on a unit simplex plane 

and benchmark functions of MaF show that the proposed 

performance indicator IRNA is more sensitive to capturing 

diversity changes as the number of objectives increases 

compared to other popular indicators.  

Keywords— Many-objective optimisation, Performance 

indicator, Diversity, Reference vectors, Benchmark testing 

I. INTRODUCTION  

Various metaheuristic methodologies have been 
developed to address the research challenge of many-
objective optimisation problems (MaOP) [1]. It appears that 
there is no single methodology superior to all the rest in 
solving the plethora of MaOPs [1]. Performance Indicators 
(PIs) are crucial for assessing the quality of MaOP 
algorithms' approximations, as mathematical guarantees for 
diversity and convergence properties and global optima are 
incredibly challenging to derive [2]. PIs may also play a 
central role in guiding the evolution of the solution set 
toward optimality. It is most commonly accepted that the 
quality of the Pareto Front (PF) approximation is 
determined by its three major characteristics: convergence, 
distribution (or evenness) and extent (or spread), where the 
last two jointly describe its diversity property [2]–[4]. 
Convergence indicators have been formulated, for instance, 
by measuring and comparing the distance between 
individuals and the nominal ideal point, which is an 
auxiliary point at which all objectives are at their minimum 
value. Diversity indicators are more challenging to develop 
since PF's actual shape and distribution are unknown a priori 
and challenging to be described via a limited number of 
discrete points in a high dimensional objective space. 

Several design principles, such as cardinality, distance, 
hypervolume, dominance, and included angles, have been 
utilised to develop PIs [4]. PIs based on included angles are 
formulated by measuring the included angles between the 
vectors of candidate solutions and reference vectors [3], [5]. 
Pure diversity indicators have been developed in this way 

[3], [5], [6]. One major challenge remains that candidate 
solutions may have a systematic bias in included angles with 
reference vectors which may cause inconsistent scores of 
indicators and hinders derivation of meaningful metrics. 
This challenge could be mitigated by minimising the 
included angles between reference vectors and candidates 
through rotation of the reference vector system to remove 
eventual systematic bias in data. The proposed PI's 
underpinning idea is to search for an optimised diversity 
score for each of two competing approximation sets by 
rotating the reference vector system with an optimal angle; 
hence the systematic bias in both data sets can be removed. 
A new unary diversity indicator is proposed. A reference 
vector-based pure diversity indicator is expressed with the 
Inverse Ratio of Net Avertence angles (IRNA), as detailed 
in Section 3. Moreover, alternative assessment methods for 
comparing and contrasting efficacy and efficiency among 
several performance indicators in terms of monotonicity and 
sensitivity are suggested and demonstrated numerically 
through MaF benchmark functions in 3, 5, 7 and 10 
objectives. 

The rest of the paper is organised as follows: Section II 
includes an overview of state of the art in performance 
indicators and the creation of reference vectors in MaOP 
problems, focusing on PIs using reference vectors. Section 
III provides a detailed description of the proposed IRNA for 
evaluation of the diversity of MaOP cases. Section IV 
includes numerical studies of IRNA, where the 
effectiveness is assessed against two well-established 
indicators in dealing with synthetic and benchmark 
problems. Section V concludes the article. 

II. PERFORMANCE INDICATORS 

A. Performance Indicators in many-objective 

optimisation problems 

Numerous performance indicators have been designed 
for the assessment of MaOP approximation sets. Earlier 
comprehensive surveys on PIs and their properties can be 
found in the literature [2, 7-8]. 

PIs in MaOP can be grouped into three main categories: 
those which primarily evaluate convergence [9], those 
mainly assessing diversity [10], and those measuring both 
convergence and diversity simultaneously [11]. 

Representative PIs for assessing convergence only 
include the Generational distance (GD) [12] and GD+ [13], 
which are distance-based PIs. PI for diversity is further 
divided into subgroups. Those primarily evaluating spread, 
those for mainly measuring uniformity and those for 
assessing both spread and uniformity. An example of 
commonly adopted PIs of this kind is Δp [14]. Some are 



newly developed, e.g. PD [2] and Coverage over Pareto 
Front (CPF) [3]. 

PIs for measuring the combined performance of 
convergence and diversity are most commonly used, e.g., 
Epsilon indicator (ϵ-indicator) [15], Inverted generational 
distance (IGD), IGD+ [13], Hypervolume (HV) [16], and R-
metric [17].  

 Deb et al. [6] suggest a ∆ metric, measuring the extent 
of spread and distribution achieved by the approximations. 
The main drawback of the indicator is the computational 
cost when scaling up in higher dimensions (for MaOPs). 

Mostaghim and Teich [11] propose Sigma Diversity 
Metric (SDM) to evaluate diversity by calculating angular 
positions of solutions in the objective space. A limitation of 
this method is that there is a systematic bias in angular 
locations of the approximations relative to � reference lines.  

Deb and Jain [18] suggest a diversity measure (DM), 
which measures the diversity against a reference set. Here, 
solutions are projected on an (m − 1)-dimensional 
hyperplane with hyper-boxes. The indicator value is 
proportional to the number of hyper-boxes containing both 
a reference solution and a candidate solution. Several 
challenges exist [19], including its dependence on a 
reference set, computationally high cost in creating hyper-
boxes, and the determination of neighbouring hyper-boxes 
in high dimensional objective space.  

Li et al. [19] propose a pure diversity comparison 
indicator (DCI) to assess the relative diversity of two or 
more Pareto front approximations in many-objective 
optimisation by counting the number of solutions in a grid 
covering the objective space. No reference set is required 
for DCI calculation. But the method is sensitive to the 
number of divisions chosen in the grid. Li et al. [20] suggest 
a parameter-less performance comparison indicator (PCI) to 
assess both convergence and diversity of approximations 
using a reference set constructed by dividing the 
approximation set into clusters and calculating the 
minimum moves of solutions to dominate these clusters 
weakly. The merit of PCI is that it does not require any prior 
reference set. However, PCI depends on determining the 
number of data groups utilised in the evaluation, which 
leads to a change of indicator value.  

Using reference vectors to create a diversity score for 
contrasting two competing approximation sets has been 
implemented successfully in the past [3], [5], [7].  

Cai et al. [6] define a diversity indicator (DIR) using 
reference vectors by identifying candidate solutions' 
systematic deviations away from the reference vectors. The 
mean values and variances of the so-called coverage vectors 
that stores the number of reference vectors linked to each 
candidate solution are found. A major demerit of the method 
is its inability to deal with local clusters of candidate 
solutions, which cannot be solved by increasing the number 
of reference vectors, which largely influences the indicator 
value. Moreover, the regional groups of data are not easily 
detected in high dimensional MaOPs a priori.  

Most recently, Tian et al. [3] propose a pure diversity PI 
named CPF by first projecting a solution set to the (m-1)-
dimensional unit simplex plane and then to a unit 
hypercube. The hypervolume of the predicted solution set is 
found as the score for its diversity. A significant 

disadvantage of the method is that partially PF coverage is 
enlarged if it locates higher than the unit simplex plane 
when projected onto it then cast to a unit hypercube. In the 
opposite case, the coverage is shrunk when projected on to 
the unit simplex plane. See section IV for details. 

B. Creation of system of reference vectors 

The Dan and Dennis method [21] is mainly used to 
generate reference vectors, which creates uniformly spaced 
vectors only on a normalised hyper-plane – an (m−1)-
dimensional unit simplex plane to all objective axes which 
have an intercept of one on each axis.  

Deb and Jain [22] suggest using two layers of reference 
points with each of the smaller p, p1 for boundary layer and 
p2 for the inside layer. The total number of reference lines 
is dramatically reduced to a manageable (for MaOPs) level.  

Tian et al. [23] proposed to generate reference vectors 
on known true PFs starting with the points created by Das 
and Dennis method on the unit simplex plane and projecting 
them to the actual Pareto fronts. However, the final 
distribution of the reference points generated in this way is 
not uniform.  

  

(a) Locations of candidate 
solutions and reference vectors. 
 

(b) Rotated system of reference 
vectors with angle β.  

Fig. 1. A 2D schematic view shows the rotation of reference vectors by β, 

where the sum of included angles is minimised to attain the minimal sum 

of net avertence angles. 

III. FORMULATION OF THE PROPOSED DIVERSITY INDICATOR 

A. Definition of diversity indicator - Inverted Ratio of Net 

Avertence angles (IRNA) 

Possible systematic bias in diversity measurement may 
exist when using included angles to a predefined set of 
reference vectors to formulate PI for diversity.  See Fig. 
1(a), where each candidate solution has a similar angle 
difference from its closest reference vector; Erroneously, a 
diversity score based on these angles is inevitably low. It is 
even so when assessing approximations of high dimensional 
MaOPs since the number of solutions is scarce compared 
with the need to cover the problem's high dimensionality. 
One way to improve the formulation is by introducing a 
rotating reference vector system to remove eventual 
systematic bias in avertence angles between approximation 
sets and reference vectors. By rotating the reference plane 
with an optimised angle �, the sum of angle difference is 
decreased maximumly, and an optimal diversity score is 
obtained. See Fig. 1(b). When two approximation sets 
contrast in diversity, the comparison should be made based 
on each's optimal diversity score. The minimised Inverted 
Ratio of Net Avertence angles (IRNA) is formulated as a 
pure diversity indicator defined as the sum of unity minus 
the ratio of the actual included angle to maximum possible 



included angle between individual candidate solutions and 
the reference vector. See Eq. (1). 

      ���� � 	

 ∑ �1 � 	

��

��	 ����,�����      (1) 

in which  ����,����
 is the minimised avertence angle between 

candidate solution k and its nearest reference vector. It is 
illustrated in a 3D situation as an example shown in Fig. 2. 

��  is 1/2 of the included angle between two adjacent 
reference vectors for candidate k. N is the number of 
candidate solutions.  

 The range of the IRNA value is between 0 and 1; a 
higher score for an approximation set indicates better 
diversity. 

B. Relationship between the included angle of two 

vectors in m dimensional space and their projections 

on planes of pairwise coordinate axes 

The optimised spatial included angle ����,����
 is 

nontrivial to be calculated directly. See Fig. 2. One way to 
find the angle is by decomposing all involved angles onto 
respective 2D planes where arithmetic operations can be 
done. The resultant angle is found based on the net 
components.  

Their rotational projections can express included angle 
formed by two arbitrarily located spatial vectors in high 
dimensional space onto respective 2D planes. 

 
Fig. 3. Rotation about f2 axis, the rotational projection of the spatial 

angle onto f1-f2 plane is �	�. 

The included angle can be proven numerically to be given 
as: 

θ� � ���	��� � ��� �� … � "��#$� … � ���	�� (2) 

in which θ�  is the avertence angle between two spatial 
vectors in an m-dimensional space and can be expressed by 
θ12, θ23, ..., θ(m-1)m and θm1, where ��# , % ∈ �1, '�, ( � % �
1 *+, ( � 1 -ℎ/+ % � ' , are angles of the rotational 
projections of the vectors about the axis of 2, 3, …, m and 1 
respectively onto planes formed on 1-2, 2-3, …, m-1 axes 
and there are m components in total. Fig. 3 illustrates a 3D 
case of finding θ12. 

Assuming:  

              α1 2 34
|1| ,       α6 2 74

|6|           (3) 

�	� � arccos =>|?|∙ABC DE   |?|∙CFG DE   HI >|J|∙ABC DK  |J|∙CFG DL  HI
|?||J| M     (4) 

Similarly, all other ��#  are found by rotating R and F 

about N#  axis accordingly. Included angles in high 

dimensional space can be added or subtracted by first 
projecting them onto the same respective planes, and the 
arithmetic operations are done on the projected components. 
The partial results after component-wise addition or 
subtraction are enumerated back to the resultant spatial 
angle searched. 

C. Calculation of IRNA 

The proposed IRNA is computed in steps as follows: 

Find the components βij of rotation angle β in the various 
pairwise coordinate planes by minimisation of the 
expression: 

��# � *OP'%+QRS, RTU,…,V     
STRWU,…,VXRWU

Y Y Y Z��#
��� � ��#Z

�[�\	

#��\	

�

��	




��	
 (5) 

in which N is the number of candidate solutions. 

Find the components of net avertence angle ��#�,�]^
 

��#
��,���� � ��#

��� � ��# , (6)  

for % � 1, … , ', ( � % � 1, … , ' � % � 1, _ � 1, … , � 

Eq.2 is the vector sum of avertence angle ����,����
. IRNA is 

finally computed using Eq. 1. 

 

Algorithm 1 depicts the pseudo-code for the calculation 
of IRNA. It starts with the import of population (X) of n 
candidate solutions. The algorithm first eliminates 
dominated solutions (line 1) and then normalises the 
remaining data (line 2). The upper and lower limit of the 

 
Fig. 2. A 3D schematic view of the rotation of reference vector by β, 

where the original included angle θ� is minimised to attain the minimal 

avertence angle ����,����
. 



normalisation range can either be decided by the decision-
maker or found using the maximum and the minimum value 
from the data sets. Systematic reference vectors are created 
based on the method of reference point generation proposed 
by Das and Dennis's (line 3) approach. The minimal angles 
between the reference vectors are calculated and stored as 
variables � (line 4). Each candidate solution is assigned to 
its closest reference line based on the size of included angles 
(Line 5), and IRNA is calculated using the obtained 
included angles (Lines 6-9).  

IV. NUMERICAL STUDIES ON IRNA 

The effectiveness of IRNA is assessed through four 
numerical studies. Firstly, IRNA, HV and CPF are applied 
on a set of synthetic PFs of uniformly spaced candidate 
solutions on the unit simplex plane and compared on four 
different synthetic candidate solution sets; candidate 
solutions are iteratively and randomly removed from the 
solution set. The consistency of all metrics is evaluated as 
diversity decreases (by design) and as the number of 
objective functions increases. (Section IV.A). Secondly, 
IRNA, HV and CPF are compared in the evaluation of PFs 
of MaF Benchmarks functions [24]. (Section IV.B). 
Thirdly, IRNA, HV and CPF are applied to evaluate 
approximated PF of MaF Benchmark problems using 
NSGA III [22] for 3, 5 and 10 objectives (Section IV.C). 
Finally, IRNA, HV and CPF are used to track the PF 
performance during optimisation (Section IV.D). 

A. Assessment on synthetic candidate solutions on unit 
simplex plane 

The purpose of the tests is to assess the monotonicity and 
sensitivity of IRNA to known proportional changes of 
diversity. This test method has been used successfully in 

earlier studies, e.g. in [2], to assess performance indicators. 
Four different cases are studied, a) fully systematically 
constructed candidate solutions on the unit simplex plane, 
b) 90% systematically constructed while 10% of candidate 
solutions are randomly discarded, c) 75% systematically 
constructed and 25% randomly discarded, and d) 50% 
systematically constructed and 50% randomly discarded. 
Fig. 4 displays a typical set of candidate solutions created 
on the unit simplex plane with 100% systematic creation 
while 0%, 10%, 25% and 50% are randomly discarded. The 
competing diversity indicators are calculated and shown in 
Fig. 5. The calculation has been repeated 20 times to 
account for the problem's stochastic nature and provide 
statistics to understand the resulting performance.  

As it can be seen on the values of PIs, HV and CPF start 
with non-unity value for although 100% perfect diversity 
and reduces in an unproportionate fashion with the further 
reduction of diversity. IRNA begins with a value equaling 
1.0 (designed property). It reduces proportionately with 
increased amounts of randomly discarded solutions.  It 
shows that IRNA effectively captures the monotonic 
decrease in diversity.  

B. Evaluation on true PF of Benchmark MaFs 

HV, CPF and IRNA are tested on theoretical Pareto 
Front of Benchmark problems MaF. Fig. 6 depicts the 
indicator values to various true PF of MaF Benchmarks of 
1, 2, 3, 5, 6, 7, 10 and 11. Results of MaF 4, 8, 9, 12 and 13 
are omitted in this study due to space limitations; MaF 4 has 
PF of badly scaled, standard shape form and consists of an 
inverse partial hypercube. At the same time, PF of MaF 8 
and 9 are degenerated and are expressed as functions of two 
decision variables. These are not studied in this paper. MaF 
12 and 13 have the same PF shape as that of MaF 5. MaF 14 

    

(a) Fully systematically 
constructed 

HV: 0.8417 (±1.129e-16)  
CPF: 0.7175 (±2.258e-16) 
IRNA: 1.000 (±4.517e-16) 

 

b) 10% randomly chosen and 
discarded. 

HV: 0.8367 (±2.392e-4) 
CPF: 0.7064 (±1.275-2) 

IRNA: 0.9011 (±5.729e-8) 

c) 25% randomly chosen and 
discarded. 

HV: 0.8297 (±1.000e-3)  
CPF: 0.6875 (±2.176e-3) 

IRNA: 0.7473 (±8.185e-8) 

d) 50% randomly chosen and 
discarded. 

HV: 0.8112 (±2.944e-3) 
CPF: 0.5926 (±3.230e-2) 

IRNA: 0.5055 (±9.411e-8) 

Fig. 4. A typical set of constructed candidate solutions on the normalised unit simplex plane is displayed where a specific portion of randomly chosen 

solutions are discarded. (30 repeated tests are conducted. The Mean value and standard deviation are shown.) 

   

(a) Analysis done on the normalised unit 
simplex plane of 3 obj. 

(b) Analysis done on the normalised unit 
simplex plane of 5 obj. 

(c) Analysis done on the normalised unit 
simplex plane of 10 obj. 

Fig. 5. The quality indicator values are shown versus the percentage of discarded solutions on the normalised unit simplex plane. 
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has the same PF form as MaF1, and MaF 15 has the same 
PF shape as MaF 4. Both are dedicated to large scale 
problems, which are not the subject of this article. 

Fig. 6(a) shows PF of MaF1, which consists of a partial 
simplex plane of non-unity. Its partial coverage of the 
objective space is reflected in the HV and IRNA values. 
CPF is proportional to the coverage of the projected PF on 
a unit simplex plane. The partial PF is located higher up than 
the unit simplex plane. When projected onto the unit 
simplex plane, the projection covers – erroneously – a larger 
proportion of the unit simplex plane, resulting in a large CPF 
value. 

Fig. 6 (b) displays the PF of MaF2, a partial sphere. HV 
and IRNA have reasonable low values since the PF covers 
only partially the objective space, while the CPF value is too 
high for the same reason as it is explained for MaF1. 

Fig. 6 (c) displays the PF of MaF3, which forms a 
convex plane. The PF is calculated based on a mathematical 
formula that creates unevenly distributed candidate 
solutions. However, this yields high HV values since many 
solutions are concentrated along the boundaries favoured by 
HV [19]. The value of CPF is lower than HV because it fails 
to cover the simplex plane completely when it is projected 
to the plane in parallel. In other words, CPF shows lower 
diversity estimation erroneously on PF of convex shapes, 
which locate lower than the simplex plane. IRNA expresses 
the averaged uniformity of an approximation set. The PF 
solutions shown in Fig. 6 (c) are found using a mathematical 
expression valid for the benchmark [25] and the result is 
unevenly distributed although seemingly densely populated. 
Hence, the sum of inclusion angles in IRNA calculation is 
averaged over, by dividing with the total number of 
solutions, the resulted value of IRNA is relatively low. 
Subsequently, the same benchmark is used with NSGA III; 
the IRNA PI is much higher, as in Fig. 7(c).  This is because 
a uniformly distributed set of reference points is utilised on 
the search for solutions. 

Fig. 6(d) shows the PF of MaF5, which is a sphere. PF 
covers the objective space fully, which is reflected in high 
IRNA value. When projected on a unit simplex plane, the 

solutions have uneven distribution, which results in lower 
CPF values. HV favours candidates locating on the 
boundaries, where such solutions are not overwhelmingly 
present as the case for MaF3; hence a low HV value is 
reached. 

Fig. 6(e) shows the PF of MaF6, which consists of a 
degenerated PF shape of an arc, with low coverage of the 
objective space, which gives low IRNA value since IRNA 
expresses the coverage distribution solution on objective 
space. The value of HV is also low since there are only two 
extremal solutions and otherwise only intermediate 
solutions of the concave type, which result in low HV [19]. 
CPF results in too high value in this case.  

Fig. 6(f) shows the PF of MaF7 that covers partially the 
objective space, which is reflected on HV and IRNA values. 
Similarly, as stated above, CPF covers an erroneously large 
proportion of the unit simplex plane, which results in a large 
CPF value. 

Fig. 6(g) depicts the PF of MaF10 that covers the 
objective space fully. This is correctly reflected on HV, CPF 
and IRNA values. 

Fig. 6(h) shows the PF of MaF11 that covers only 
partially the objective space, but HV and CPF have 
relatively high values, while the partial coverage is reflected 
only on the value of IRNA. When PF is projected onto the 
unit simplex plane, it covers a large proportion of it, which 
results in a very high CPF value, erroneously. Solutions at 
knee points and boundary areas contribute more to the HV 
value in the case of a PF of convex shape[19], and there are 
many such points in the solution, which lead to high HV 
value. 

C. Evaluation on PF of MaF Benchmark problems with 

the increasing number of objectives 

Comparisons among HV, CPF and IRNA when applied 
on PF approximations calculated using NSGA III for 3, 5, 7 
and 10 objectives of MaF1-7 and 10-11 are performed. See 
Fig. 7. The purpose of the tests is to examine further the 
proposed indicator’s robustness and monotonicity as the 
number of objectives increases. With almost the same 

    

(a) MaF1 
HV= 0.24521 CPF= 0.91035 

IRNA= 0.27419 
 

(b) MaF2 
HV= 0.21542 CPF= 0.8148 

IRNA= 0.3946 
 

(c) MaF3 
HV= 0.97024 CPF= 0.70751 

IRNA= 0.41757 
 

(d) MaF5 
HV= 0.58721 CPF= 0.74412 

IRNA= 0.99998 
 

    
(e) MaF6 

HV= 0.20212 CPF= 0.63619 
IRNA= 0.050262 

(f) MaF7 
HV= 0.28874 CPF= 0.81041 

IRNA= 0.26204, 

(g) MaF10 
HV= 0.95671 CPF= 0.82621 

IRNA= 0.9874 

(h) MaF11 
HV= 0.94159 CPF= 0.83999 

IRNA= 0.50425 
Fig. 6. HV, CPF and IRNA evaluate actual PF of Benchmark of MaFs. 



number of candidate solutions in analysis, it is expected that 
the diversity of solutions will reduce as the number of 
objective functions increases since larger objective space 
will be covered by the same number of candidates [19].  

TABLE I.    NUMBERS OF ITERATIONS AND CANDIDATE SOLUTIONS 

Number of 
objectives 

Number of 
evaluations 

Number of 
solutions 

3 200,000 210 

5 500,000 210 

7 500,000 210 

10 500,000 275 

 

The algorithmic parameters adopted in NSGA III are 

based on default values acquired from PlatEMO version 2.7 

[25]. The number of iterations and number of candidate 

solutions is listed in Table 1. Reference vectors are 

generated using Das and Dennis. Each Benchmark problem 

with a specific number of objectives is calculated 30 times. 

Approximation sets are evaluated by PIs and shown in their 

mean values and standard deviations. 

Fig. 7(a) displays the change of HV, CPF and IRNA 
indicator values applied on approximations of MaF1 for an 
increasing number of objectives. All three indicators behave 
as expected, i.e., values decrease monotonically with the 
increase of objectives, but HV's values are extremely low on 
7 and 10 objectives. The volume above the PF reduces 
drastically with the increasing number of objectives. This 

can also be reasoned as follows: simplex planes can be in 
general expressed as in Eq. 7. 

       N	 � N� � ⋯ � N� � *�     (7) 

in which *� is the value of the objective function at which 

the simplex plane coincides with NF  axis. (NF � *�  while 

Nc=0, for all j≠i). For midpoint on PF: N	=N�=…=Ne, we 

have: 

           N	=N�=…=Ne=
*� 'f     (8) 

Its distance to the Ideal point O� is: 

      O� � g�N	�� � �N��� � ⋯ � �Ne�� � *� √'f     (9) 

*�  in MaF1 increases more rapidly than √' with 

increasing m causing O� increases rapidly, and HV reduces 

drastically.  

In MaF2, HV breaks monotonicity, which value 

increases from 5 objectives to 7 and 10 objectives. PF of a 

hypercube is governed by: 

�N	�� � �N��� � ⋯ � �Ne�� � O�  (10) 

in which r is the radius of the hypercube, and in this case, 
r < 1.0.  See Fig. 6(b). The volume of the hypercube is 

   
(a) MaF1 (b) MaF2 (c) MaF3 

   
(d) MaF4 (e) MaF5 (f) MaF6 

   
(g) MaF7 (h) MaF10 (i) MaF11 

Fig. 7.   HV, CPF and IRNA evaluate approximations that NSGA III analyses benchmark of MaF1-7 and 10-11 with mean value and standard 

deviation after 30 independent runs and solutions. 
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proportional to O�  and HV is proportional to 1 O�f , thus 

increases with the increasing number of objectives. 

When MaF3 is concerned, see Fig. 7(c), HV value keeps 
high for all cases of the number of objectives, which is 
caused by the fact that HV value favours boundary points 
and knee points on PF of convex shape, which gives high 
HV in all cases of the number of objectives. CPF has too 
low value in 7 and 10 objectives, while IRNA changes 
monotonically with the number of objectives. 

Monotonic change of HV and IRNA with the number of 
objectives are also observed in results of MaF4, see Fig. 
7(d). MaF4 is a partial convex hypercube or partial inverse 
hypercube. CPF, in discussed earlier, has a projection on the 
simplex plane that is ‘shrunk’, hence covers a falsely small 
portion of the plane. 

In MaF5, IRNA has a full score in diversity in 3 and 5 
objective cases. Its values decrease as the number of 
objectives goes up because PF is under-represented by the 
available number of candidate solutions. The values of CPF 
and HV are very low. 

Non-monotonic behaviour is observed in HV for MaF6, 
which has a degenerate PF shape, with an increasing number 
of objectives.  

PF of MaF7 is of partial type and consists of several 
‘flakes’ in the objective space. Only HV shows a monotonic 
change from 3 to 5 objectives, while all three indicators have 
near-zero values for 7 and 10 objective cases. 

When results of MaF10 and MaF11 are concerned, only 
IRNA displays nearly monotonic behaviour. See Figs: 7 (e) 
and 7(f). 

 In summary, we conclude that IRNA exhibits overall 
satisfactory monotonicity in all benchmark functions tested. 
In general, it performs more reliable than both HV and CPF, 
which behave erratically in some cases. 

D. Tracking the performance of approximations 

It is logical to assume that convergence and diversity of 
PF approximations are both very low in the early stages of 
optimisation (low number of iterations), while both improve 
gradually as the optimisation algorithm progresses. 
Capturing and tracking this progress is crucial for 
understanding (and guiding via feedback) the performance 
of optimisation algorithms; hence consistent and sensitive 
performance indicators are important. 

Benchmarks of MaF 5, 6 and 7 are investigated using 
NSGA III, where approximations are evaluated by the 
indicators HV, CPF and IRNA to examine each PI's 
performance. A total of 30 independent runs per benchmark 
function per chosen number of objective functions, have 
been carried out, and the mean value and standard deviation 
are calculated to take the stochastic effect on the 
approximation into account in the analyses. PF of MaF5 
consists of a hypercube, i.e., the PF covers the objective 
space fully. MaF6 comprises a PF of a pure arc, which is of 
degenerate type. MaF7 is made of several ‘flakes’ in the 
objective space and represents a typical PF of a partial sort. 
These benchmarks are selected to represent three main PF 
categories (full coverage, degenerative, partial). The 
resulting numerical simulations demonstrate the differences 
in consistency, sensitivity, and monotonicity of the 
indicators. 

The number of iterations at convergence (NIC) for each 
PI is used here as a measure for its judgement on the 
completion of iteration process. When analysing 
approximation sets at various iteration stages using the same 
algorithm, the diversity indicator that results in the largest 
NIC (with the best diversity displayed) is most sensitive to 
detect diversity changes of solutions. This is explained and 
demonstrated visually in Fig. 8 via monitoring the 
convergence process of MaF5 with three objective 
functions. At NIC of HV, diversity is still low. See Fig.8(a). 
At NIC of CPF, the diversity is improved, see Fig.8(b). Only 

(a) NSGAIII M3 MaF5 converge 25% 
HV: 0.56478 CPF: 0.60497 IRNA: 0.56138 

(b) NSGAIII M3 MaF5 converge 50% 
HV: 0.57224 CPF: 0.73351 IRNA: 0.88431 

(c) NSGAIII M3 MaF5 converge 95% 
HV: 0.57509 CPF: 0.73410 IRNA: 0.96261 

Fig. 8. It visually compares solutions at a different nominal number of iterations at convergence (NIC) on contrasted PIs. The result is based on 30 independent 
runs, and the mean and standard deviation are shown. 



when the NIC of IRNA is reached, the diversity becomes 
superior. See Fig.8(c). It is valid for all three cases tested, 
i.e., MaF5, MaF6 and MaF7. Due to space limitations, only 
the result of MaF5 is shown in this article. 

Fig. 9(a) shows the same approximations of MaF5 in 
three objectives, using NSGA III and evaluated by HV, CPF 
and IRNA. CPF and IRNA increase gradually and 
monotonically as number of evaluations goes up. But HV 
decreases gradually and monotonically to a stable level. 
Besides, HV has the lowest NIC followed by CPF while 
IRNA obtains the highest NIC, which means that IRNA is 
most sensitive to capturing diversity change, followed by 
CPF. The same trend is observed in approximations of 
MaF5 of 5 objectives. See Fig. 9(b), CPF and IRNA 
increase gradually and monotonically as the evaluations go 
up. At the same time, HV decreases gradually and 
monotonically to a stable level, and the IRNA value has the 
largest NIC. Similar is the case in 10 objectives, except that 
the CPF value decreases with the increasing number of 
iterations and has the same NIC value as IRNA. See Fig. 
9(c). 

IRNA can also be used to describe the diversity of the 
degenerated type of PF of MaF6. Fig. 9(d) depicts the 
approximation process over time of MaF6 with three 
objective functions. Once again, the IRNA value increases 
monotonically until a stable level is reached, indicating the 
end of approximation process. IRNA has the largest NIC 
value among the three indicators. It is also true for MaF6 in 

5 and 10 objectives. See Figs. 9(e) and 9(f). The high 
standard deviation of CPF and IRNA value in these cases 
should be noted, indicating strong variations in the results. 

Better sensitivity of IRNA is also demonstrated using 
approximations of PF of partial types, e.g., that of MaF7. 
See Figs. 9(g) for 3 objectives, 9(h) for 5 objectives and 9(i) 
for 10 objectives, respectively. In 3 and 5 objective cases, 
the IRNA amount displays monotonic increasing behaviour 
and maintains the three indicators' largest NIC value. But 
the situation is changed in the case of 10 objectives. IRNA 
still varies almost monotonically with the increasing 
number of iterations but decreasing toward a stable level. 
This is caused by the larger spread of non-converged 
solutions in the early stage of the approximation process (PF 
of partial coverage). 

We conclude that IRNA exhibits a balanced sensitivity 
and monotonicity performance and yields arguably a more 
robust indicator than HV and CPF in the benchmark 
functions tested. 

V. CONCLUSION  

A new pure diversity indicator, the Inverted Ratio of Net 
Avertence angles (IRNA), is introduced. The proposed 
performance indicator is empirically tested for its efficacy 
on solutions of known diversity (synthetic data) constructed 
on a unit simplex plane and approximations of 3, 5, 7 and 
10 objectives of Benchmark problems MaF1-7 and 10-13. 

  
(a) MaF5, 3 objectives (b)  MaF5, 5 objectives (c)  MaF5, 10 objectives 

 
  

(d)  MaF6, 3 objectives (e)  MaF6, 5 objectives (f)  MaF6, 10 objectives 

   
(g)  MaF7, 3 objectives (h)  MaF7, 5 objectives (i)  MaF7, 10 objectives 

Fig. 9 Approximations over time for 30 independent runs of Benchmark of MaF5-7 are obtained using NSGA III. The solutions are evaluated by HV, 

CPF and IRNA, and the results are shown in mean value and standard deviation. 



MOEA algorithm NSGA III is used to reach approximations 
on Benchmark problems, IRNA is used against the 
commonly used HV and the more recent CPF. The novelty 
of the proposed diversity score yields by rotating the 
reference vector system with an optimal spatial angle. This 
rotation results in removing any potential systemic bias in 
included angles in data of approximations so that impartial 
scores of the diversity of approximation sets are obtained. 
Numerical results and analysis show that IRNA yields an 
overall more balanced performance. IRNA is more sensitive 
and monotonically proportionate in capturing diversity 
changes than HV and CPF indicators in the synthetic data 
problems, in actual PFs of MaF benchmark problems, and 
in cases when the number of objectives increases above 
three (for many-objective problems). Moreover, this robust 
performance is also observed in tracking the progress of 
algorithms during optimisation. 

Two new alternative methods in assessing sensitivity 
and monotonicity of performance indicators are used. One 
is studying variations when evaluating an increasing 
number of objectives while keeping the number of candidate 
solutions constant; the other examines their value changes 
at various iteration stages up to final convergence. 

The proposed IRNA is assessed here against popular 
performance indicators to provide a first insight. Towards 
further research, comparisons need to be made against a 
broader range of state-of-the-art performance indicators, 
additional coverage of types of benchmark problems in 
terms of dimensionality and complexity, as well as real life 
problems. 
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