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Adjoint-based parametric sensitivity analysis
for swirling M-flames

Calum S. Skene† and Peter J. Schmid

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

(Received xx; revised xx; accepted xx)

A linear numerical study is conducted to quantify the effect of swirl on the response
behaviour of premixed lean flames to general harmonic excitation in the inlet, upstream
of combustion. This study considers axisymmetric M-flames and is based on the lin-
earised compressible Navier–Stokes equations augmented by a simple one-step irreversible
chemical reaction. Optimal frequency response gains for both axisymmetric and non-
axisymmetric perturbations are computed via a direct-adjoint methodology and singular
value decompositions. The high-dimensional parameter space, containing perturbation
and base flow parameters, is explored by taking advantage of generic sensitivity infor-
mation gained from the adjoint solutions. This information is then tailored to specific

parametric sensitivities by first-order perturbation expansions of the singular triples
about the respective parameters. Valuable flow information, at a negligible computational
cost, is gained by simple weighted scalar products between direct and adjoint solutions.
We find that for non-swirling flows, a mode with azimuthal wavenumber m = 2 is the
most efficiently driven structure. The structural mechanism underlying the optimal gains
is shown to be the Orr mechanism for m = 0 and a blend of Orr and other mechanisms,
such as lift-up, for other azimuthal wavenumbers. Further to this, velocity and pressure
perturbations are shown to make up the optimal input and output showing that the
thermoacoustic mechanism is crucial in large energy amplifications. For m = 0 these
velocity perturbations are mainly longitudinal but for higher wavenumbers azimuthal
velocity fluctuations become prominent, especially in the non-swirling case. Sensitivity
analyses are carried out with respect to the Mach number, Reynolds number and swirl
number, and the accuracy of parametric gradients of the frequency response curve is
assessed. The sensitivity analysis reveals that increases in Reynolds and Mach numbers
yield higher gains, through a decrease in temperature diffusion. A rise in mean-flow swirl
is shown to diminish the gain, with increased damping for higher azimuthal wavenumbers.
This leads to a reordering of the most effectively amplified mode, with the axisymmetric
(m = 0) mode becoming the dominant structure at moderate swirl numbers.

Key words: keywords

1. Introduction

In many reactive systems, such as energy conversion devices or propulsion engines,
where emission standards and environmental impact are strictly regulated and enforced,
lean premixed combustion (LPC) is preferred and used due to its ability to operate in a
parameter regime that is characterised by low NOx output. The consequential changes in

† Email address for correspondence: calum.skene11@imperial.ac.uk
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combustion technology and operating conditions to accommodate LPC systems and lower
NOx emissions are multi-faceted and have been summarised in Correa (1998). Despite
its obvious advantages on environmental impact, LPC technology unfortunately presents
its own inherent problems. Foremost among them is the propensity of lean premixed
combustors for thermoacoustic instabilities which has become the leading issue of concern
in all industry sectors where gas turbines (Lieuwen & Yang 2005), propulsion power
sources (Culick 1996) or other energy conversion systems prevail. Scientific efforts in
accurately predicting these instabilities have met with difficulties and challenges over
the years, and a continued risk of damage, material fatigue or failure in lean premixed
combustor is still present in many situations.
Within the LPC community, stability margins and operational robustness are com-

monly improved by using swirl injectors. These injectors, for sufficiently high swirl
numbers, cause a vortex breakdown and a resulting central toroidal recirculation bubble,
which in turn provides a natural flame holder and thus stabilises the reaction zone. For
excessive swirl, though, the recirculation region may enter the inlet annulus and cause
flame flashback (Huang & Yang 2005). In spite of extensive research into LPC technology
and the role of swirl in stabilising the combustion dynamics, our understanding of this
issue is still incomplete, and there is scope for advanced tools to tackle combustion’s many
challenges and shed light on the mechanisms underpinning the response behaviour of lean
premixed flames under swirl. The recent reviews by Huang & Yang (2009) and Candel
et al. (2014) provide a thorough overview of progress made in understanding swirling
flames, but at the same time point towards key areas that require further research.

One of the most common and helpful tools for studying combustion dynamics is the
flame transfer function (FTF) which typically relates the resulting heat release rate
perturbations to acoustic velocity fluctuations at a particular frequency, as in the widely
used FTF derived from the n-τ -model (Crocco 1951) via Fourier transformation to
the frequency domain. When a flame transfer function is combined with an acoustic
network model, a stability analysis can be carried out and resonant frequencies can
be identified (Dowling & Stow 2003). Whilst the FTF links a scalar input signal to
a scalar output measurement, it fails to provide information about specific flow-field
structures that are active in the transfer from input to output. In other words, the FTF
provides a local (point-to-point) input-output analysis. By extending this concept to
a global formalism, a mapping between forcing structures and response structures can
be established and quantitatively assessed. The multiple-input-multiple-output (MIMO)
transfer function that translates between the global forcing and its response is known as
the resolvent. In this study we maximise the ratio of output-to-input energies over all
possible harmonic forcings to find the input structure that produces the largest frequency
response gain.
This type of resolvent-based analysis of frequency response gains has been used in

a wide range of applications. Trefethen et al. (1993) report that, even for globally
stable flows, large amplification by harmonic forcing can still occur, stemming from
the non-normality of the underlying system matrix. This non-normality can give rise
to significant short-term growth of particular initial states, as shown by Juniper (2011)
for combustion systems, or to strong pseudo-resonances (i.e., large frequency response
gains) in harmonically forced systems; the latter case is the focus of this study. In
all cases, a great deal of insight into the intrinsic energy amplification mechanisms
of a physcial system can be gained by extracting and investigating its most efficient
forcing and response structures, together with their parametric dependencies. Previous
studies of non-reactive configurations include, among others, the work of Garnaud et al.

(2013) which determined the preferred modal structures in incompressible jets, or the
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investigation by Jeun et al. (2016), using the optimal input-output framework to ‘predict
and understand the aeroacoustics of high-speed isothermal turbulent jets’. Fosas de Pando
et al. (2014); Fosas de Pando & Schmid (2017) extended standard resolvent analysis to
gain access to parametric sensitivities and associated effects such as mode switching
and destabilisation. Recently, an input-output analysis was conducted for a reactive
system (Blanchard 2015) to determine the optimal axisymmetric perturbations in the
inlet annulus that yield the largest gain in the combustion area for a non-swirlingM-flame.
This latter study forms the starting point for our investigation and is extended to (i)
address non-axisymmetric perturbations, (ii) assess the effect of swirl, and (iii) introduce
more flexible techniques to gain more complete information about gain sensitivities in a
highly parameterised system of equations.
We consider stable M-flames as equilibrium points (base flows) for our linearisation

and examine both swirling and non-swirling configurations. The global stability of our
flow will allow us to determine the long-time response behaviour of the flame to general
harmonic forcings, at a particular forcing frequency, via the resolvent. By not a-priori

specifying the forcing structure but instead solving for the optimum forcing that provides
the largest gain, as measured by a specific norm, we are able to identify optimal
`pathways through the governing equations´ through which efficient amplification via
selected mechanisms is possible. We do not restrict the input (forcing) to solely consist
of the longitudinal velocity perturbations or the output (response) to consist of the
flame’s heat-release rate perturbations, as is commonly done for FTF analyses. Instead,
we allow the input and output structures to consist of all components of the state
vector. In this way, the key physical quantities that contribute to the most favorable
path between input and output are identified without a-priori biasing towards any
particular mechanism. The optimisation problem underlying this analysis can be solved
iteratively via integration of the linearised direct and adjoint equations (see, e.g., Luchini
& Bottaro 2014; Juniper 2011); in our case, however, the restriction to linear time-
invariant governing equations and the choice of a quadratic norm (see below) allows the
transformation of the optimisation problem into a linear algebra problem: the optimal
gain, forcings and corresponding responses are given by the principal components of a
singular value decomposition (SVD) of the discretised resolvent matrix.
Numerical combustion studies are very costly due to the complexity of the underlying

reactive flow and the overwhelming number of governing parameters covering hydro-
dynamic, acoustic, material, geometric and chemical effects. In our analysis, a direct
numerical simulation (DNS) is used, further compounding the computational cost. As
the optimal gains and structures are extracted one at a time from an SVD of the
discretised resolvent matrix, calculating a comprehensive gain-frequency relationship
has to be performed frequency by frequency. While this computation can be performed
in parallel, the total computational cost is often prohibitively high to contemplate the
computation of the gain curve for a sufficiently fine discretisation in frequency; rather,
only a coarse sampling in frequency is usually feasible. The judicious choice of a few,
but pertinent frequencies thus arises – keeping in mind that we are most interested in
local minima and maxima of the gain curve that identify most amplified or most damped
frequencies and structures.
Adding to this already formidable problem is the realisation that each gain-frequency

relationship is valid only for the selected parameters and that true insight into the full
flame response behaviour comes from determining the change in the gain curves as the
governing parameters are varied. This latter information will pinpoint the most sensitive
mechanisms, guide control and design efforts and further isolate critical (sensitive) from
robust (insensitive) physical processes. Information of this type could be gained by using
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simple finite differences with respect to the chosen parameter, but this approach would
require many more computations for each frequency and parameter, quickly rendering
this methodology infeasible for a full parametric sensitivity analysis.

To overcome these difficulties we use the fact that the optimal forcing and correspond-
ing output are strongly linked via a direct and adjoint problem, leading to a simple first-
order accurate relationship between a change in the resolvent matrix and an associated
change in gain. These techniques have been developed for non-reacting flows by Fosas de
Pando et al. (2014). Harnessing this relationship, we are able to determine the sensitivity
of the gain to either the forcing frequency or to any parameter of the system, at very little
extra cost. In fact, computing the frequency derivatives is faster than calculating the gain,
and other parametric sensitivities are obtained by a simple inner product – essentially a
computation of negligible cost. This parametric sensitivity formulation (Fosas de Pando
et al. 2014; Fosas de Pando & Schmid 2017) is limited to configurations where the forcing
and the response coexist at least in part of the spatial domain; furthermore, effects of
parameters explicitly appearing in the definition of the norm are not accounted for. The
first limitation excludes cases where the input and output windows do not overlap, such
as, e.g., studies of far-field acoustics due to near-field forcing; also our case, connecting
inlet forcing to flame response, falls into this category. The second limitation can produce
incomplete accuracies, as changes of the norm may become as significant as the variations
due to the governing equations.

Practically, by computing the sensitivities we wish to extract a maximum of infor-
mation from the simulations and expand the validity of our results beyond the chosen
parameter setting, whilst keeping the computational costs at a minimum. The sensitivities
with respect to frequency allow us to more accurately estimate the gain curve and
perform smart sampling of the resolvent in the frequency domain: each new simulation
can be based on gain and gain-slope information of all previous results, exploiting a
maximum of information while minimising the computational effort. Sign changes in
the frequency derivative point towards local maximum or minimum, and cubic Hermite-
splines can give accurate estimates of the peaks and troughs of the gain curve. More
importantly, the sensitivity of the gain with respect to any parameter can be carried
out without performing any additional costly singular value decompositions, allowing
either the extrapolation of the gain to other values of the parameter or the accurate
cubic-Hermite interpolation of the gain for two or more values of the parameter.

We will develop and showcase this methodology for the case of swirling and non-
swirling premixed lean M-flames and obtain the frequency response curves and their
behaviour as some of the governing parameters are changed. In this manner, we obtain the
most comprehensive description of the flame’s response behaviour based on the available
output from the direct and adjoint components of our numerical simulations.

2. Governing equations and mathematical background

2.1. Governing equations

The governing equations modelling reactive flow consist of the compressible Navier–
Stokes equations augmented with a one-step irreversible chemical reaction. The full set
of equations, written in terms of non-dimensional quantities, reads
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non-dim. variable definition non-dim. parameter definition

length x =
x̂

L
Reynolds number Re =

ρ0Urout
µ

velocity u =
û

U
Prandtl number Pr =

µCP

λ

density ρ =
ρ̂

ρ0
Mach number Ma =

U
√

γP0/ρ0

pressure P =
P̂

ρ0U2
swirl number S =

∫

rout

rin
rwur dr

(rout − rin)
∫

rout

rin
u2r dr

time t =
t̂

L/U
Lewis number Le =

λ

ρDCP

temperature T =
T̂

T0

fuel mass fraction Y =
Ŷ

Y0

total non-chemical energy E =
Ê

U2

Table 1: Definitions of the non-dimensional variables and parameters. The reference
temperature T0, density ρ0, velocity U and mass fractions Y0 stem from the values of the
fresh gas in the inlet tube. Even though the mass fraction Ŷ is already non-dimensional,
dividing by the values in the fresh gases ensures that the new variable Y ranges from one
in the fresh gases to zero in the burnt gases. The constant CP denotes the heat capacity at
constant pressure, µ represents the dynamic viscosity, λ is the thermal conductivity and
D stands for the diffusion coefficient. The radii rin and rout in the swirl number definition
are the non-dimensional inner and outer radii of the inlet annulus, respectively.

∂ρ

∂t
= −∇ · (ρu), (2.1)

∂ρu

∂t
= −∇ · (ρu⊗ u)−∇P +

1

Re
∇ · τ , (2.2)

∂ρE

∂t
= −∇ · (ρuE)−

∇2T

(γ − 1)PrReMa2
−∇ · (Pu) +

1

Re
∇ · (τ · u) +Q′ω̇f , (2.3)

∂ρY

∂t
= −∇ · (ρuY )− ω̇f +

1

LePrRe
∇ · (ρ∇Y ). (2.4)

In the derivation of these equations (Poinsot & Veynante 2012), the dimensional variables,
denoted with a hat, have been rendered non-dimensional using the reference quantities
listed in table 1. This scaling produces five dimensionless parameters, also listed in table 1,
that govern the flow, acoustics and reaction dynamics.
Equations (2.1) and (2.2) represent conservation of mass and momentum, respectively.

Due to compressibility we require an energy equation (2.3) which we take to be an
equation for the total non-chemical energy

E =
1

2
u · u+

P

ρ(γ − 1)
, (2.5)



6 C.S. Skene, P.J. Schmid

given by the sum of the kinetic and internal energies per unit mass. The constant Q′

in (2.3) is the heat release per unit mass of fuel. The fuel mass fraction Y evolves according
to equation (2.4), and the reaction rate is explicitly given through an Arrhenius law

ω̇f = AρY0Y exp(−Ta/T ), (2.6)

where Ta is the activation temperature and A is the Arrhenius constant.
In order to obtain the equations in this form several assumptions had to be made.

The reaction is taken to be very lean, hence only the fuel mass fraction Y is required
when calculating the reaction rate. The heat capacities of all species are assumed to be
identical, and the gas is taken to be perfect, which establishes a relation between the
pressure and the temperature. In our non-dimensional variables, this relation reads

P =
ρT

γMa2
. (2.7)

We further assume that the heat capacities, the Prandtl number and the Lewis number
are constants with respect to temperature, but we allow the Reynolds number to vary
according to Sutherland’s law for the viscosity (Sutherland 1893). The diffusion coeffi-
cients of both species are taken to be equal, allowing us to use Fick’s law (Fick 1995) to
simplify the diffusion velocities in equation (2.4).

2.2. Numerical details

The numerical implementation of the above governing equations follows the outline
given in Garnaud (2012) and Blanchard (2015), but is augmented to allow for swirling
flows and three-dimensionality (non-zero azimuthal wavenumbers) in the linearised equa-
tions. It uses higher-order upwinded low-dissipation explicit schemes for the spatial
derivatives (Berland et al. 2007), Krylov subspace time-stepping and a zonal domain
decomposition technique for parallelising the calculations.

Figure 1 shows the numerical domain which is divided into two distinct subregions.
Region 0 consists of an inlet annulus through which fresh gases propagate to region 1, a
cylindrical combustion chamber. The central rod has radius rin and protrudes into region
1 by an amount xrod. The outer boundary of the inlet tube is at r = rout. Due to the
nature of the geometry cylindrical polar coordinates are used, adopting the formulation
given by Sandberg (2007).
For simplicity we recast the non-dimensional governing equations into

∂q

∂t
= N (q), (2.8)

where N represents the right-hand side of equations (2.1)-(2.4) in conservative form,
and the state q consists of the dynamic quantities (ρ, ρux, ρur, ρuθ, ρE, ρY )T . Locally
one-dimensional inviscid (LODI) boundary conditions (Poinsot & Lele 1992) are used
for an inflow boundary condition in region 0, where fresh gases are being injected, and
as an outflow condition in region 1 to ensure an open combustion area with minimal
wave-reflections from the computational boundary. The absence of wave reflections has
been checked by varying the downstream boundaries by one non-dimensional unit and
re-calculating the optimal gain for S = 0,m = 0,St = 4.21: a relative change in the
optimal gain by ≈ 0.1% has been found, demonstrating that wave-reflection from the
edge of the computational domain does not significantly impact our analysis.

A nonlinear solver determines an equilibrium solution to the axisymmetric version
of equation (2.8), i.e. with ∂θ ≡ 0. During this solution process, selective frequency
damping (Åkervik et al. 2006) is used for convergence acceleration. We denote these
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Figure 1: Sketch of the computational domain consisting of an annular inflow region
(region 0) and an open combustion region (region 1). LODI boundary conditions are
used at the inlet and the open boundaries of region 1.

|m| single-valued multi-valued

0 Neumann Dirichlet
1 Dirichlet Neumann
> 2 Dirichlet Dirichlet

Table 2: The centreline boundary conditions for single-valued and multi-valued quantities
for different azimuthal wavenumbers m.

axisymmetric base flow solutions by q0 with N (q0) = 0. Based on these equilibrium
states we investigate the linear dynamics of swirling flames by considering perturbations
about q0. To this end, we linearise the nonlinear operator N (q) about the base flow q0

to find the governing linear operator.
While the base flow is taken as axisymmetric, we allow for non-axisymmetric dis-

turbances by considering flow fields of the form q(t, x, r, θ) = q0(x, r) + q′(t, x, r)eimθ,
where we have Fourier transformed the linear variable q′ in the θ direction, introducing
the integer azimuthal wavenumber m. The full linear (discretised) operator A is given by

∂N (q)

∂q

∣

∣

∣

∣

q=q0

(q′eimθ) = A(q′eimθ). (2.9)

It will prove useful to instead consider the linear operator for azimuthal mode m directly
by writing A(q′eimθ) = eimθAmq′, i.e. Am stands for the linear operator with azimuthal
θ-derivatives replaced by im-multiplications. For our subsequent analysis the linear
operator adjoint to Am is required. This latter operator AH

m and the direct operator
Am are not explicitly formed (nor derived), but are rather defined by their action on
respective flow fields via a automatic-differentiation approach directly applied to the
nonlinear routines, see Fosas de Pando et al. (2012) for details. The resulting operator
Am has been checked to be consistent with the non-linear operator by a finite-difference
scheme.
An important component in the linearised equations for each azimuthal mode is in

the centreline boundary condition. In region 1 at r = 0, the numerical implementation
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encounters a coordinate singularities. To correctly attend to this singularity, a staggered
mesh is employed, thus avoiding a grid point directly at r = 0. Radial derivatives near r =
0 are then evaluated by enforcing a symmetry condition across the centreline (Mohseni
& Colonius 2000). The form of this symmetry condition is dependent on the azimuthal
wavenumber m under consideration (Constantinescu & Lele 2002). At the centreline,
state variables fall into two categories: single-valued variables such as ρ, ux and E, and
multi-valued quantities such as ur and uθ. The correct symmetry conditions for the
continuation of these variables across the centreline are given in table 2.

2.3. Numerical optimal gains

The analysis of the swirling M-flame revolves around the concept of a frequency
response or transfer function. To this end, we harmonically perturb the governing
equations with a small force ǫf(x, r) (ǫ ≪ 0) at an azimuthal wavenumberm and temporal
frequency ω,

∂q

∂t
= N (q) + ǫfm,ωe

imθeiωt (2.10)

and seek solutions in the form q(t, x, r, θ) = q0(x, r) + q′
m(t, x, r)eimθ. Substituting this

expression into (2.10) and separating out orders in ǫ, we obtain for the first two orders
(ǫ0 and ǫ1)

N (q0) = 0, (2.11a)

∂q′
m

∂t
= Amq′

m + fm,ωe
iωt. (2.11b)

Equation (2.11a) is simply the condition for q0 to be a steady solution of the nonlinear
governing equations, while equation (2.11b) represents the forced, linear equations of
motion for a perturbation at wavenumberm. For stable Am, we obtain bounded solutions,
and, due to the linearity of the problem, the perturbation q′

m will eventually respond at
the forcing frequency ω. We hence can write q′

m(t, x, r) = q̄m(t, x, r)eiωt, where we use
the time-dependent variable q̄m to denote the driven response including transient effects.
The long-time driven response (after transient effects have subsided) in qm,ω(x, r) =
q̄m(t → ∞, x, r) is determined as the steady solution of

∂q̄m

∂t
+ iωq̄m = Amq̄m + fm,ω, (2.12)

which is obtained by substituting the above expression for q′
m into equation (2.11) and

cancelling the exponential terms. Equation (2.12) presents a concise and computationally
efficient way to obtain the driven response qm,ω(x, r) = Rm,ωfm,ω given by the resolvent
matrix Rm,ω = (iωI− Am)−1.

The resolvent represents the transfer function that links a forcing shape fm,ω to its
driven response qm,ω at frequency ω. We could choose a specific forcing shape and
investigate the corresponding output and gain, defined as σm,ω = ‖qm,ω‖/‖fm,ω‖ for
some norm ‖ · ‖, but instead we seek the forcing that maximises the gain for a given
frequency. In this manner, we obtain not only the maximum possible gain for our system,
but, by investigating the structures of the forcing and output, we gain insight into
dominant mechanisms that underly this amplification and exploit various processes (of
hydrodynamic, acoustic, reactive type, or a combination thereof) within the full system.

For a measure of disturbance size, we choose the Chu-norm (Chu 1965), a compressible
energy-based norm, and modify it to include reactive terms (see Blanchard (2015)). We
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have

‖q‖2 =
1

2π

∫∫∫

Ω

[

ρ0|u
′|2 +

P0|ρ
′|2

ρ20
+

ρ20
(

|T ′|2 + |Q′Ma2(γ − 1)Y0Y
′|2

)

γ2(γ − 1)Ma4P0

]

dV, (2.13)

with dV = rdr dx dθ. Choosing an appropriate norm is a crucial step in our analysis since
all computed gains are dependent on this choice. By selecting a physically motivated
norm, we ensure that we obtain physical relevant forcings and thus uncover pertinent
mechanisms that describe the overall flame behaviour. The Chu-norm, in the form given
by (2.13), will allow us to compute the optimal gain by accounting for hydrodynamic,
acoustic, thermal or reactive effects, without biasing towards any.
By translating the norm (2.13) into a corresponding weight matrix W , we can define our

discrete norm ‖ ·‖ as the norm induced by the inner product 〈x,y〉W = xHWy. We then
link this norm to the standard vector 2-norm by employing a Cholesky decomposition of
W = MHM . Our optimal gain problem can then be stated as finding the forcing given
by

foptm,ω = arg max
fm,ω

‖MLoutRm,ωLinM−1Mfm,ω‖2
‖Mfm,ω‖2

. (2.14)

In the expression above we have additionally introduced two windowing matrices Lout

and Lin. These matrices act as masks to select (or deselect) specific regions of the
computational domain or variables of interest for our forcing and output. For our case, we
restrict the forcing to the region in the inlet tube with −2.5 6 x 6 −0.5. The associated
response will be confined to the burning area (x > 0) by appropriately choosing Lout.
The solution to the above optimisation is obtained by the singular value decomposition
as follows: the principal singular triplet of MLoutRm,ωLinM−1 is (σm,ω,Mqopt

m,ω,Mfoptm,ω),
giving the optimal forced response as q̃opt

m,ω = σm,ωq
opt
m,ω.

While the above expressions furnish a procedure to analyze the linear dynamics of
the swirling M-flame, the computational steps to obtain the resolvent operator and the
singular value decomposition are prohibitively expensive due to the many degrees of
freedom in our discretised system. Instead, we approximate the multiplication of the
discrete resolvent matrix with an arbitrary state-vector x by the long-time integration
of (2.12) with the forcing fm,ω = x (and the initial condition qm = 0). Likewise, the
action of the adjoint resolvent matrix on an adjoint state-vector x† is given by a long-
time integration of the adjoint equation to (2.12), given by

∂q̄†
m

∂t
− iωq̄†

m = A
H
mq̄†

m, (2.15)

with initial condition q̄†
m(0) = x†. The time horizon T for these integrations must be

sufficiently large to ensure convergence to a steady solution, but reasonably small to keep
simulation times within a feasible range. A final time of T = 10 has been found to achieve
this compromise.

2.4. Numerical sensitivity analysis

The computation of optimal gains using the direct-adjoint framework presented above,
which is equivalent to evaluating the singular value decomposition of the resolvent
operator, requires a substantial amount of resources. This means that realistically, only
a small number of frequencies can be calculated.
Moreover, one has to keep in mind that all computed gains are parameter dependent,

and in order to assess the variation of preferred amplification behaviour with changes
in one of the governing parameters (recall table 1) many more computations would be



10 C.S. Skene, P.J. Schmid

necessary. It is thus very important to extract a maximum of information from each
calculation, to leverage direct and adjoint solutions and to fully harness the expended
computational effort. To this end, we will formulate a sensitivity-based technique to ap-
proximate variations in the frequency response (resolvent norm) with respect to changes
in any parameter. This formulation stems from the realisation that adjoint variables are
generalised sensitivities or gradients, and expressions for parametric sensitivities can be
given in terms of weighted scalar products between the direct and adjoint solutions.
The underlying principle behind the parametric sensitivities is a first-order perturba-

tion approach applied to the singular value decomposition with respect to the linearised
operator (Fosas de Pando et al. 2014). We generally have

δσ = Real
[

uHδKv
]

, (2.16)

which relates first-order changes in the maximal singular value σ (in our case, the optimal
gain) to first-order changes in the underlying matrix K where (σ,u,v) stand for the
principal singular triplet of K . Using this relation with K = MLoutRm,ωLinM−1, we can
derive the sensitivity with respect to, e.g., the forcing frequency ω according to

∂σm,ω

∂ω
= Imag

[

〈

qopt
m,ω,LoutRm,ωRm,ωLinf

opt
m,ω

〉

W

]

. (2.17)

This simplified expression results from the fact that the frequency ω appears linearly and
isolated from the linearised operator Am.
To evaluate the sensitivity with respect to other parameters, representatively denoted

by α, we use the product rule to obtain

∂σm,ω

∂α
= Real

[〈

qopt
m,ω,LoutRm,ω

∂Am

∂α
Rm,ωLinf

opt
m,ω

〉

W

]

+ σm,ω Real

[〈

Mqopt
m,ω,

∂M

∂α
qopt
m,ω

〉]

− Real

[〈

qopt
m,ω,LoutRm,ωLinM

−1 ∂M

∂α
foptm,ω

〉

W

]

. (2.18)

Equation (2.17) indicates that two resolvent calculations are required to determine
the sensitivity with respect to the forcing frequency, while equation (2.18) shows that
three resolvent calculations are sufficient to obtain the sensitivity with respect to each
parameter. However, by first calculating the two quantities

φf
m,ω = Rm,ωLinf

opt
m,ω φq

m,ω = R
H
m,ωL

H
outW

Hqopt
m,ω, (2.19)

followed by rewriting the above sensitivities (2.17) and (2.18) in the form

∂σm,ω

∂ω
= Imag

[〈

φ
q
m,ω,φ

f
m,ω

〉]

, (2.20)

∂σm,ω

∂α
= Real

[〈

φq
m,ω,

∂Am

∂α
φf

m,ω

〉]

(2.21)

+ σm,ω Real

[〈

Mqopt
m,ω,

∂M

∂α
qopt
m,ω

〉]

− Real

[〈

φq
m,ω,LinM

−1 ∂M

∂α
foptm,ω

〉]

,

we can reduce the number of resolvent calculations to just two for the sensitivity with
respect to any parameter, namely the resolvent calculations contained in φf

m,ω and φq
m,ω.

We identify the three terms of equation (2.21) as the variation in singular value σm,ω



Adjoint-based parametric sensitivity analysis 11

due to changes (i) in the governing linear operator, (ii) in the norm of the output, and
(iii) in the norm of the input, respectively.
The derivatives of Am and M are approximated by simple first-order finite differences

according to

∂Am

∂α
=

Am(α+ ǫ)− Am(α)

ǫ
,

∂M

∂α
=

M(α+ ǫ)− M(α)

ǫ
. (2.22)

In the case where the two windowing matrices overlap, i.e. the product LinLout 6= 0, we
can attain all these sensitivities with no resolvent calculations, simply by perturbing the
smallest singular value of the pseudo-inverse of K , given by K+ = MLH

inR−1
m,ωLH

outM
−1.

The relation

δ

(

1

σ

)

= Real
[

vHδK
+u

]

, (2.23)

provides us with the formulae

1

σ2
m,ω

∂σm,ω

∂ω
= Imag

[

〈

foptm,ω,L
H
inL

H
outq

opt
m,ω

〉

W

]

, (2.24)

1

σ2
m,ω

∂σm,ω

∂α
= Real

[〈

foptm,ω,L
H
in

∂Am

∂α
L
H
outq

opt
m,ω

〉

W

]

− Real

[〈

Mfoptm,ω,
∂M

∂α
foptm,ω

〉]

+ Real

[〈

foptm,ω,L
H
inR

−1
m,ωL

H
outM

−1 ∂M

∂α
qopt
m,ω

〉

W

]

. (2.25)

For the case of non-overlapping windows the above formulae do not produce sensitivities,
as equation (2.24) yields zero due to the direct product of the windowing matrices.
Physically, the primary source of sensitivity arises from areas where the forcing overlaps
with the output. In the case of the direct expression (2.21), the resolvent maps the
forcing onto the output, taking advantage of an overlap of the forcing with the output;
in the case of the pseudo-inverse technique no such overlap exists. A simplified version of
equations (2.24) and (2.25), ignoring the effects of a change in input and/or output norm,
has previously been used and verified by Fosas de Pando & Schmid (2017). It should be
noted that the above method of efficiently extracting parametric sensitivity information
is not limited to optimal forcing studies. Any similar study that is based on a singular
value decomposition (SVD) to find an optimal gain, and corresponding input and output
structures, can benefit from the same techniques.

3. Optimal gains

For our study we have chosen parameter values that yield as realistic a flame behaviour
as possible whilst keeping the computational time reasonable. To achieve this we use
the values shown in table 3. The most prominent compromise that had to be made
is the low Reynolds number and the large Mach number compared to experimental
values (Blanchard et al. 2015), yielding a large velocity upstream of the combustion zone
of 35ms−1 and a small outer radius of the inlet at 0.64mm. With our choice of chemical
parameters we reach a flame speed of Sd = 2.9ms−1 and a flame width of 0.007mm,
which amounts to about 1% of the inlet-tube outer radius. Despite a discrepancy
between parameters and values typically observed in real configurations, Blanchard et al.

(2015) showed that – for parameter values similar to ours – transfer functions could
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parameter value

Re 1461
Ma 0.1
Pr 0.72
Le 1
S [0, 0.22]
A 60368.2
TA 40
γ 1.4
Q′ 54664.9
Y0 0.025
St [1.40, 14.02]

Table 3: Parameter values used in our study.

be obtained that match experimental results with acceptable accuracy. Although this
agreement is not quantitatively accurate for all considered frequencies, the discrepancies
are suggested to be due to the simple one-step, one-species chemical model used. A
more sophisticated model with multiple species and reaction products is expected to
produce more accurate results. An investigation into this issue goes however beyond
the scope of this paper. Instead, we conclude from this verification that our model is
consistent with the flame dynamics of earlier studies and captures the main features of
its linear behaviour qualitatively well. The same former study also argued that although
the resulting flame speed is rather high for flames burnt in air, it constitutes a far
more reasonable value for oxy-flames. The swirl number is kept in a low to moderate
regime, certainly before the onset of vortex breakdown. This choice has been made to
isolate the effect of increased mean-flow swirl on the gain, without the vortex breakdown
mechanism (and the associated bifurcation of the mean-flow velocity profile) in play.
Simulations are carried out for swirling and non-swirling cases and for forcing frequencies
of ω ∈ {1, 2, 3, 4, 6, 10}. Instead of the frequency, a Strouhal number defined as

St =
ω(rout − rin)

2πSd/U
, (3.1)

is used to present our results. This definition of the Strouhal number differs from the one
traditionally used in non-reactive fluid problems (see, e.g., Garnaud et al. (2013)), but
is instead defined to allow for direct comparison with combustion experiments (Schuller
et al. 2003; Blanchard et al. 2015).

3.1. No mean-flow swirl

We start by considering the optimal gains for an M-flame with no mean flow swirl,
which commences by finding a steady solution to the non-linear axisymmetric equation.
This base flow, visualised by the temperature field in figure 2, represents the equilibrium
point about which the governing equations are linearised to find the Jacobian matrix Am

and its adjoint AH
m. The optimal gains can then be computed using the above expressions;

more specifically, the Lanczos SVD routine is utilised from the SLEPC library (Hernandez
et al. 2005).
Figure 3 presents the optimal forcing and associated response at two forcing frequencies

for m=0. The spatial structures for all state variables are similar and differ mainly in
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magnitude; hence, the shape of the optimal input and output is illustrated for only one
representative variable. We note that the forcing consists of perturbations tilted against
the mean-flow, which generates as an output a wave confined to the flame front. This
observation is typical of the Orr mechanism (Orr 1907) in which perturbations aligned
against the shear are advected by the mean flow and tilted by the mean shear (see Roy &
Govindarajan (2010) for more details). This energy amplification mechanism unravels as
follows: first, the perturbations rotate, from their initial alignment against the shear, into
the shear extracting energy from the mean flow via Reynolds stresses. By overturning
the perturbation structures, energy is scattered back to the mean flow via the same
Reynolds-stress-based transfer process. The structures continue to be stretched by the
mean shear, until dissipation dominates the final stage and diffuses the filaments. Ignoring
viscous effects, the energy amplification due to the Orr mechanism can also be explained
as a manifestation of Kelvin’s theorem: the circulation about a contour enclosing the
initial structure (tilted against the shear) is conserved as the contour is advected by
the mean flow. As the contour shortens due to advection, the velocity along it has to
increase to preserve circulation. Beyond this point of maximum velocity, the contour
again stretches in the shear field, and the associated velocity diminishes accordingly.
Overall, we observe a transient amplification of velocity (energy), followed by ultimate
decay. This process – combined with the typical flame mechanism of turning velocity
perturbations into heat release at the flame front – underlies the mechanism that yields
the optimal gain. For other azimuthal wavenumbers, the addition of azimuthal velocity
in the optimal forcing causes a blending of the Orr mechanism with a lift-up mechanism,
which utilises azimuthal shear to further contribute to the optimal gain. This blending
can be seen in figure 5 where the slanted forcing (linked to the Orr mechanism) becomes
less pronounced for higher azimuthal wavenumbers.
Increasing the forcing frequency decreases the wavelength of the forcing and of the

output, and centres the forcing towards the middle of the annulus. This is exactly what
was seen by Blanchard (2015), who used a non-swirling version of the numerical code to
calculate the optimal gains for m = 0. We can also use his case to verify the growth-
frequency curve shown in figure 6a for m = 0.
Figure 6a shows that increasing the azimuthal wavenumber m has a positive effect

on the peak gain up to the second mode. At first glance, this may seem odd since
m = 1 modes are commonly the most easily excitable owing to the fact that only they
can support a non-zero radial velocity at the centreline, see Garnaud et al. (2013), for
example. However, for an M-flame configuration the flame front is confined away from
the centreline, resulting in a low radial mean-shear region near the centreline and hence
no advantage for the m = 1 mode to extract energy from the mean flow. It can be
hypothesised that a V-flame would show similar behaviour to an M-flame due to the
flame front location being similar. In the case of other flame shapes, such as, e.g., the
conical flame whose flame front crosses the centreline, the m = 1 mode should be more
prominent, as the optimal forcing mechanism now has the opportunity to properly exploit
this mode’s unique property.
Besides observing the spatial structure of the forcing and output, it is equally important

to determine the flow variables that contribute substantially to the optimal gain; this type
of analysis is performed by splitting the norm into its constituent parts. We find that
the forcing consists nearly exclusively of velocity perturbations, with negligible amounts
of fuel mass fraction, temperature and density fluctuations. In contrast, the optimal
output contains to each ≈ 42% temperature and mass fuel mass fraction perturbations,
with density fluctuations accounting for the remainder. It is not surprising that mass
fraction and temperature fluctuations contribute nearly equal amounts to the optimal



14 C.S. Skene, P.J. Schmid

Figure 2: Iso-contours of the non-dimensional temperature of a non-swirling base flow.
The flame is attached at both the central rod and the outer inlet wall, producing its
characteristic M-shape.

(a) u′, St = 4.21 (b) E′, St = 4.21

(c) u′, St = 8.41 (d) E′, St = 8.41

Figure 3: The optimal forcing and output are shown for St = 4.21, 8.41 and S = 0,m = 0.
The u′ velocity component of the forcing is shown and the output is represented via the
energy E′. The dotted line in the output figures indicates where data is taken from for
the subsequent wave-speed calculation (see main text). For an animation of the above
structures, see the supplemental material.
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(b) local wavenumber

Figure 4: Spatial signal along the flame front, to be processed into a wave-speed value
for S = 0, m = 0. The lines along which the data is obtained are shown as dashed lines
in figures 3b and 3d.

gain, as the two are physically linked and our selected norm has been designed to reflect
this fact (Blanchard 2015). The observed distribution of state variables in the optimal
output structures suggests that pressure fluctuations (via unsteady heat release) are the
primary output quantity. This is commonplace and typical of thermoacoustic mechanisms
in which velocity perturbations cause unsteady heat release which subsequently yields
acoustic pressure fluctuations. While this mechanism has often been advanced as the
primary thermoacoustic process, our analysis has not biased towards this scenario, but
rather included all flow variables and their combinations as ingredients for an optimal
amplification mechanism. In this effort, it is found that, although longitudinal velocity
perturbations are pivotal in producing optimal gains for m = 0, azimuthal and radial
perturbations become progressively important for higher wavenumbers.
Indeed, for m = 3 the contribution of azimuthal velocity components outranks the

longitudinal components in the optimal forcing structure. Clearly, this finding would
have gone overlooked without an unbiased computational approach. Here, we shall recall
that all results depend on the chosen norm. While we have found that for our choice
of norm the optimal response is related to thermoacoustics, special care must be taken
when interpreting results in the context of thermoacoustic intabilities. Thermoacoustic
instability mechanisms depend not only on the amplification of certain variables but also
on the phase relationship between pressure and heat release fluctuations. As our norm
does not directly contain this information, the gains and output shapes shown in this
study do not necessarily link to a thermoacoustic instability.

The dominance of structures with m = 2 can now be explained. As noted in the
previous paragraph the forcing consists mainly of velocity perturbations. For the ax-
isymmetric case (m = 0), these velocity perturbations are entirely concentrated in the
longitudinal and radial directions, but for m > 0 we also obtain azimuthal contributions.
The axisymmetric structures develop in the absence of an azimuthal pressure gradient and
azimuthal mean-velocity gradients; this same situation also prevents w′-perturbations
from reaching the flame front and deforming it. For m > 0 we break axisymmetry,
and non-axisymmetric perturbations are sufficiently sustained to induce hydrodynamic
disturbances at the flame front. Moreover, for a non-zero azimuthal wavenumber m we
obtain an O(m) azimuthal advection and an O(m2) azimuthal diffusion; hence, we expect
a tradeoff between an increased azimuthal velocity due to advection and diminished
velocities due to viscous diffusion. Clearly, for m = 2 this tradeoff is in favour of
intensifying the frequency response gain. Starting with m = 3, the balance apparently
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(a) m = 0 (b) m = 0

(c) m = 1 (d) m = 1

(e) m = 2 (f) m = 2

(g) m = 3 (h) m = 3

Figure 5: The longitudinal velocity component of the optimal forcing is shown for St =
4.21 and S = 0.22 for all wavenumbers. The dotted line shows where the plot is revolved
around the axis to produce its corresponding polar plot. This clearly shows the azimuthal
structures for the optimal forcing.
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m S = 0 S = 0.22

0 0.850 0.832
1 0.874 0.851
2 0.897 0.846
3 0.907 0.804

Table 4: The phase speed cp for all azimuthal wavenumbers, with and without mean-flow
swirl.

tips in favour of diffusive effects, and we expect to see a further decrease in peak gain for
higher azimuthal wavenumbers as diffusion becomes even more dominant.

We can see from figures 3b and 3d that the optimal output consists of waves that
advect down the flame front. The amplitudes of these waves are shown in figure 4a.
Using these series, as well as the corresponding series for the other frequencies, we can
calculate the wavenumber for each forcing frequency using a Hilbert transform approach.
To this end, we use the fact that a complex signal z(s) along the linear (dashed) path
can be generated from a real signal according to

z(s) = a(s) + iH{a(s)} = A(s) exp(iφ(s)) H{a(s)} = −

∫ ∞

−∞

a(s− ξ)

πξ
dξ (3.2)

with s denoting the coordinate along the path and a as the amplitude of the signal. The
imaginary part of z consists of the Hilbert transform H of the same signal. From the
phase φ(s) of this expression, we can then determine the local wavenumber 2πk(s) =
dφ(s)/ds by simple differentiation. Computationally, this procedure can be improved
upon by applying windowing techniques along the path, to circumvent excessive end
effects from finite integration limits. Figure 4b shows the resulting local wavenumbers
along the dashed paths in figures 3b and 3d. All examined Strouhal numbers show a
rather constant wavenumber along the flame front, with only minor shortening of the
scales towards the flame tip for only the lowest Strouhal number. This finding supports
the conclusion that the propagation of perturbations from the flame base towards the
flame tip shows little dispersion and occurs at a non-dimensional phase speed of cp ≈ 0.85.
Animations of this associated perturbation dynamics based on linearised simulations
corroborate this finding.
The phase speed has also been calculated for higher azimuthal wavenumbers and for

increased mean-flow swirl, discussed more in section 3.2; the values are collected in table
4. We observe that the phase speed varies only slightly withm, for either case of mean-flow
swirl. This observation suggests that the propagation of perturbations towards the flame
tip exhibits only a negligible amount of dispersion and that the azimuthal dependence
of the perturbation is approximately preserved as it advances towards the flame tip.

3.2. Increased mean-flow swirl

By calculating a new base flow with a higher swirl number, we can next investigate the
effect of increased mean-flow swirl on the optimal gains. We note that the new base flow
has a similar M-flame temperature profile to that shown in figure 2. As a consequence,
we will mostly see the effects due to the increase in swirl rather than the effects of a
radically different base flow.
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Figure 6b, displaying the frequency response gains for various azimuthal wavenumbers
and a non-zero swirl number, shows that there is a complete reordering in the peak
gains, with m = 0 giving the largest peak gain and all subsequent wavenumbers showing
a decrease. The reordering is to be expected due to the O(m2) diffusive effect now
involving the mean-flow swirl. Due to the presence of an azimuthal velocity in the base
flow itself, the total energy exhibits increased diffusive effects, meaning that increasing
m results in decreased temperature perturbations at the flame front. If this were the
only effect, we would still expect m = 0 to be relatively similar to the non-swirling
case; but instead we see a decrease in its gain, hinting that other physical mechanisms
are at play. This issue will be further investigated in section 4.4. The composition of
the optimal forcing and output are similar to the non-swirling case, indicating that the
same processes for producing the optimal gain are at play. However, contrary to the
non-swirling case, longitudinal velocity perturbations remain the dominant part of the
forcing for all wavenumbers.

4. Parametric sensitivity analysis

4.1. Sensitivity with respect to the forcing frequency

In figure 6 we have shown the gradients of the gains with respect to swirl as bold
line segments at each computed frequency, calculated using equation (2.20). By not only
using the gain at each frequency but also its gradient, we are able to connect subsequent
evaluation points using cubic polynomials, resulting in a smooth and continuous curve
(cubic spline) for the frequency response gain. Access to the sensitivity with respect to
frequency not only enables us to accurately cover a large range of frequencies by carrying
out singular value decompositions at only a few selected points, it also allows us to
employ adaptive techniques in selecting the next evaluation point. For example, running
a simulation for St = 2.80 and St = 5.61 for m = 0 and S = 0, figure 6a shows nearly
the same gain for each case; without further gradient information, this might suggest a
flat region in the gain curve. However, by efficiently calculating the frequency sensitivity
for both these points, a sign change is observed, suggesting that the gain curve attains a
maxima between these selected frequencies. This potential maximum can be estimated
by fitting a cubic spline between these two points and can be evaluated by computing an
SVD at this estimated point. In the above case, the maximum can be confirmed, as can
be seen in figure 6a with a maximum at St = 4.21.

4.2. Sensitivity with respect to the Reynolds number

After calculating the sensitivity with respect to the forcing frequency for a better
representation of the gain curve, we now proceed to determining the sensitivities with
respect to the governing parameters of the problem. First, we compute the sensitivity
with respect to the Reynolds number using equation (2.21). In our analysis, we make the
additional assumption that a small change in Reynolds number does not change the base
flow appreciably; in other words, only the influence of Reynolds number changes on the
perturbations is considered. This constrains the variation in Reynolds number to its effect
via the equations and neglects effects due to changes in the norm. As a consequence, we
compute the derivatives (2.22) by keeping the base flow constant.
Figure 7 clearly shows that increasing the Reynolds number amplifies the peak gain

across all wavenumbers. This is easily explained by the fact that Reynolds number
changes occur as a viscous effect for both the velocity and the temperature, but since
temperature is more abundant in the optimal response, it is the decreased temperature
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(a) S = 0

(b) S = 0.22

Figure 6: Optimal frequency response gains versus forcing frequency for two values of
swirl. The thick solid line segments for each forcing frequency indicate the computed
gradients from the parametric sensitivity analysis.

dissipation for an increased Reynolds number that is responsible for the majority of the
contribution to the sensitivity. We can also see that Reynolds number changes enlarge
the gain in proportion to its original value for both the swirling and non-swirling case,
i.e., a higher gain shows more significant increases. This will favour gain distributions
with sharper peaks, concentrating the optimal frequencies to a more narrow region.

4.3. Sensitivity with respect to the Mach number

We next consider the sensitivity with respect to the Mach number. Again, we assume
a constant base flow, but now consider the effect of changes in norm due to the explicit
dependence of the Chu-norm on the Mach number. In contrast to the sensitivity with
respect to the Reynolds number, where only one physical mechanisms has been involved,
changes in the Mach number instigate corresponding variations via multiple processes.
We see from figure 8 that, similar to the previous case, positive Mach number changes
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(a) S = 0 (b) S = 0

(c) S = 0.22 (d) S = 0.22

Figure 7: Sensitivity of the optimal gain with respect to the Reynolds number for S = 0,
and S = 0.22.

(a) S = 0 (b) S = 0

(c) S = 0.22 (d) S = 0.22

Figure 8: Sensitivity of optimal gain with respect to the Mach number for S = 0, and
S = 0.22.
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are acting as amplifiers of the peak gains. This amplification is many orders of magnitude
larger than in the Reynolds-number case, however, showing that the frequency response
output is highly sensitive to changes in the Mach number. Even though we now consider
effects due to the change in the norm, the relative contribution of this effect to the overall
sensitivity is found to be rather negligible. In other optimal forcing studies, such as the
work of Fosas de Pando & Schmid (2017), the Mach number is shown to be responsible for
mode-shifting rather than simple amplification. This mode-shifting is reflected in a sign
change in the sensitivity at a maximum or minimum of the peak gain and is caused by a
modification of the acoustic travel time, thus causing the optimal forcing to move out-of-
phase with the optimal input. The reason we do not see this mode-switching behaviour
in our case is due to the fact that the mechanism, responsible for the optimal gain, is
based on hydrodynamic rather than acoustic disturbances.
Reynolds number and Mach number sensitivities (see figures 8 and 7) show similar

behaviour, except for the magnitude, as both the Reynolds and Mach number appear
in the coefficient of the temperature diffusion in the energy equation (2.3); therefore,
they both produce similar contributions to the sensitivity – except that their effects are
O(Re−1) ≈ 7× 10−4 and O(Ma−2) ≈ 1× 102, respectively, giving rise to a difference of
six orders in magnitude.

4.4. Sensitivity with respect to the swirl number

Similarly to the cases above, we can calculate the sensitivity with respect to the swirl
number using equation (2.21). However, unlike the previous examples, changes in swirl
number manifest themselves not via terms in the linearised equations but entirely via
the base flow; this means that we must consider base flow changes when computing
the derivatives (2.22). New base flows with slightly higher swirl numbers have been
determined for this purpose. The temperature component of the base flow derivatives
for various swirl numbers is displayed in figure 10. Besides a rather uniform influence
along the flame front, it shows a concentration of sensitivity amplitudes at the flame tip;
sensitivities with respect to other variables display similar qualitative behaviour.
Figure 9a, attained for zero swirl, reconfirms the behaviour shown previously: ax-

isymmetric (m = 0) modes are characterised by smaller sensitivities when compared
to non-axisymmetric, higher modes. The case of non-zero mean-flow swirl, shown in
figure 9c, reveals a more interesting behaviour. First, all modes are now displaying an
increase in gain for high Strouhal numbers. In addition, for the Strouhal numbers where
the peak gains have been found, we observe a decrease for all modes, except the m = 3
mode which exhibits a slight increase. Nonetheless, these effects are small compared to
the sensitivities we saw in the non-swirling case. The axisymmetric (m = 0) and shift
(m = 1) modes are showing the greatest sensitivity. This can be directly related to our
earlier observations where we argued that the O(m2) diffusive effects involving the mean-
flow swirl in the base flow are responsible for the observed decrease in the peak gains.
However, this argument cannot explain the decrease in the axisymmetric (m = 0) mode.
We can note from figure 11 that for St = 4.21 the gain for all wavenumbers behaves

linearly across the range 0 6 S 6 0.09. As discussed in section 3.1, this tendency can
be attributed to azimuthal diffusion terms. In fact, the constant nature of the m = 0
mode throughout this range provides further evidence, as this mode is not affected by
azimuthal diffusion. Beyond this range, the behaviour for all modes begins to change in
a nonlinear manner. This latter behaviour must then be ascribed to nonlinear changes in
the base flow as the m = 0 mode starts to be damped. Figure 10 shows that as we add
swirl there are drastic and fundamental variations in the base flow at the flame front;
these variations and the corresponding gradients become larger as the swirl is increased
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(a) S = 0 (b) S = 0

(c) S = 0.22 (d) S = 0.22

Figure 9: Sensitivity of the optimal gain with respect to the swirl number for S = 0,
and S = 0.22.

(a) S = 0.00 (b) S = 0.074

(c) S = 0.15 (d) S = 0.22

Figure 10: Temperature component of the derivative of the base flow with respect to the
swirl number, shown for four different swirl numbers.
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Figure 11: Frequency response gain versus swirl number for all considered wavenumbers
and St = 4.21. The thick solid line segments represent the gradient at that point. The
plot is interpolated between consecutive calculated gains using cubic Hermite splines to
match both the values and gradients.

further. For low swirl, the bulk of the base-flow sensitivity arises at the flame tip, but as
swirl increases we notice a shift towards locations of high sensitivity along the entire flame
front, leading to substantial base-flow changes for small increases in swirl. It is these more
complicated changes in the base flow, observed at higher swirl numbers, that give rise
to the above-mentioned nonlinear behaviour, such as the damping of the axisymmetric
(m = 0) mode.

4.5. Validation of swirl sensitivies

The validation of gain sensitivities with respect to the Reynolds number has been
reported earlier (Skene & Schmid 2017). A sensitivity analysis with respect to the Mach
number will follow the same conceptual steps, since both parameters enter directly
through the linearised governing equations. Gradients with respect to the swirl number
proceed along a different path, involving changes in the base flow that bring about
changes in the frequency response. For this reason, we test our adjoint-based sensitivities
by predicting the frequency response gain at a swirl number of S = 0.074 using the
expansion

σpred.|S=0.074
≈ σ|S=0 + 0.074

∂σ

∂S

∣

∣

∣

∣

S=0

. (4.1)

Table 5 summarises the results of our test. We see that the adjoint-based sensitivities
are able to acceptably predict the decrease in gain experienced by increasing the swirl
for all azimuthal wavenumbers. The relative prediction error is more accurate for lower
wavenumbers (with values far less than 1%); for higher azimuthal wavenumbers, the
relative error rises to a few percent. For predictions of the frequency response gain
at higher swirl numbers we have to recall the nonlinear behaviour discussed in the
previous section. Consequently, a linear extrapolation, based on (4.1), is expected to
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m σlin. pred. σcub. pred. σSVD errorlin errorcub

0 3166 3166 3162 0.15 % 0.15 %
1 3218 3199 3224 0.21 % 0.70 %
2 3129 3213 3238 3.40 % 0.75 %
3 2433 2588 2607 6.70 % 0.73 %

Table 5: Predicted gains σlin. pred., σcub. pred., actual gains σSVD and relative errors
for S = 0.074. The predictions are made using linear extrapolation or cubic Hermite
interpolation. The corresponding errors are shown for both cases.

deteriorate in accuracy in this parameter regime. In this case, we replace the extrapolation
approach by an interpolation approach: more specifically, we harness the gain values at
specific Strouhal numbers together with their adjoint-based gradients with respect to the
swirl number to construct a cubic Hermite spline between these two evaluation points.
Evaluating the spline at S = 0.15 produces an estimate for the gain at this Strouhal
number. In this manner we are able to better capture the nonlinear gain-swirl relation
for higher swirl numbers. Table 5 verifies that the above cubic Hermite interpolation
technique produces predictions with relative errors less than 1%, even for the higher
azimuthal wavenumbers.
This above validation case also brings out an important point in our parametric

sensitivity analysis: the inclusion of gradient effects stemming from changes in the chosen
norm. If we examine the swirl-sensitivity at St = 4.21 for the axisymmetric case (m = 0),
we find a value of ∂σ/∂S ≈ 41, suggesting a very minor susceptibility to changes in
swirl (see figure 9a). This small value is obtained owing to a cancellation between an
increase in gain of 1585 directly from the equation and a decrease in gain of 1544 due to
associated changes in the norm. In addition, we can state that the bulk of the decrease in
gain due to the norm stems from the norm of the output. This is not entirely surprising
as the output is three orders of magnitude larger than the forcing. If we had not included
the effect due to changes in the norm, we would have grossly overpredicted a change in
gain due to variations in the swirl number. As an aside, this also stresses the importance
and motivates the use of physically relevant norms to measure output quantities. In the
above example, using the convenient, but unphysical 2-norm would suggest sensitivities
that would not be observed under realistic conditions.

5. Conclusions

A linear study of flame behaviour, based on the compressible Navier-Stokes equations
with a simple, one-step irreversible chemical reaction, has been conducted to assess
the response behaviour to harmonic forcing for a M-flame configuration. While flame
transfer functions are commonly applied to relate velocity perturbations to heat-release
fluctuations, the approach taken in our study has been based on optimal frequency
response gains given by the norm of the resolvent operator. This type of analysis not only
determines the gain, but also identifies the input and output structure of the optimal
amplification process and thus provides insight into preferred physical mechanisms. In
our study, special emphasis has been put on the influence of base flow swirl on the
frequency response. We determined that for no base flow swirl the m = 2 azimuthal
mode dominates due to the most favorable balance of azimuthal advection to viscous
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diffusion. We could further demonstrate that in the axisymmetric case (m = 0) the Orr
mechanism is responsible for producing the largest gains, with velocity perturbations in
the inlet being converted into mass fraction and hence temperature disturbances on the
flame front. The addition of base flow swirl reduces the output norm proportionally to
m and causes a re-ordering of the modes in terms of frequency response, to where the
axisymmetric mode is most easily amplified. In the low-swirl regime this effect appears
to be linear causing the gain for the axisymmetric mode to stay constant. But as the
swirl number increases, even to only moderate values, nonlinear changes in the base flow
at the flame front cause nonlinear changes in the swirl-gain response, reducing the gain
in the m = 0 mode as well.
A second and equally important objective of our study was the demonstration of

an adjoint-based sensitivity analysis for a highly parametrised fluid problem and the
development of numerical techniques to extract a maximum of information over a
maximum of parameter space with a minimum of computational effort. Our study
achieves this by expanding upon previous work to include sensitivity effects stemming
from direct parameter dependencies in the chosen norm and to generalise the techniques
to input and output quantities that do not spatially overlap. Sensitivities with respect to
the forcing frequency and any other physical parameter of the system can be obtained
from generic gradient information, contained in the adjoint variables. The efficient
evaluation of frequency sensitivity has been shown to greatly aid in decreasing the
number of required simulations and in detecting all pertinent maxima and minima in
the frequency response curve. For sensitivities with respect to any governing parameter
– in our specific case the Reynolds, Mach and swirl number – gradient information was
shown to be useful in two distinct ways. First, as a way of extrapolating our results from
a reference case to higher or lower values of that particular parameter for reasonable
accuracy, and second, as a way of interpolating our results between two reference values
of the gain. In either case, we gain valuable information about the response surface in
parameter space at very reduced cost. This is particular important for fluids problems
(like ours) that are governed by many important parameters that would not otherwise
allow an exhaustive parameter study. In addition, both techniques can be used for an
adaptive exploration of parameter space, where subsequent simulations are chosen based
on the sensitivity information found so far. By interpolating the gains between computed
values, coarser arrays of simulations are needed to cover a larger range of parameters or
frequencies.
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