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Abstract

Microbiology is at a turning point in its 120-year history. Widespread next-generation
sequencing has revealed genetic complexity among bacteria that could hardly have
been imagined by pioneers such as Pasteur, Escherich and Koch. This data cascade
brings enormous potential to improve our understanding of individual bacterial cells
and the genetic basis of phenotype variation. However, this revolution in data
science cannot replace established microbiology practices, presenting the challenge
of how to integrate these new techniques. Contrasting comparative and functional
genomic approaches, we evoke molecular microbiology theory and established
practice to present a conceptual framework and practical roadmap for next-
generation microbiology.

Introduction

Experimental approaches for studying bacteria have changed dramatically over the last

20 years [1]. Shifting in response to public interest and fuelled by technological ad-

vances, understanding of these remarkable organisms continues to rapidly advance.

We now know more than ever before about the metabolism, environmental context

and host interactions of microbes, and the rate of discovery shows little sign of slow-

ing. Among the most influential shifts in technology has been the increasing use of

large sequencing datasets in research practice. These contemporary research ap-

proaches continue to gain momentum, expanding into ever more ingenious ways of

using sequencing data to discover complex patterns of behaviour and reach a deeper

understanding of the bacterial cell. This rapid advancement has many conceptual ben-

efits but has also come at a significant cost, as laboratories struggle to integrate these

techniques and apply best research practices to new types of data.

The magnitude and complexity of large sequencing datasets can make them appear

abstract to the non-specialist, potentially leading to subjective judgements about

whether to believe the analyses or not. This can, in turn, risk general disenfranchise-

ment of microbiology researchers away from genomic data, promoting an over-

reliance on outside proofs or validations to give meaning to sequencing-based datasets.

Here, we argue for an integrated future for microbiology that combines the strengths
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of traditional microbiology with the promise of emergent sequencing technologies. Ad-

dressing the widening gap in research practice, we discuss some of the most influential

methodologies, the validation of findings from large sequencing datasets, and how com-

parative and functional genomics can be integrated to advance microbiology from fun-

damental discovery to contemporary microbiology research practice.

Using a data deluge for qualitative and quantitative microbial genomics

It has been well over a decade since next-generation sequencing (NGS) platforms be-

came widely available for microbial genomics. The cost of sequencing has continued to

fall to a point where large sequence datasets are within the budget of most research

groups. This democratisation of technology was not driven by a fundamental change in

how DNA is sequenced. In fact, the major shift came through the upscaling of bridge

amplification in the Illumina sequencing-by-synthesis process [2, 3]. This allowed the

simultaneous sequencing of millions of individual DNA molecules in parallel by NGS

machines generating huge amounts of data. While new single-molecule sequencing

technologies developed by Oxford Nanopore and Pacific Biosystems gather momentum

[4], the massively parallel Illumina NGS approach remains a major driver in the gener-

ation of large-scale DNA sequencing datasets. Key to the widespread use of NGS meth-

odology are the diverse applications. Broadly, the functionality can be described under

two contrasting modes. The first is a high-accuracy DNA sequencing function best ap-

plied on either de novo genome sequencing or making detailed comparisons between

genomes. Here, the huge numbers of individual sequencing reads are combined to re-

move errors in base calling and generate high-confidence ensemble averages. The sec-

ond mode is a counting function used to survey mixed populations of DNA or RNA

molecules. Here, each sequencing read is examined individually, separated into groups

and scored. This approach can, for example, be applied to measure the relative frequen-

cies of mRNA levels in a cell or to capture the composition of a bacterial population

from an environmental sample.

Transformative sequencing technologies and the genetics of phenotype variation

Determining the genetic basis of phenotype variation is among the most pervasive aims

in microbiology. This is a major challenge and requires understanding of how changes

to genes, and their constituent DNA sequences, can alter gene function and affect a

phenotypic change over time. Two of the most transformative techniques that address

this in bacteria are genome-wide association studies (GWAS) [5–7] and transposon in-

sertion sequencing methods (here referred to as Tn-Seq, but also known as HITS,

InSeq or TraDIS) [8–11]. Both techniques are powered by NGS, but each uses different

functions of DNA sequencing technologies. GWAS requires genomes from multiple

strains within a population to identify genomic elements that are statistically associated

with a given phenotype or environmental condition [12, 13] and therefore uses the

high-accuracy function of NGS. In contrast, Tn-seq profiles fewer strains and uses the

DNA counting function to identify transposon insertions in populations of mutants to

identify the contribution each gene makes to bacterial survival within the specific ex-

perimental context [14, 15].
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Describing population-wide genomic variation

The availability of numerous high-quality bacterial genomes representing the extraor-

dinary complexity of phenotypic and genotypic variation in natural populations has in-

evitably led microbiologists to new analytical techniques. Drawing on methods that

were pioneered in human genetics, early bacterial GWAS approaches [5] have been

adapted to become an important in silico tool for population-wide genomic screen-

ing [16]. Studies typically involve sampling and genome sequencing of hundreds of

isolates from different environments or conditions and identifying genetic elements

(e.g. single nucleotide polymorphisms (SNPs), k-mers or accessory genetic ele-

ments) that are significantly associated with a phenotype in question (Fig. 1). Now

widely used, bacterial GWAS have successfully identified candidate genes involved

in host specificity [5, 17], virulence [6, 18–24], the duration of pathogen carriage

[25], and antibiotic resistance [7, 26–29].

The widespread application of bacterial GWAS has been made possible by adapting

the methodological and analytical assumptions of human GWAS in two important

ways. First, bacterial GWAS not only targets homologous sequence variation but also

aims to identify the numerous accessory genetic elements and genes that may be found

in some, but not all, isolate genomes [5, 30]. Second, and most importantly, it accounts

for the strong linkage disequilibrium resulting from the clonal mode of bacterial

reproduction. Accounting for this population structure is particularly important when

considering the genetics underlying phenotype variation as causal variants will be co-

inherited with linked loci that may have no adaptive function [12, 13]. In highly struc-

tured bacterial populations entire clusters of strains may share elements that have facil-

itated their expansion as well as those that simply reflect common ancestry. To address

this, population subsampling [20, 31], linear mixed models [27, 32] and phylogenetic

trees [21] can be incorporated into analyses to account for the clonal frame of the

population. Resultant associations that cannot be explained by the effect of shared an-

cestry can represent convergent genomic signatures in groups of divergent strains. This

provides clues to the evolutionary forces acting on the bacterial genome.

Sophisticated bioinformatics analyses of ever larger genome collections are: (i) in-

corporating quantitative trait variation [28]; (ii) conditioning on multiple genomic or

phenotypic determinants [20, 29]; (iii) using machine learning to quantify the relative

importance of associated elements in explaining the observed phenotype [20, 31, 33].

However, while bacterial GWAS approaches benefit from retaining the natural popula-

tion setting of a given phenotype, they often return many thousands of genetic ele-

ments associated with complex traits such as host association or virulence [34]. In such

cases, it can be extremely difficult to identify the role of individual genes and unravel

the myriad interacting selective effects that shape the observed genomic variation. For

this it may be necessary to move beyond in silico statistical associations and understand

the function and importance of specific genes under more carefully controlled

conditions.

Studying gene function through modification and inactivation

Observing how small genomic differences, in otherwise isogenic strains, influence the

phenotype provides evidence about the functional consequence of sequence variation.
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Over decades, microbiologists have identified the function of numerous genes across

multiple species mainly through investigating the effect of gene loss. It is possible to

infer gene function by inactivating specific genes, usually through introduction of a spe-

cific mutation into the genome of an organism and comparing the resultant phenotype

to that of a ‘wild-type’ strain. While this is relatively laborious compared to observing

genomic variation in natural populations in silico, it provides much greater control of

the genomic variation and the conditions in which the gene function is being tested.

Extending the principle of gene inactivation for genome-wide functional studies, or-

dered gene deletion libraries have been generated for several model laboratory strains

[35–38]. In these libraries, all non-essential genes have been disrupted by the insertion

of antibiotic markers, allowing the rapid screening of phenotypes under different select-

ive conditions. Furthermore, random chemical or UV mutagenesis have been used to

generate ordered mutant libraries, without requiring any a priori genetic manipulation

Fig. 1 | Schematic overview of the GWAS and Tn-seq methods and a generalised validation pipeline. The
gene highlighted in orange represents an idealised output for each approach. GWAS panels: In general,
samples used for GWAS studies are directly isolated from the environment of interest. The phenotype of
each isolate is tested and/or recorded, before whole-genome sequencing. Correlations between changes in
observed genotypes and phenotype variations are determined. The output of GWAS can be displayed as a
Manhattan plot, with the probability that each genetic variant detected in a population is associated with
the phenotype of interest plotted against the genome positions. If variants fall above a certain probability
threshold (dotted line), they are considered associated with the phenotype of interest (points highlighted in
orange). Tn-seq panels: Saturated transposon libraries are grown in the presence and absence of the
selection pressure of interest. Transposon-genome junctions from each member of the library are amplified
and sequenced. Exploiting the quantitative function of massive parallel sequencing, the number of reads
found for each transposon insertion junction are plotted against the genome position. The datasets
obtained from libraries with and without the selection pressure are then compared to identify the
contribution of each gene to the fitness. Areas of the genome with a different pattern of transposon
insertions are deemed to be associated with the selection conditions (see region within the orange box).
Validation panels: Initially the results of both methods are validated statistically and first insights into gene
function are gained through literature and database searches. Deeper studies confirm the genotype-
phenotype relationship of the results with a functional validation in the laboratory using a variety of
experimental approaches
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of the bacterial strain [39]. While this allows investigations into bacterial species that

are hard to manipulate genetically, it may be difficult to generate sufficient mutations

for complete gene coverage in the screen, particularly as the whole genome of each

strain needs to be sequenced to locate a mutation.

Whole-genome fitness profiling using transposon insertion mutagenesis

Building on the concept of using large-scale gene deletion libraries that cover the entire

genome of the bacterium, a revolution in these methodologies began just over a decade

ago with the integration of quantitative high-throughput NGS technologies that capture

the complexity of a large transposon-insertion library in one sequencing step [14, 15].

Developed around the same time, conceptually similar techniques including Tn-seq [8],

TraDIS [9], HITS [10], and INSeq [11], all use large transposon insertion libraries,

across which all or most non-essential genes contain transposon insertions. Selection

pressure is applied to these library strains by growing them in defined in vitro or

in vivo conditions (Fig. 1). Subsequent amplification and sequencing of the transposon-

genome junctions in the libraries allows the insertion location of each transposon to be

determined for each condition. The key feature of these approaches are the resulting

‘profiles’ of transposon insertions that reflect the fitness contribution each gene had

under the selective conditions of the experiment. Specifically, regions of the genome

where transposon insertions are statistically underrepresented likely contain genes that

are essential for the bacteria to survive in the experimental conditions [8, 40–42].

This whole-genome fitness profiling method has linked many genes with metabolic

pathways [43] and important phenotypes including stress response and antibiotic resist-

ance [44–46], virulence and survival in the host environment [9–11, 47–51]. Further-

more, by deleting specific query genes it may be possible to identify gene interactions

[8, 52, 53] and to examine the role of non-coding and regulatory DNA [54]. Most Tn-

seq approaches rely on negative selection via gene inactivation. However, transposons

carrying outward facing promoters can result in the upregulation of neighbouring

genes. This allows controlled analysis of functional gene upregulation, an approach ap-

plied to the study of antibiotic resistance [55–57].

Recently, CRISPR interference (CRISPRi)-based methods have been added to the as-

sortment of functional genomic tools [58]. Here, a small guide RNA forms a complex

with the inactivated DNA-binding protein Cas9 and together they bind a specific region

of the genome. The complex blocks RNA polymerase at the targeted site through steric

hindrance, and represses transcription of the targeted gene [59, 60]. In a genome-wide

screen, large libraries of mutants, each containing a different CRISPRi construct, can be

captured by high-throughput NGS [61–66]. In contrast to Tn-seq, CRISPRi libraries

have the potential of covering all genes in a genome, including essential genes. How-

ever, secondary and off-target effects still have to be carefully considered.

Understanding bacteria in the wild

When trying to understand the genomics underlying trait variation in bacteria microbi-

ologists must make compromises. The major challenge is to balance the experimental

control needed to understand the function of specific genes with the requirement for

data that is relevant in natural populations. This is illustrated by contrasting the
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selective conditions in Tn-Seq and GWAS approaches (Fig. 2). By deliberately limiting

the selection pressures, Tn-seq studies provide a clear path to the functional validation

of genes, often involving recreation of the initial experimental conditions used for the

Tn-seq screen and measuring the fitness of genetically modified bacteria in

competition-based assays [8, 44, 67]. However, in some cases there is surprisingly little

overlap among the genes required for growth in particular conditions when comparing

datasets between different laboratories [68]. This may be because of differences in: the

precise experimental conditions; the transposons used; false-positives resulting from

polar effects of transposon insertion; library selection and handling methods [69].

While the high-throughput nature of these methods, and appropriate validation, can

largely overcome the challenge of reproducibility, the major strength of Tn-seq can also

be considered its limitation. Specifically, while the deliberate constraint of the selection

conditions acting on the bacteria facilitates functional genomics, these studies can also

be criticised for lacking ‘real-world’ insight into genotype-phenotype relationships.

To enhance the relevance of laboratory findings for natural bacterial populations, re-

cent multi-strain Tn-seq studies have included clinical or environmental isolates [42,

44, 46, 57]. However, there is a clear benefit to inference from bacteria in the wild. In

this respect, GWAS is a powerful approach, as it directly surveys natural genotype-

phenotype associations. This inevitably means that bacteria are sampled from dynamic

systems and will have been exposed to a complex set of selection pressures, not all of

which are directly related to the primary condition of interest. Structured sampling,

replication and statistical tests, and in silico validations can strengthen assumptions

about causal genetic variations [20], but recreating the experimental conditions in a la-

boratory setting may be extremely difficult, leading to difficulty when trying to under-

stand the value of GWAS for lab-based microbiologists.

The complementary strengths and limitations of population-wide screens and labora-

tory fitness profiling methods provide a means to identify the genetic basis of complex

bacterial traits (Fig. 2). Therefore, in combination, techniques such as GWAS and Tn-

seq could provide insights into the behaviours of bacteria in natural environments in

Fig. 2 | GWAS and Tn-seq experimental approaches complement each other. Advantages (dark grey boxes)
and limitations (light grey boxes) of both experimental approaches, focusing on differences in the
application of selection pressure and relevance of the information gained from both methods
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such a way as to be experimentally tractable in a laboratory setting. The initial steps

taken to ensure data quality for both methods are similar, involving technical repeats

and statistical validation. Yet, it is the experimental proof that specific genetic variants

cause observable phenotypes that makes these studies so impactful. The challenges are

how to achieve these proofs, what experimental methods should be used, and against

what guidelines might we measure the evidence.

Functional validation in the post-genomics era

To the data analyst, functional genomic inference may be considered ‘validated’ if asso-

ciations are proven robust against a series of statistical challenges. However, for

laboratory-based researchers, in silico findings are typically considered ‘validated’ only

when their effects can be reproduced using a complementary experimental approach.

This requirement for experimental reproducibility has been a central tenet in micro-

biology since the publication of Koch’s postulates [70]. Adapting this conceptual frame-

work in 1988, Stanley Falkow established a set of rules to prove causality of molecular

genetic changes to disease phenotypes (Fig. 3) [70–72]. Subsequently adjusted to fit dif-

ferent research areas [73–76], these Molecular Koch’s postulates remain engrained in

molecular microbiology best practice because of the scientific rigour they promote.

A major limitation of population-scale and genome-wide genetic screens is that a

relatively small fraction of candidate genes are functionally validated. In some cases, in

silico and laboratory-based genomic screens have employed follow-up gene inactivation

and phenotype investigations to link the function of specific genes to pathogenicity [6,

18, 20, 31, 48, 77], survival and transmission [17, 19, 51] and antimicrobial resistance

[29, 44, 57]. This experimental confirmation can be a challenging task given the large

numbers of genes involved in complex phenotypes but it remains important for robust

genotype-phenotype association. To address this we propose revised Molecular Koch’s

postulates for functional genomic validation of NGS analyses (Fig. 3).

Fig. 3 | Molecular Koch’s postulates, including a generalised revision for the purposes of this review. Stanley
Falkow’s adaptation of Koch’s postulates (left) have been the gold standard to support causal links between
genotypes and bacterial phenotypes for decades [71, 72]. To provide wider accessibility and application to
microbiology research more generally, we have revised these postulates (right). Importantly, these
postulates are adapted to guide functional validation and the authors acknowledge the full set might not
be fulfilled in all cases
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In most cases, genomic screening approaches will automatically fulfil the first postu-

late - that bacterial strains with an identified genetic variant should display the pheno-

type of interest (Fig. 3). Ideally, the relationship between genetic change and phenotype

of interest would be as direct as possible, shifting only one experimental variable at a

time and showing a large effect size. In this way, focusing on strong correlations can be

useful as it provides the best experimental proofs.

According to the second postulate, specific changes made to the gene of interest

should result in a change to the phenotype in question (Fig. 3). While not all genetic

variants will result in the loss of the gene function, the generation of targeted gene de-

letions and reproduction of the experimental conditions leading to the expected pheno-

type is an approach often used to meet this postulate. To achieve this, tools for marked

and markerless gene deletions have been developed [78–80], with the availability of or-

dered transposon or single-gene deletion libraries expediting this process for some bac-

terial species [35, 38, 81]. In cases where a gene is essential for the survival of a

bacterium, depletion systems can be used but often require an established set of genetic

tools to function. A popular example for sequence-specific repression of gene expres-

sion is CRISPRi [59, 60].

Finally, the third postulate focusses on restoring the observed phenotype through

genetic complementation (Fig. 3). This is an essential step to close the loop and prove

causation but may require a more sophisticated set of genetic tools to achieve. The

most direct example is complementation via a conditional expression system, usually

on a plasmid or at an ectopic locus in the genome. Alternatively, more subtle genetic

manipulates can be used to meet this postulate, for example the introduction of a base

pair change into the genome that complements the phenotype, an approach often

achieved by site-directed mutagenesis [82].

The functional validation of genomic screens, potentially based on these revised

Molecular Koch’s postulates, provides an ambitious target. In fact, it may be extremely

difficult in practice to identify, remove and reinstate the genetics underlying trait varia-

tions. For example, where multiple independent variations cause subtle phenotypic

changes or where genes are part of interactive networks and co-vary because of epista-

sis [83, 84]. As such, Molecular Koch’s postulates exist principally as a ‘gold standard’

rather than a definitive list of experimental criteria. In practice, integrated microbiology

should layer multiple experimental approaches, using the minimum number of

methods required to meet the burden of proof and focus validation effort for functional

follow-up studies.

A roadmap for next-generation functional microbiology

Identifying and then proving that a genetic variant causes a phenotypic change is a con-

siderable step towards understanding bacterial genomics. However, determining the

precise role of the gene and how the encoded protein may function requires further

study. This can be challenging, particularly for researchers with no background in mo-

lecular microbiology, even when the genetic methods or biochemical assays require

fairly basic laboratory equipment. Therefore, just as laboratory microbiologists are en-

couraged to embrace contemporary genomic approaches, so bioinformaticians might

consider the central role of functional microbiology in various ways (Fig. 4).

Kobras et al. Genome Biology          (2021) 22:123 Page 8 of 16



Physiological observations

Although considered rather simplistic, basic physiological observations are an import-

ant starting point for studies of gene function in microbiology. Differences in growth

rate, signs of growth arrest, and early lysis are often tell-tale signs and should not be

overlooked. Live-cell microscopy can also provide insights into whether a gene of inter-

est affects cell morphology.

Genetic context and gene expression

In bacteria, genes with related functions often cluster together in operons. Therefore,

deciphering the genetic context of candidate genes, as well as understanding where and

when a gene is expressed in a bacterial cell, can provide insights into how they func-

tion. Determining the pattern and timing of gene expression can be accomplished by

replacing the coding sequence of candidate genes with a reporter construct, allowing

expression to be monitored through fluorescence, luminescence or enzymatic activity

[85]. A more direct measure of gene expression is the determination of relative

amounts of mRNA by reverse-transcription quantitative PCR (RT-PCR) [86]. Broaden-

ing this approach, techniques such as microarrays or RNA-seq represent powerful

methods that may allow genome-wide functional transcriptomic analysis [87–89].

Fig. 4 | A roadmap to understanding gene function. This figure splits the pathway of identifying, validating
and investigating gene function into three different parts, with increasing depth of understanding. For the
kinds of screening approaches discussed in this review, functional validation (top panel) is a crucial step in
confirming the link between candidate genes and phenotype, which we argue should be carried out
against criteria set out in next-generation Koch’s postulates. If successful, genes should be further
functionally characterised towards deeper understanding (middle panel). This can be achieved using some
of the methods laid out in the central panel and are shown here to guide researchers who are less familiar
with these approaches. Deeper characterisations often require more specialist equipment and may be
beyond the scope of non-specialist labs, we highlight a few examples here to place these types of
methods in context (bottom panel)
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Protein function

When considering the biological role of a gene it is important to understand the func-

tion of the protein it encodes, especially if the protein is thought to have an enzymatic

function or is likely to interact with binding partners in a wider network. This can in-

clude protein–protein interactions, protein–DNA/RNA binding, and other substrate or

ligand interactions. Commonly used methods to identify protein-protein interactions

are co-immunoprecipitation and protein pull-down assays. These conceptually similar

approaches use antibodies to specifically recognise and isolate the (tagged) query pro-

tein from a cell lysate, bringing any binding partners with it [90]. Putative binding part-

ners are then identified by mass spectrometry or other similar techniques. Alternative

approaches include bacterial two-hybrid systems that are designed to report protein-

protein interactions in vivo through expression of a reporter gene, most commonly

beta-galactosidase or luciferase. This can be a very rapid approach to discovering or

confirming individual predicted interactions, but may also be used to screen libraries of

potential protein partners [91, 92].

Classically, DNA- or RNA-protein interactions are identified using DNA/RNA foot-

printing. Here, protein-bound DNA or RNA molecules are protected from cleavage by

nuclease enzymes causing gaps in the digestion patterns when compared to DNA/RNA

only controls [93]. More recently, genomic footprinting techniques based on NGS have

been established, replacing the final gel separation steps with sequencing [94].

Genome-wide profiles of protein-DNA interactions can be further studied through

combining chromatin immunoprecipitation with NGS (ChIP-seq) [95, 96]. Here, the

query protein is fixed to the interacting DNA through chemical crosslinking in vivo.

These complexes are enriched by immunoprecipitation and, after crosslink reversal, the

DNA fragments are released and identified by NGS. ChIP-seq is especially useful for

proteins with multiple binding sites, e.g. transcription factors. More focused methods

for identifying specific protein-DNA/RNA binding, such as electrophoretic mobility

shift assays (EMSA), exploit slower migration rates of protein-nucleic acid complexes

in gels compared to nucleic acids alone [97]. Whatever the scale, protein interaction

studies are essential for further molecular characterisation of genomic approaches, add-

ing depth and context to candidate genes and advancing our understanding of the bac-

terial cell.

Protein localisation

Important clues to the specific function of a protein can be derived by examining

its subcellular localisation. Separation of the bacterial cell into simple fractions

(such as: membrane, cytoplasm, cell wall) can, in combination with western blot-

ting, give a first indication. However, more specific insights into protein localisation

can be achieved by fluorescence microscopy. This method usually involves the cre-

ation of protein-reporter fusions and allows tracking of the fluorescent product in-

side the cell [98–101]. In addition, protein tags, which are made fluorescent

through the introduction of a small molecule, have become increasingly popular

[102, 103]. While we highlight live-cell microscopy here, the expertise and special

equipment required for microscopy methods beyond this quickly scale in complex-

ity with the need for higher resolution.
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Deeper molecular characterisation

The methods described so far should be practicable in most molecular microbiology la-

boratories. However, for many laboratories, this is where the research endeavour be-

gins. For example, structural biologists acquire a deeper mechanistic understanding of

protein function using methods such as X-ray crystallography [104], nuclear magnetic

resonance (NMR) spectroscopy [105] and advanced optical methods such as (cryo-)

electron microscopy [106], capitalising on the atomic resolution these methods bring.

Examples for integrated next-generation microbiology

We have described a direction of travel for next-generation microbiology. Other re-

searchers share the same vision and some studies have begun to bridge the gap and in-

tegrate large sequencing datasets with molecular microbiology. For example, early

bacterial GWAS made simple comparisons between the putative function of the genes

containing associated elements and basic bacterial growth assays with defined sub-

strates [5]. In a more sophisticated approach, and consistent with next-generation

Koch’s postulates, several studies have used mutagenesis and complementation to test

the causality of hits and their predicted phenotype [6, 17, 18, 29, 51, 77]. Going still fur-

ther, some studies have characterised the function of candidate genes and their genetic

context [48, 107, 108], sometimes over multiple publications [84, 109]. For example,

combining protein localisation microscopy with protein-protein interaction studies de-

fined the role of candidate genes in the regulation of cell wall biosynthesis [52, 53].

Consistent with this, putative antimicrobial resistance determinants have been investi-

gated in multiple bacterial strain backgrounds to provide information that is increas-

ingly relevant to natural systems [44, 46, 57].

Future directions

Microbiology research seeks to understand the workings of the bacterial cell in natural

environments. Advances in DNA sequencing technologies have touched all aspects of

microbiology research but this comes at a price. The specialism required to use these

sequencing-based research methods risks a disconnect between bioinformatics and fun-

damental microbiology. This is because sequencing information is typically viewed

through a series of analytical lenses to give it meaning. This means sequencing datasets

are frequently abstract in nature and often the mathematical methods used to generate

them are challenging to understand for non-specialists. With continued revisions to

analytical methods and ever-increasing sample sizes, bioinformatic analysis has the po-

tential to outpace fundamental microbiology investigations by orders of magnitude, ex-

acerbating the analytical disconnect.

There are currently two principal solutions to this problem. First, bioinformaticians

can collaborate widely, often contributing specific analytical expertise to each investiga-

tion. Second, bioinformatics in some areas has become a specialist data-service where

researchers pay for analyses. In both cases, non-specialist researchers are divorced from

the data, potentially leaning on internal controls or pre-assumed expectations to guide

their interpretations. Similarly, bioinformaticians are removed from deeper understand-

ing and characterisation of their initial discoveries. The typical conclusion is to argue

for validated standardised analysis pipelines. This is sometimes necessary, such as in
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clinical settings, but in a rapidly evolving field it is vital that researchers are given flexi-

bility for future innovation.

The pace of bioinformatics has moved microbiology research towards the study of

natural populations. However, fundamental molecular microbiology approaches con-

tinue to focus on laboratory-adapted model strains for consistency across research

groups. In the future, it will be important to merge these contrasting approaches to

deepen the impact of research studies. Already, association studies (e.g. GWAS) or

genome-wide profiles (e.g. Tn-seq) are commonly challenged to validate the gene func-

tion of at least one hit, while more fundamental laboratory studies are often compelled

to contextualise their findings among more representative strains. In each case, this ris-

ing demand places strain on specialist laboratories. Here, we argue for an integrated fu-

ture for next-generation microbiology, embracing new analysis techniques and placing

in silico findings in a microbiological context. The spirit of integrated research is cap-

tured by large research collaborations or consortia but integration does not have to be

collaboration in the strictest sense, it can be embodied by a small number of individuals

who understand complementary research methodologies, provided they find a way to

meet the burden of proof set out in next-generation Koch’s postulates. With careful re-

flection on current microbiology practice and a new awareness of the value of commu-

nicating complex datasets across disciplines, microbiology has never been in a better

position to drive deeper understanding of the natural world.
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