
This is a repository copy of Machine learning predictions of concentration-specific 
aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173613/

Version: Accepted Version

Article:

Gousiadou, C, Marchese Robinson, RL, Kotzabasaki, M et al. (5 more authors) (2021) 
Machine learning predictions of concentration-specific aggregate hazard scores of 
inorganic nanomaterials in embryonic zebrafish. Nanotoxicology, 15 (4). pp. 446-476. 
ISSN 1743-5390 

https://doi.org/10.1080/17435390.2021.1872113

© 2021 Informa UK Limited, trading as Taylor & Francis Group. This is an author produced
version of an article published in Nanotoxicology. Uploaded in accordance with the 
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



    

C. Gousiadou, R. L. Marchese Robinson, M. Kotzabasaki, P. Doganis, 

T. A. Wilkins, X. Jia, H. Sarimveis & S. L. Harper (2021) Machine learning predictions of 

concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish, 

Nanotoxicology, 15:4, 446-476, DOI: 10.1080/17435390.2021.1872113 

This file is a correction to the file originally submitted to White Rose Research Online, which 

contained an earlier draft of the manuscript and not the accepted version following peer-review. 

The accepted version is provided herein. Some minor corrections were made during proof-

reading prior to publication of the final version in Nanotoxicology. 

In addition, following publication, an error was spotted in the text describing the results. 

Following discussion amongst the authors, an erratum was submitted to the journal to address 

this error. As explained in the text of the erratum (see next page), the error occurred in a 

description of the results contained in Tables 2, 3 and 5.  

The text of this erratum is included on the next page of this document, followed by the text of 

the accepted article prior to proof-reading. 

 



    

Erratum for C. Gousiadou, R. L. Marchese Robinson, M. Kotzabasaki, P. Doganis, 

T. A. Wilkins, X. Jia, H. Sarimveis & S. L. Harper (2021) Machine learning predictions of 

concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish, 

Nanotoxicology, 15:4, 446-476, DOI: 10.1080/17435390.2021.1872113  

The following statement in the published version of this manuscript is wrong. It refers to an old 

version of the results. Regrettably, this was not fixed during proof-reading: “Whilst the RMSEcv was 
actually not improved, this was the exception and, for all subsequent modeling on different data 

subsets and endpoints, ensemble modeling appeared to improve upon the base models, as can be 

seen in Tables 2, 3 and 5” 

An accurate summary of these results would read as follows: “As can be seen from Tables 2, 3 and 5, 
the ensemble modelling approaches sometimes showed improved performance, but this was not 

consistent across all of the different kinds of modelled data or test sets considered and, in some 

cases, this was not entirely consistent in terms of the different performance statistics computed. 

Nonetheless, the ensemble modelling approach was found to perform better than or comparably to 

all of the base models, in terms of all statistics, for four out of the six (pseudo-)external test sets.” 

As is already noted in the Abstract, “However, future experimental studies are required to generate 

comparable, similarly high quality data, using consistent protocols, for well characterized 

nanomaterials, as per the dataset modeled herein. This would enable the predictive power of our 

promising ensemble modeling approaches to be robustly assessed on large, diverse and truly 

external datasets.” 
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Machine Learning Predictions of Concentration-Specific Aggregate Hazard Scores of 

Inorganic Nanomaterials in Embryonic Zebrafish 

Abstract 

The possibility of employing computational approaches like nano-QSAR or nano-read-across 

to predict nanomaterial hazard is attractive from both a financial, and most importantly, where 

in vivo tests are required, ethical perspective. In the present work, we have employed advanced 

Machine Learning techniques, including stacked model ensembles, to create nano-QSAR tools 

for modeling the toxicity of metallic and metal oxide nanomaterials, both coated and uncoated 

and with a variety of different core compositions, tested at different dosage concentrations on 

embryonic zebrafish. Using both computed and experimental descriptors, we have identified a 

set of properties most relevant for the assessment of nanomaterial toxicity and successfully 

correlated these properties with the associated biological responses observed in zebrafish. Our 

findings suggest that for the group of metal and metal oxide nanomaterials, the core chemical 

composition, concentration and properties dependent upon nanomaterial surface and medium 

composition (such as zeta potential and agglomerate size) are significant factors influencing 

toxicity, albeit the ranking of different variables is sensitive to the exact analysis method and 

data modelled. Our generalized nano-QSAR ensemble models provide a promising framework 

for anticipating the toxicity potential of new nanomaterials and may contribute to the transition 

out of the animal testing paradigm. However, future experimental studies are required to 

generate comparable, similarly high quality data, using consistent protocols, for well 

characterised nanomaterials, as per the dataset modelled herein. This would enable the 

predictive power of our promising ensemble modelling approaches to be robustly assessed on 

large, diverse and truly external datasets. 

Keywords: nano-QSAR, nano-toxicity, metal oxides, zebrafish, descriptors.  



    

INTRODUCTION 

In recent decades, nanomaterials (NMs) have rapidly come into use in various applications. 

Offering extraordinary opportunities due to their special properties, they have greatly expanded 

areas like healthcare, electronics and cosmetics (Hughes et al. 2000, Salata et al. 2004, Borm et 

al. 2006, Firkowska et al. 2008, Lehner et al.2013, Chen et al. 2013, Rai et al. 2014, Katz et al. 

2015, Farjadian et al. 2018, Saini et al. 2018). As a result, the development of new NMs for 

practical applications remains an active area of research today (Qi et al. 2020). Nanomedical 

approaches have become a major transforming factor in medical diagnosis and therapies 

(Lehner et al. 2013, Chen et al. 2013). A number of nanomaterial-based therapeutic and 

diagnostic agents have been developed for the treatment of cancer, diabetes, pain, asthma, 

allergy, and infections (Pinto et al. 2006, Chen et al. 2013). Indeed, many of these have already 

entered the market. In the US alone, the Food and Drug Administration (FDA) has approved 

commercialisation of 100 nanomedicine applications and products (Farjadian et al. 2018). 

Special mention should be made of the importance of metal oxide nanobiomaterials (NBMs) as 

materials of considerable interest in biomedical applications (Andreescu et al. 2012, 

Kotzabasaki et al. 2020, Hosu e al. 2019, Palanisamy et al. 2019). Owing to their unique 

structural, redox, catalytic and magnetic properties, along with their good mechanical stability, 

metal oxide NBMs have been extensively used, or investigated for use, in cancer diagnosis and 

therapy, neurochemical monitoring, bio-imaging and biosensing, targeted drug delivery and 

medical implants. New nanoforms are further investigated and new nano-engineered materials 

are designed to be applied to biology and biomedicine and to enable new functionalities and 

devices. These would include, among others, nanostructured implants, nanodevices and 

nanosensors. The aim is to design NBMs which are able to stimulate, respond to and interact 

with target cells and tissues in controlled ways to induce desired physiological responses with 

a minimum of adverse effects (Firkowska et al. 2008).  



    

Yet, while exciting breakthroughs may be rightfully expected from the engineering of such 

nanoscale agents, there are also strong concerns about potential undesirable effects that would 

pose risks both to consumers’ health and to the environment (Vance et al. 2015). Indeed, 

Feridex, an iron oxide nanoparticle-based contrast agent used for magnetic resonance imaging 

(MRI) was withdrawn from the market in 2008, in response to concerns about its observed side 

effects (Farjadian et al. 2018).  

There is therefore a demand that new products are “safe-by-design”, which means finding less 

hazardous nanoforms based on chemical and particle properties. As well as using experimental 

studies, the possibility of employing computational approaches to predict NM hazard is 

attractive from both a financial, and, where in vivo tests are required, ethical perspective (Saini 

et al. 2018, Kotzabasaki et al. 2020, EPA 2019). However, although it is well established that 

the biological activity of NMs depends on their inherent and extrinsic (i.e. exposure medium 

and life-cycle dependent) structural and physicochemical properties which are often strongly 

interconnected, to date, there is no uniform way for the assessment of nanomaterial toxicity 

(Karcher et al. 2016, Saini et al. 2018, Puzyn et al. 2009, Labouta et al. 2019). This is partly 

due to the fact that in vitro and in vivo toxicity studies have been conducted on various different 

cell-cultures and animals for various different NMs (Liu et al. 2013). This potentially creates a 

problem in the interpretation and extrapolation of findings between the assays and makes it 

difficult to compare the nanomaterials’ toxicity. Moreover, the existence of inconsistent data 

makes the development of reliable computational models such as nano-QSAR (Puzyn et al. 

2018) or nano-read-across (Gajewicz et al. 2015) - built on NM hazard data with the aim to 

reduce the experimental costs associated with risk assessment and reduce development times 

and late stage attrition in nanomedicine development - more challenging. An additional 

difficulty for developing models in support of “safety-by-design” is that there is no fixed and 

generally agreed upon set of properties that would routinely be considered in toxicity studies 



    

(Liu et al. 2013, Baer et al. 2013). Efforts to ensure that NM data are complete and of 

sufficiently high quality have previously been discussed elsewhere (Marchese Robinson et al. 

2016, Comandella et al. 2020). Challenges to appropriate characterization of NMs create 

frustration for researchers and engineers as well as for regulatory bodies that need to understand 

their impact on human health and the environment. 

As well as concerns about the consistency, quality and completeness of data used in 

computational analyses, the relevance of certain data for human risk assessment has recently 

been considered (Forest et al 2019). 

Within the last 15 years, there has been increasing interest in the use of zebrafish 

larvae/embryos to assess the toxicity of chemicals (Fleming and Alderton, 2013) and materials 

(Bugel et al. 2014), including NMs (Liu et al. 2013, Bai 2020), since they arguably provide “the 

power of whole-animal investigations with the convenience of cell culture” (Truong et al, 

2011). This organism shows pathological changes comparable to those seen in humans and 

offers advantages over the conventional costly and time-consuming in vivo mammalian toxicity 

assays. Zebrafish embryos are ideal for high-throughput screening due to their external 

development, optical transparency, short breeding cycle, and reduced husbandry costs (Bugel 

et al. 2014, Avdesh et al. 2012). Furthermore, zebrafish assays with Central Nervous System 

(CNS), cardiovascular, visual and auditory systems’ endpoints are highlighted as being of 

particular interest (Fleming and Alderton 2013). Toxicity assessment following exposure at 

different time points during embryo development may provide insights into toxicity caused via 

different routes of exposure, i.e. toxicity elicited prior to the formation of the mouth, may reflect 

effects expected due to dermal exposure (Karcher et al. 2016). 

In light of the advantages offered by embryonic zebrafish studies, a sizeable and expanding 

online database of NM embryonic zebrafish toxicity studies, linked to a consistent set of 

nominal composition and characterisation data, has been developed at Oregon State University. 



    

This Nanomaterial-Biological Interactions Knowledgebase (NBI) records the embryonic 

zebrafish toxicity response due to exposure – dermal (primary) and oral (secondary) - to more 

than 100 NΜs of various core-shell-functional group compositions at different concentrations 

(Nanomaterial-Biological Interactions Knowledgebase). The tested NΜs were made from well-

controlled synthesis procedures and were well characterized, with various experimental 

properties being measured and recorded. A variety of biological endpoints, some of which may 

be considered adverse effects, were measured following continuous exposure starting shortly 

after fertilisation, at 24 hours and 120 hours post-fertilisation (Truong at al. 2011, Karcher et 

al. 2016). These different endpoint measurements were aggregated by the maintainers of the 

NBI to derive overall hazard scores for each tested concentration, known as the Weighted EZ 

Metric or, reflecting a variation in the manner in which the endpoint measurements are 

combined, the Additive EZ Metric (Liu et al. 2013, Harper et al. 2015). 

Most importantly, the NBI Knowledgebase contains high-quality data, with all biological data 

generated in a single laboratory (Harper Laboratory, Oregon State University) and provided by 

a single and standardized experimental protocol with minimal variation in experimental 

conditions. It is therefore ideal for applying informatics approaches to explore structure-activity 

relationships. However, prior modelling studies on this database, in contrast to the modelling 

performed herein on a diverse subset of metal and metal oxide NMs, have either sought to use 

the composition and characterisation data as is for all NM types (Liu et al. 2012, Liu et al. 

2013), i.e. without creating generalisable descriptors to represent the variation in chemical 

composition in the core, surface functional groups or shell, or only developed local models 

based upon chemical descriptors reflecting the variation in surface features for NΜs with 

chemically similar cores (Harper et al. 2015, Zhou et al. 2015). 

In our present work we used the NBI database as a reliable, consistent and human health 

relevant data resource to model the 24- and 120-hours post fertilisation (24-hpf and 120-hpf) 



    

toxicity of metal oxide NMs and metallic NMs, both coated and uncoated and with a variety of 

different core compositions, on embryonic zebrafish. Employing advanced Machine Learning 

techniques, we identified a set of properties (descriptors) most relevant for the assessment of 

nanomaterial toxicity and successfully correlated these properties with the associated 

toxicological responses observed in zebrafish. The scores Weighted and Additive EZ Metric, 

as recorded in the NBI for each NM at each tested concentration, were used as toxicity response 

variables for our regression models.  

The novelty of our research is that, for the first time, we have successfully modelled NBI data 

spanning a diverse range of NM compositions, including variation in the core type, surface 

functionalization and other characteristics, whilst representing the variation in chemical 

composition using computed descriptors - which offer more generalisation than simply 

providing the chemical identities of the different components - as inputs to the models. Some 

previous studies (Concu et al. 2017, Kleandrova et al. 2014)  also modelled toxicological 

responses across diverse organisms to diverse nanomaterials - both coated and uncoated and 

with different core compositions, using computed descriptors, including effects on embryonic 

zebrafish (Danio rerio). However, the endpoints modelled in those earlier studies differed from 

those modelled herein (EZ metric) and the studies herein are based upon a database (NBI 

Knowledgebase) derived according to common experimental protocols, with some variation in 

the details (e.g. small changes in exposure temperature and media composition for the 

biological assay, and different physicochemical characterization techniques), with all biological 

data generated in a single laboratory (Harper Laboratory, Oregon State University). In contrast, 

the previous studies (Concu et al. 2017, Kleandrova et al. 2014) modelled data curated from 

multiple publications and carried out according to diverse experimental protocols. 

METHODS 

a.-Availability of Data & Code 



    

Initial preparation of the NBI data for modelling was carried out via parsing the NBI data files, 

in Excel (.xls) format, described by Karcher et al. (2016) and made available on nanoHUB 

(Klimeck et al. 2008), using Python code (Python version 3.7.3, Anaconda3-2019.07-

Windows-x86_64.exe). Descriptors were computed for modelling via parsing these data using 

Python code, including calls to external computational chemistry programs (see below). The 

final datasets, prior to variable selection, were prepared manually in Excel, including manual 

integration of data reported in the online version of the NBI, such as the EZ Metric values, 

where these were not extracted by the Python code. 

Data analysis and QSAR modelling was performed using the R Statistical Programming 

Language (version 3.5.1, 64bit) (R Core Team, 2018). Extended functionalities were added to 

R by installing a number of packages, including Machine Learning algorithms implemented as 

third party libraries. The following R packages were used for the analysis: rcdk (Guha 2007), 

randomForest (Liaw and Wiener, 2002), caret (Kuhn 2008), rpart (Therneau and Atkinson 

2018), rpart.plot (Milborrow 2019), caretEnsemble (Dean-Mayer and Knowles 2016), 

tidyverse (Wickham et al. 2019), mlbench (Leisch and Dimitriadou 2010), corrplot (Wei and 

Simko 2017), xgboost (Chen et al 2019), dplyr (Wickham et al 2019), magrittr (Bache and 

Wickham 2014).  

Python and R code, along with a Conda file detailing the versions of all Python modules and a 

file detailing the versions of all R packages, has been made available on Zenodo (Gousiadou 

and Marchese Robinson, 2020). In addition, all of the curated datasets used for modelling are 

included in the Supporting Information S1, as different sheets of an Excel workbook. Individual 

subsets were saved as CSV files for reading into the R modelling workflows and these CSV 

files are provided in the code archive available on Zenodo (Gousiadou and Marchese Robinson 

2020), along with a README file explaining their contents and guidance on how to reproduce 

results via running the available code files. The Excel file includes the formula units (‘Core 



    

Atomic Composition’) used as the basis for computing the descriptors representing the core 

atomic composition, along with the SMILES used to compute the descriptors representing the 

shell and surface functional groups, where applicable. This information is included in the sheet 

S1.1, which aggregates this information across all relevant nanomaterials. Here, it is also 

important to note that each NBI entry corresponding to a different NBI ID refers to a distinct 

nanomaterial - even if the core composition is reported as the same - with distinct 

physicochemical characteristics, including, in some cases, different shell and/or surface 

functional group components. Furthermore, each dosage concentration (ppm), for a given NBI 

ID, corresponds to a different instance. The distinct instances used for different model 

development (further split into training and test sets) or external and pseudo-external validation 

sets are documented in subsequent sheets of the Excel file. (Wherever some of the instances in 

the validation sets were involved in feature selection, albeit never in the training set, they may 

only be considered pseudo-external (Hawkins 2004, Cawley et al. 2010). The relevant instances 

are documented in the Excel work and the use of pseudo-external validation sets in some cases 

reflected the limited NBI data available for external validation following the initial model 

development phase.) Furthermore, predictions for individual instances, alongside experimental 

EZ metric values, obtained with the final, selected models on the validation sets are also 

reported in the Excel workbook (sheet S1.5).  

 

 

b.-Data Pre-processing and Variable Selection 

For model development, two datasets (Supporting Information S1, worksheets S1.3 & S1.4) 

were derived from the snapshot of the NBI database previously analysed by Karcher et al. 

(2016), along with integrating data for some variables, such as the modelled endpoints 

(Weighted EZ Metric and Additive EZ Metric), via cross-referencing against the latest, online 



    

NBI data records. The two datasets were the following: a.- a dataset of 176 instances, 

corresponding to different dosage concentrations of 44 metal oxides (i.e. 44 unique NBI IDs), 

either uncoated or coated with a variety of core-shell-functional group compositions. These 44 

entries were selected to exclude NMs with cores comprising multiple metal oxide compositions, 

or metal oxides with multiple oxidation states. (However, the NMs are categorised as ultra-

pure, pure or of unknown purity) b.- a dataset of 47 instances, corresponding to different dosage 

concentrations of 10 metallic NMs (Ag & Au) and 2 metal oxide NMs (i.e. 12 unique NBI IDs), 

either uncoated or coated with a variety of core-shell-functional group compositions. The 

Weighted EZ Metric and Additive EZ Metric values, at different concentrations, were selected 

as the modelled endpoint values. 

The variables (descriptors) selected as inputs for modelling these endpoints were chosen as 

follows. Initially, the chemical composition and characterisation variables analysed for their 

link to biological effects by Karcher et al. (2016) were selected, save for the core structure and 

material type variables, since their respective values (solid and unknown, metal oxide) made 

them uninformative for the selected dataset. These variables were supplemented with additional 

characterisation data reported in the online NBI database (where values for these variables were 

reported), such as zeta potential, average agglomerate size in media, surface area, along with 

the tested concentration in mass-based units (ppm).  

Information regarding the chemical composition of the core, as well as the shell and surface 

functional groups (where applicable), were encoded using approximate descriptors. Regarding 

the core composition, only the elemental composition of the metal oxide / metal, i.e. not 

polymorphism, was considered, using an adaptation of the simple variables proposed by 

Fjodorova et al. (2017). Here, the adaptation referred to simply replacing the number of cations 

and anions with the total number of heavy atoms in the formula unit (Heavy Atom Count), 

along with adding some other readily computed properties (Molecular Weight, Hydrogen Bond 



    

Acceptor Count and Complexity – explained below) which are calculated by treating the core 

formula unit as a molecular species (Kim et al 2016).  

Regarding the molecular structures of the shell and surface functional groups, these were 

encoded using quantum chemical (HOMO, LUMO, HOMO-LUMO gap) descriptors - 

computed using the PM7 semi-empirical functional ( Stewart 2013) implemented in the 

MOPAC software (MOPAC2016) (Stewart 2016) - and some simple RDKit (version 

2019.03.3) and rcdk (version 3.4.7.1) computed molecular descriptors as well as 

approximations to the Abraham (Absolv) descriptors (Abraham 1993). With the exception of 

the McGowan volume, computed using RDKit, the Absolv descriptors were estimated using a 

Support Vector Regression model (Smola and Schӧlkopf 2004), based upon an ECFP4-like 

fingerprint (Rogers and Hahn 2010) and a Tanimoto kernel (Lind and Maltseva 2003), trained 

using previously calculated values for a molecular dataset (Marchese Robinson et al. 2018). 

The octanol/water partition coefficients (XlogP & ALogP), the molecular weight (MW) as well 

as the molar refractivity (AMR) of the shell and surface functional groups were calculated with 

the rcdk package in R.  

Two new descriptors were also introduced through simple feature engineering to describe the 

NMs. These are namely the “pseudomol”, expressed as the fraction Exposure 

Concentration/Core Molecular Weight (formula unit) and the “MC” expressed as the fraction 

Core Molecular Weight/Core Complexity. Complexity is a physicochemical property 

characterizing chemical structures, again referring to treating the core formula unit as a 

molecular species and is publicly available in the PubChem database (Kim et al 2016).  

On the whole, the number of descriptors amounted to 47. For every NM in both datasets we 

recorded toxicity responses for 4 exposure concentrations resulting in 176 (metal oxide NMs) 

and 47 (metallic & metal oxide NMs) instances. The initial dataset of the 44 metal oxides (176 

instances) with 47 descriptors can be seen in the Supporting Information, Excel worksheet S1.2.  



    

Unrecorded values of qualitative particle characteristics (categorical features such as core 

shape, purity and surface charge) were set as “unknown” values. Subsequently, the categorical 

features with their predefined set values (e.g. core shape: spherical, regular-angular, unknown 

etc) were handled in R as factors with different levels. Factors are stored as integers and a 

unique integer is associated with every level, e.g., if a categorical feature has 5 levels (core 

shape) each level is associated with an integer from one to five. Furthermore, these variables 

were handled differently by different modelling algorithms. In the case of some algorithms, 

such as Random Forest, each level of the factor was treated as a unique, binary variable, 

denoting whether the original categorical feature had the corresponding value or not. 

Unrecorded quantitative particle characteristics, such as average agglomerate size in media and 

surface area, were explicitly recorded as missing values, i.e. “NA”. In addition, where the 

descriptors referred to molecular properties of shell or surface functional group molecules, but 

the NM had no shell or surface functionalisation, these were also documented as missing, i.e. 

“NA”.  

An initial exploratory analysis of both datasets revealed a significant number of missing values 

(NAs) and a high correlation (>0.75) between 34 descriptors. To overcome these challenges, 

we normalized the descriptors' values in a range from 0 to 1 based upon the non-missing values 

and replaced all NAs with a dummy value (-20). Scaling was based upon the combined set of 

data, not including any (pseudo-)external validation set, prior to partitioning into training and 

test sets for an initial evaluation of model performance. Furthermore, we reduced data 

dimensionality using feature elimination methods (see below), after initial modelling results 

prior to variable selection, were found to be poor.  

Feature selection was performed using the dataset of 44 metal oxide NMs (176 instances at 

different test concentrations) and the weighted EZ metric aggregate measure of toxicity. To this 

end, in order to make full use of all available information, the entire dataset was used prior to 



    

partitioning into the train and test subsets. This may have resulted in selection bias (Ambroise 

and McLachlan 2002, Hawkins 2004, Cawley 2010), i.e., it is possible that the model evaluation 

on the test set might give optimistically biased predictions. Hence, it was important to not only 

evaluate the models using this test set, but to further evaluate them on a truly independent 

external validation set. For this weighted EZ metric, it was possible to identify high quality data 

to serve as an external test set, albeit the size and diversity was limited, for which our model 

performed well. However, in other cases, the limited data availability meant that it was only 

possible, following this initial feature selection to identify a consistent set of descriptors to use 

for modelling all data subsets, to perform pseudo-external validation. (See “Partitioning of the 

Data for Model Development and External Validation: Train, Test & External (and Pseudo-

external) Validation datasets” below.)  For the pseudo-external validation sets, at least some of 

the instances were amongst those used to select the descriptors. However, unlike the training 

and test sets, they were not used for scaling the descriptors, as described above, or to perform 

the final selection of model hyperparameters (based on cross-validation), or to guide model 

selection in any other way.  

c. Interpretation of toxicity 

The Weighted and Additive EZ Metric, as recorded in the NBI for each NM at each tested 

concentration, were used as toxicity response variables for our regression models.  

The endpoints Weighted and Additive EZ metric were introduced by Harper and co-workers at 

the University of Oregon (Liu et al. 2012, Liu et al. 2013), and underwent subsequent minor 

revision (Harper et al (2015)), as a rapid and low-cost means to perform screening-level toxicity 

evaluations of nanomaterials in vivo. The calculated EZ Metric scores, which are a combined 

measure of morbidity and mortality in embryonic zebrafish, were established after realistic 

exposure levels to various nanomaterials and used to develop a hazard ranking of diverse 

nanomaterial toxicity.  



    

The EZ Metric assay utilizes developing zebrafish embryos (Danio rerio) as an integrated 

sensing and amplification system that is easy to evaluate non-invasively. Exposure to 

nanomaterials was conducted in 96-well plates using intact organisms that have functional 

homeostatic feedback mechanisms and intercellular signalling. Following the exposure, 

multiple biological responses (endpoints) were observed in the zebrafish embryos under low-

power magnification using dissecting scopes. These responses were subsequently weighted 

based upon an expert assessment of how adverse the different responses were. The weighted 

responses were used to calculate an EZ Metric score representative of the integrated biological 

response at each exposure concentration.  

The calculations for determining the Weighted and Additive EZ Metric scores (Liu et al 2013, 

Harper et al. 2015) - based on measurements made for specific biological effects (such as 

mortality, delayed development or malformations) – were made as follows. First, the measure 

of a specific biological effect Ei was defined as: Ei = Ni/T , where i is the index of a biological 

effect (i =1, 2, 3,…), Ni is the number of zebrafish embryos having the effect i and T is the total 

number of zebrafish embryos tested. 

The individual biological effects (Ei) were summed to generate the two different overall adverse 

effect scores according to the following equations:  

a.- Additive EZ Metric = ∑𝑛𝑖=0 (𝐸𝑖)  

where i is the index of a biological effect, Ei is the measure of the ith biological effect, and n is 

the total number of biological effects. 

b.- Weighted EZ Metric =∑𝑛𝑖=0   𝑤𝑖 ∗ (𝐸𝑖) 

where wi is a weight factor for the ith biological effect Ei. For every individual endpoint there 

is a corresponding weight factor which represents the degree to which this effect is considered 

adverse according to an expert judgment made by the developers of the NBI database. The 

weight factors used to calculate the Weighted EZ Metric have been previously reported by Liu 



    

et al. (2013), although these have since undergone revision, with updated weights reported in 

Harper et al. (2015). In the present work, we retrieved the Additive and Weighted EZ Metric 

values from the on-line version of the NBI database, using the updated weighted scheme. 

Maximum importance (weight =1 and 0.95 respectively) is given to 24- and 120-hpf mortality 

and less to other endpoints (individual weights ≤ 0.12, across 19 sub-lethal endpoints). Thus, 

the advantage of the Weighted EZ Metric is that it reflects the extent to which different 

biological effects may be considered adverse or non-adverse, i.e. toxic or non-toxic based 

primarily on mortality rates– assuming they are treatment related, since not all biological effects 

should necessarily be considered adverse (Lewis et al. 2002).  

Based upon a scenario in which it was assumed that the 24 hpf mortality effect dominated the 

EZ Metric, it was previously suggested that values for the EZ Metric could be categorised with 

reference to “acceptable” and “unacceptable” mortality rates (Liu et al. 2013). Hence, we 

suggest that the toxicity potential of a NM at a particular concentration, in terms of its Weighted 

EZ Metric score, may be interpreted as follows: a.-“likely benign” for scores ≤ 0.2 (lower-level 

threshold of acceptable mortality rate) b.-“high toxic potential” for scores≥ 0.62 (upper-level 

threshold of unacceptable mortality rate) and c.- “suspect” (having moderate toxic potential) 

for scores between the two thresholds.  

Arguably, the Weighted EZ Metric is most useful for ranking NMs according to their hazard 

potential at specific exposure concentrations, although a possible limitation of this metric is that 

the relative toxicological significance of different endpoints is based upon somewhat subjective 

expert judgement. The Additive EZ Metric avoids introducing potentially subjective weightings 

into the measure of NM sample effects at specific concentrations, which practically means that 

all endpoints are equally represented (without bias) in the Additive EZ Metric’s values. 

A final potential limitation of both metrics is that they are based upon the raw observations of 

the number of embryos, treated at a specific dosage concentration, for which a given biological 



    

effect was observed. Hence, in principle, they may not be entirely treatment related (Lewis et 

al. 2002). However, as subsequent analysis suggested that dose was an important variable 

related to these EZ Metrics, it is reasonable to judge these EZ Metric values as generally 

capturing genuine dose dependent effects and not simply treatment-unrelated observations. 

Moreover, even if some specific data points may not be (entirely) treatment related, no 

genuinely predictive model would have been created if the results were typically not treatment 

related. Both aggregate endpoints have been considered measures of treatment related adverse 

effects and modelled in previous studies (Liu et al 2013, Harper et al. 2015). 

d.-Partitioning of the Data for Model Development and External Validation: Train, Test 

& External (and Pseudo-external) Validation datasets 

The 176 instances (44 NMs) metal oxide dataset, used for the initial feature selection, along 

with the 47 instances (12 NMs) combined metallic and metal oxide dataset described above 

were partitioned into train, test, external and pseudo-external validation sets, in addition to 

retrieving additional external validation data. To clarify the terminology, whilst the test sets 

were involved in the final model selections, the pseudo-external validation sets were not. 

However, as the pseudo-external validation sets overlapped with the original set of 176 

instances used for feature selection, there might still be some degree of optimistic bias (Hawkins 

2004, Cawley 2010), hence they can only be described as “pseudo-external”. This was a 

particular concern with validation of the original Weighted EZ Metric metal oxide models, 

trained using the train subset of the 176 instance dataset used for feature selection, as the 

Weighted EZ Metric was used to guide the feature selection. (The Additive EZ Metric is related, 

but not identical, so pseudo-external validation using instances from the 176 is more justifiable.) 

Hence, a truly external dataset was sought in this case, using instances from metal oxides not 

involved in the original 176. However, ultimately, the ability to carry out rigorous external 

validation was hampered by the availability of data from the NBI database.  



    

A visualization of the data split for the Weighted EZ Metric toxicity modelling of the 44 metal 

oxides (Supporting Information S1, sheet S1.3) is presented in Fig. 1. As can be seen from the 

data distribution, the large target variable values – representing high toxicity – are minority 

cases in the dataset, which could be problematic for the creation of reliable models. But as we 

have chosen to model toxicity using a regression approach, rather than a binary classification 

approach, we suggest this should be less of a problem. The minority cases are sufficiently 

represented in the datasets (7.4% for the metal oxides & 17% for the metallic & metal oxides), 

and the regression models (including the decision trees) showed no signs of degrading 

performance.   

d.1. Dataset of 44 metal oxides (176 instances) 

d.1.1.- Weighted EZ Metric 

Train & Test sets 

For the evaluation of the algorithms used to build our models, the data (176 instances) 

(Supporting Information S1, sheet S1.3) were split randomly into explicit train (80%) and test 

(20%) subsets. The train set was subsequently used for fine-tuning the algorithm parameters 

and fitting the models, while the test set served to select the best models and get an early 

estimate of their predictive performance. Yet, as the test subset was not independent of the data 

used for descriptor selection, these initial estimates of model performance could be 

optimistically biased (Hawkins 2004, Cawley 2010). However, it has been hypothesised 

elsewhere that this bias may be partially offset due to the fact that the size of the training subset 

is smaller than the full dataset used for feature selection (Ambroise and McLachlan 2002).  

External Validation Set 

An independent external validation set of 4 instances (Supporting Information S1, sheet S1.5, 

dataset S1.5a.A) was created to provide a totally unbiased evaluation of the final models' ability 



    

to predict the Weighted EZ Metric’s values of unseen data. This external dataset was prepared 

manually in Excel by integration of data reported in the online version of the NBI database. 

However, it must be acknowledged that this external dataset is both limited in size and diversity, 

i.e. it corresponds to four dosage concentrations of the same zinc oxide nanomaterial (NBI ID 

= 87). This reflects the limited availability of metal oxide data in the NBI database which was 

not involved in the initial feature selection and model development dataset of 176 instances, 

and which met our selection criteria. Additional data in the NBI were rejected on the grounds 

that they referred to mixed metal oxides, not handled by our model, or were instances for NMs 

with dose response data showing significant deviations from the expected increase with 

concentration, suggesting a lack of a clear test material related response.   

 

 

d.1.2 Additive EZ Metric 

Train & Test sets 

For the evaluation of the algorithms used to build the models, the data (171 instances out of 

176) were split randomly into explicit train (80%) and test (20%) subsets. The train set was 

used for fine-tuning the algorithm parameters and fitting the models and the test set served to 

get an early estimate of their predictive performance. 

Pseudo-External Validation Set 

For an approximate external validation of the final model, 5 instances were initially partitioned 

from the dataset of 176 instances to create a pseudo-independent, i.e. pseudo-external validation 

set (Supporting Information S1, sheet S1.5, dataset S1.5a(2)). Here, by ‘pseudo-external’, we 

mean that the selected instances were used in the recursive feature elimination process (initial 

feature selection), which might lead to some optimistic bias (Hawkins 2004, Cawley 2010). 

However, as only the Weighted EZ Metric values were used to guide the initial feature 



    

selection, the degree of optimistic bias might be reduced for the Additive EZ Metric modelling 

and therefore creating a pseudo-external validation set in this manner is more justified than 

would be for the Weighted EZ Metric model. Nevertheless, since the values of the two metrics 

are somehow related, the possibility of optimistic bias cannot be completely discounted. 

d.2-Dataset of 10 metallic NMs (Ag & Au) and 2 metal oxides (47 instances) 

To confirm the appropriateness of the selected 19 descriptors as most important in the 

assessment of NM toxicity, we further used them for modelling the Weighted as well as the 

Additive EZ Metric of metallic and metal oxide NMs in different concentrations included in a 

dataset of 47 instances (Supporting Information S1, sheet S1.4). The NMs of this new dataset 

were not involved in the feature selection.  

 

Train & Test sets 

The data (37 out of 47 instances, with the remaining 10 instances corresponding to metallic 

NMs set aside as a true external validation set) were split randomly (once for each EZ Metric 

that was modelled) into explicit train (80%) and test (20%) subsets. The train sets were 

subsequently used for fitting the models, whereas the test sets served for an approximate 

evaluation of their predictive ability and the selection of the best performing models.  

External and pseudo-external validation sets 

For the (pseudo-)external validation of the final models (one for every EZ Metric modelled) 

two validation sets were created a.-10 instances (metallic NMs) were initially partitioned from 

the dataset of 47 instances to create an external validation set (Supporting Information S1, sheet 

S1.5, dataset S1.5b.A) b.- a pseudo-external validation set of 16 instances (4 metal oxide NMs) 

with core compositions different from those included in the train and test subsets and therefore 

completely new to the models. (However, this dataset included instances used for the initial 



    

feature selection, hence the results may still be somewhat optimistically biased.) The prediction 

results are available in Supporting Information S1, sheet S1.5, dataset S1.5b.B). 

e. - Model Performance Statistics 

Primarily, we compared and evaluated the predictive performance of models based on the 

Pearson’s correlation coefficient, coefficient of determination (R2) and the "Root-Mean-Square-

Error" (RMSE) metrics (Alexander et al. 2015). Whilst different R2 (“Rsquared”) and related 

statistics may be reported in the literature  (Kvålseth 1985, Roy et al. 2009, Alexander et al. 

2015), here we use the widely employed formula recommended by Alexander et al. as most 

generally suited for QSAR studies (Alexander et al. 2015). Assuming that the difference 

between the mean experimental and predicted values is zero,  this  R2 can be interpreted as the 

proportion of the variability in the response (e.g. Weighted EZ Metric) captured by each model 

(Kvålseth 1985, Alexander et al. 2015). However, under certain circumstances, e.g. due to the 

average prediction being significantly shifted from the average experimental value or due to 

outliers, R2  can be negative.   

We note that, unless specified otherwise, all statistics were computed by applying the models 

to data not used to train the model, using only the predictions and experimental values for the 

test / validation subset. Where statistics are reported with the subscript “cv”, this means that the 

model built on a cross-validation training subset was applied to the corresponding validation 

fold, with the performance statistic being averaged across all folds and repetitions of cross-

validation. (The final choice of model hyperparameters was based upon minimising the cross-

validated RMSE, i.e. RMSEcv.) Where correlation statistics are referred to as “resubstitution” 

estimates, this means that the model trained on the entire training set was applied to that training 

set (Hawkins 2004). These estimates are not estimates of predictive performance, but may 

provide insight into the degree of overfitting when compared to the corresponding statistics on 

truly independent data.  



    

(FIGURE 1 HERE) 

RESULTS AND DISCUSSION 

Weighted EZ Metric Toxicity Modeling 

a.-Feature Selection 

Feature selection was performed using the whole dataset of the metal oxides NMs (176 

instances). As many of the descriptors in the dataset were highly correlated, attempts to include 

them all in the analysis resulted in models with poor performance. We undertook therefore to 

create a subset of uncorrelated and informative descriptors, highly predictive of the response 

variable (Weighted EZ Metric) and, most importantly, allowing for interpretable QSAR 

models. To this end we applied a feature selection method based on a wrapper approach (John 

et al. 1994). Wrapper methods are search algorithms that treat the predictors as inputs and utilize 

model performance as the criterion to be optimized (Ambroise and McLachlan 2002). Using 

the caret package in R (caret package - version 6.0-84) we performed a simple backwards 

selection of descriptors (Recursive Feature Elimination, RFE) with Random Forest 

(randomForest package - version 4.6-14) (Svetnik et al. 2003, Kuhn 2019). Random Forest has 

a built-in feature selection (Svetnik et al. 2004) as well as variable importance estimation 

utilised for the RFE approach (Svetnik et al. 2003, Kuhn 2019). To reduce the risk of overfitting 

of the model to the predictors as well as to get performance estimates - to guide feature selection 

- that incorporate the variation due to feature selection, we used the version of the algorithm 

that incorporates resampling (rfe) (Kuhn 2019). Specifically, we applied an outer resampling 

method of 20-fold cross-validation - to the entire model development set - with three repeats. 

This provided a more probabilistic assessment of descriptor importance than a ranking based 

on a single fixed data set and improved the generalization performance of the model. The best 

performance based on the Root-Mean Square-Error (RMSECV) (Alexander et al. 2015) 



    

corresponded to a subset of 19 descriptor variables, ranked according to their significance in 

predicting the Weighted EZ Metric values (Figure 2), (Supporting Information S2). 

(FIGURE 2 HERE) 

(FIGURE 3 HERE) 

In Figure 3, a correlation chart of the top six out of nineteen most important descriptors, along 

with the modelled endpoint, is presented. The chart depicts the distributions of the variables, 

their correlation to each other and to the output EZ Metric (Weighted) as well as their individual 

contribution in explaining the variability of the output. In the histograms of most variables, a 

Gaussian distribution is not evident. 

b.-Modelling the toxicity data of the 44 metal oxides (176 instances) 

The selected descriptors were further used to build a series of models to compare their 

performance and choose those that modelled our data best (Table 1A). The models were built 

on the train set, using algorithms of diverse learning styles with the caret package in R. Table 

1A provides references for the different Machine Learning algorithms, referred to via their 

short-hand descriptions for brevity. The traditional statistical methods k-nearest neighbours 

(kNN) and linear regression (lm) greatly benefited from the feature selection already performed, 

since they cannot be used reliably without a sophisticated variable selection filter (Svetnik et 

al. 2004). Furthermore, the previously performed feature selection based on Random Forest’s 

variable importance measure optimized the performance of the Random Forest (rf) algorithm 

upon retraining (Svetnik et al. 2004). The algorithms were applied using their default 

parameters and a resampling method of 20-fold cross-validation on the 80% training data with 

3 repeats was employed to get an approximate estimate of their ability to predict unseen data. 

We plot the cross-validated distributions of the squared correlation (the squared value of the 

Pearson’s correlation coefficient), RMSECV and Mean Absolute Error (MAE), which is less 



    

sensitive to outliers than RMSECV, to allow visual comparison of the initial modelling results 

(Figure 4). 

Based on the acquired information (Table 1A, Figure 4), we further selected and fine-tuned the 

promising xgbTree and rf algorithms, i.e. adjusted the algorithm parameters to improve the 

results, to build a series of new models with improved evaluation Metrics (smaller RMSECV), 

as shown by the cross-validated and test set results with the different hyperparameters in Table 

2. Using the same protocol, we also optimized parameters for the k-nearest neighbour algorithm 

to create an improved KNN1 learner, albeit this was still weaker than the other algorithms 

(Table 2). The fitted models were subsequently used to predict the responses for the 

observations in the test set. This provided a less biased evaluation of their effectiveness in 

predicting unseen data. However, as the test set data were involved both in the initial descriptor 

selection and final model selection, these results are not truly unbiased (as compared to the 

results on a truly external validation set).  

(FIGURE 4 HERE) 

(TABLE 1A&B HERE) 

The whole process resulted in a shortlist of optimized models (Table 2). As an attempt to further 

boost predictive performance, learners from the shortlist were combined in ensemble 

modelling. Specifically, a sophisticated “stacked regression” (Breiman 1996) ensemble 

modelling approach was performed. The goal in using this method is to ensemble diverse sets 

of learners together to create a second level “metalearner” with predictive performance much 

better than could be obtained from any of the constituent learning algorithms. This assumes that 

the models have captured different aspects of the data, i.e. their predictions are not redundant, 

as can be expected due to the different modelling paradigms, which we subsequently 

demonstrate for the models combined here (Figure 5). Indeed, better generalisation 

performance from ensemble modelling arising from a more diverse ensemble of base models 



    

underpins Breiman’s original justification for Random Forest (Breiman 2001). For the 

aforementioned reasons, we employed the method of stacking algorithms with Random Forest 

(Breiman 1996, van der Laan et al. 2007) to combine the predictions of the base models,  with 

model hyperparameters selected to minimize RMSECV (10-fold cross-validation with 3 repeats). 

It is worth mentioning that by including the weaker KNN1 in the ensemble, this was found to 

improve the stacked RFEnsembleX (Table 2). (Whilst the RMSEcv was actually not improved, 

this was the exception and, for all subsequent modelling on different data subsets and endpoints, 

ensemble modelling improved upon the base models, as can be seen in Tables 2, 3 and 5.) This 

is well explained by the scatter plot matrix in Figure 5, where the correlation between the 

submodels is depicted. Except for the two random forests, the base models were not strongly 

correlated (≤0.80) (Table 1B), indicating that they were informative in different ways thus 

enabling the stacked model to get the best of each base learner. 

(FIGURE 5 HERE) 

The stacked RFEnsembleX was further used to make completely unbiased predictions on the 

external validation set. As can be seen in Table 2, the model performed well, making predictions 

with 93% (Pearson coefficient=0.93) correlation to the observed values (Table 2), (Supporting 

Information S1, sheet S1.5, dataset S1.5a.A). However, it should be recalled that this is a small, 

non-diverse external test set, due to the limited availability of suitable data not involved in 

feature selection. 

(TABLE 2 HERE) 

c.-Modelling the Weighted EZ Metric toxicity of metallic and metal oxide NMs (47 instances) 

using the previously selected 19 descriptors. 

Generally adopting the same protocol as described above, we used the 19 descriptors to build 

and tune a series of models of diverse learning styles on the training set (80%), employing a 

resampling method of 10-fold cross-validation with three (3) repeats. Subsequently we created 



    

a stacked ensemble of the best performing models to combine their predictions, following the 

protocol already described above. The evaluation metrics of the base models and the ensemble 

model as well as their predictive performance on the test and (pseudo-)external validation sets 

is analytically depicted in Table 3 & Figure 6.  

(TABLE 3 HERE) 

(FIGURE 6 HERE) 

Additive EZ Metric Toxicity-Modeling 

For modeling the Additive EZ Metric toxicity data for the 44 metal oxides in dataset S1.3 

(Supporting Information) as well as for the 10 metallic and 2 metal oxide NMs in dataset S1.4 

(Supporting Information) we used the selected 19 descriptors to develop our models. This 

approach had the advantage of allowing the comparison of the modelling results for the two 

different response variables, i.e. Weighted vs. Additive EZ Metric using the same set of 

descriptors.  

a.-Modelling the toxicity data of the 44 metal oxides (171 instances) 

We used the descriptors to build models of diverse learning styles employing a resampling 

method of 20-fold cross-validation with three (3) repeats on the training set to evaluate the 

different options. On the grounds of their best performance the xgbTree and rf algorithms were 

selected (Table 4A) for further parameter optimization. Additionally, for reasons already 

explained above, the weaker KNN2 learner was fine-tuned and optimized. Using the test set, a 

first evaluation of the models’ predictive skills on unseen data followed. (Of course, this data 

was not unseen during feature selection.) The resulting shortlist with the best models is 

presented in Table 2. Subsequently, the best performing models from the list were combined in 

an ensemble using Random Forest (Breiman 1996, van der Laan et al. 2007). The stacked model 

provided encouraging predictions upon validation with the pseudo-external validation set (R2 

=0.831, Pearson coefficient=0.99), (Table 2).  



    

(TABLE 4 A&B HERE) 

b.-Modelling the toxicity data of metallic and metal oxide NMs (47 instances) 

Generally adopting the same protocol as already described above, we used the 19 descriptors 

to build and tune a series of models of diverse learning styles on the training set (80%), 

employing a resampling method of 10-fold cross-validation with three (3) repeats. The 

evaluation metrics of the selected models as well as of the final stacked ensemble model and 

their predictive performance on the test and (pseudo-)external validation sets are analytically 

depicted in Table 5 & Figure 7. 

(TABLE 5 HERE) 

(FIGURE 7a&7b HERE) 

Analysis of Nanomaterial Features Responsible for Biological Effects  

In this investigation, apart from the attempt to create highly effective QSAR tools for modeling 

the toxicity of metallic and metal oxide NMs towards embryonic zebrafish, our focus has been 

to identify the underlying properties (and their combinations) responsible for the manifestation 

of the observed toxic effects. Although it has been argued that Breiman's original random forest 

method (Breiman 2001) may not provide unbiased measures of descriptor importance where 

the predictors vary in their scale of measurement or their number of categories (Strobl et al. 

2007), our analyses suggest this was not a serious problem in the context of the current study. 

All the important variables (categorical and numerical) previously reported in literature as 

determining toxicity (Karcher et al. 2016, Puzyn et al. 2009) are included in the subset of the 

top descriptors selected during the recursive feature elimination (RFE) with random forest. The 

strong predictive performance of our final models on the (pseudo-)external validation sets 

further supports the appropriateness of the selected descriptors for modeling the NM toxicity, 

although it should be remembered that the pseudo-external, as opposed to truly external sets, 

included instances involved in selecting these descriptors. 



    

Here, we considered the descriptors selected based upon RFE and the variable importance 

rankings (Table 6A, 6B) obtained with the different Machine Learning algorithms employed to 

build the base models (Table 2, 3, 5), which were stacked to derive our final ensemble models. 

Since the different Random Forest base models used for the ensemble modelling in every 

computational analysis were broadly similar to one another, albeit the rankings differed 

somewhat - especially for the less highly ranked descriptors, we only consider the variable 

importance measures for one representative example in every case. Further analysis of 

significant variables related to the modelled endpoints for the 44 metal oxides was carried out 

using a simple, comprehensible decision tree framework (Figure 8, Figure 9). This decision tree 

framework and the results obtained are also discussed below. Whilst sophisticated model 

interpretation algorithms (Marchese Robinson 2017, Polishchuk 2017) allow direct insight into 

the influence of different variables on individual predictions made by non-linear QSAR models, 

a more straightforward means of obtaining general insights into the influence of individual 

descriptors on the modelled biological response variable can be obtained by constructing single 

decision trees. On these grounds, since a simple explanation without necessarily knowing every 

detail of the models would be sufficient, we used the rpart algorithm to create single decision 

trees on our entire model development set of the 44 metal oxides, using the set of selected 19 

descriptors. The decision paths (Figures 8 & 9) show the features associated with every decision 

and the threshold values of the top descriptors that are responsible for toxicity. 

When considering the results of these analyses, it should be noted that the XGB, RF and KNN 

models treated the categorical variables (purity, core shape and surface charge) and their various 

levels (e.g. purity: pure, ultra-pure, unknown) in a different manner. XGB, RF and LM 

evaluated each level, i.e. value, of a categorical feature separately and assigned to it different 

importance, according to its relevance in explaining the observed biological response. On the 

contrary, KNN models regarded each categorical feature as a single variable (Table 6A, 6B), 



    

with numeric values assigned to each categorical value. Finally, the simple decision trees 

(Figures 8 & 9) also treated each categorical variable’s value as a single descriptor.  

Save for the KNN models, only the top 20 out of 26 (or 21) variables are reported, where these 

were estimated to have non-negligible importance (Table 6A, 6B). These 26 or 21 variables 

correspond to the selected 19 variables, due to the creation of one variable per category for each 

categorical variable, whereas these were treated as numeric variables for KNN. For the mixed 

metal and metal oxide models, various zero importance or close to zero variables are not 

reported in the ranking, as these are uninformative. 

Previous studies, primarily concerned with one type of nanomaterial (ZnO, Ag, Au), mostly 

focused on the influence of dose concentration, solubility, particle size, surface chemistry and 

surface charge on the mortality and malformations of zebrafish embryos (Bai et al. 2010, 

Asharani et al. 2008, Harper et al. 2011). However, recent reports have suggested that there is 

no one single predictor of toxicity but rather a combination of nanomaterial properties is 

responsible for hazard potential (Karcher et al. 2016). These latest suggestions we have found 

to be in accord with our own results.  

Our findings indicate that intrinsic nanomaterial characteristics (e.g. chemical composition) as 

well as extrinsic characteristics (e.g. agglomerate size) are responsible for the manifestation of 

adverse effects. Our results particularly highlight that for the group of metal oxide NMs, the 

core chemical composition is a significant factor influencing toxicity. This is reflected in the 

fact that, as can be seen in Table 6, descriptors such as metal atom Pauling electronegativity 

and/or “MC” (core formula unit weight/core complexity), which explicitly encode composition 

information about the NM core, are commonly highly ranked, by the base models. This has 

been also discussed in previous reports (Kotzabasaki et al. 2020, Puzyn et al. 2009). 

Kotzabasaki et al (2020) performed QSAR modeling of the toxicity classification of 

superparamagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring applications, 



    

concluding that, magnetic core chemical composition (maghemite (γ-Fe2O3) or magnetite 

(Fe3O4)) and overall particle size are the determinants of SPIONs toxicity. Indeed, the 

descriptors encoding information on core composition are sometimes given precedence over 

descriptors such as XlogP_FG, explicitly related to the shell or surface functional groups, and 

descriptors such as zeta potential which are also dependent upon the surface chemical 

composition. (This is particularly true for modelling for the additive EZ metric.) However, 

interestingly, for the metallic NMs, surface chemical composition seems to be more important 

than chemical core composition for explaining the variation in NM biological effects upon 

embryonic zebrafish. This would be partly consistent with the earlier suggestion of Harper et 

al. (2015), based upon analysis of a different set of NBI data for inorganic NMs – including 

metallic rather than just metal oxide NMs- that surface chemical composition appeared more 

important than core chemical composition. Karcher et al. (2016) drew similar conclusions from 

analysis of NBI data. However, it should be recalled that this could reflect, amongst other 

differences between our studies, the manner in which surface components were represented by 

descriptors herein. Here, as well as using experimental descriptors related to surface 

functionalisation - such as zeta potential and agglomerate size, descriptors for organic surface 

components (e.g. XlogP) were computed for free molecules, rather than molecules bound to the 

molecular surface. (However, in order to do this effectively for NMs without surface functional 

groups and NMs where zeta potential and agglomerate size were not measured, the values of 

these descriptors were replaced with dummy values (-20) designed to lie outside the range of 

the normalized real values.) In contrast, Karcher et al. (2016) and Harper et al. (2015) 

considered the identities of these surface molecular components in a qualitative manner, when 

comparing the influence of surface and core chemical composition. (Harper et al. (2015) did 

subsequently compute descriptors for free molecules in a similar, but non-identical manner, 

when building local QSAR models for NMs with the same core composition, i.e. gold.) In 



    

addition, unlike these previous studies which treated core chemical composition as a qualitative 

variable defined by the names of the core material, we explored the use of potentially more 

generalizable numerical descriptors.  

Here, we only used simple constitutional (zero-dimensional) descriptors to describe the core 

structural diversity and build our nano-QSAR models. Indeed, predictors like core “molecular” 

weight (i.e. formula unit weight), core complexity and their engineered combinations with dose 

concentration (pseudomol & MC) and/or Pauling metal atom electronegativity were found to 

be relevant to modeling embryonic zebrafish toxicity (Table 6A & 6B). To our knowledge, this 

is the first time that core complexity is introduced as a descriptor for nano-QSAR. Pauling metal 

electronegativity is valuable for providing empirical information on core structural diversity. It 

was proposed in Fjodorova et al. (2017) to model the cytotoxicity of metal oxides and it has 

recently been used for designing new nanodescriptors with universal applicability (Yan et al. 

2019). Nonetheless, future studies should consider computing polymorph specific descriptors, 

where sufficient characterisation data is provided to identify the biologically tested NM 

polymorph. 

As briefly discussed above,  with reference to Tables 6A & 6B, our results suggest that surface 

modified properties of the NMs like the agglomerate size in media, zeta potential and the total 

surface area (core/shell/ligand) are highly relevant for explaining the toxic profile of both the 

metal oxide and metallic NMs. In our computational analyses we have found that the 

agglomeration state in media and zeta potential often ranked in the top 50% of variables for the 

base models (Table 6A, 6B) of the Weighted and the Additive EZ Metric endpoints. However, 

our results may be partially affected by artefacts arising from the fact that around half of the 

metal oxide instances did not have experimentally measured values for these properties, with 

dummy values (-20) designed to lie outside the range of the normalized true values assigned in 



    

these cases. (This was even more the case for surface area measurements.) Nonetheless, these 

findings are broadly in keeping with prior studies.  

The agglomerate size and zeta potential are experimental physicochemical properties used to 

describe the conditional behaviour of the NMs in media and are tightly linked to each other 

(Halamoda-Kenzaoui et al. 2017, Berg et al. 2009). Both are considered "critical quality 

attributes”, responsible for manifestation of toxicity. Indeed, alterations to the NMs’ size and 

surface chemistry may be expected depending on conditions like temperature, pH, and ionic 

strength of the medium in which they are suspended. In turn, these changes most likely affect 

the mechanisms by which NMs enter cells and the way they bind cellular substituents 

(Halamoda-Kenzaoui et al. 2017). As zeta potential is strongly affected by the pH and ionic 

state of the medium, it is a key indicator of the tendency of NMs to agglomerate. The 

agglomeration state heavily influences the levels of cell uptake and cellular internalization of 

NMs, possibly triggering toxic effects.  

Concentration was a key factor for explaining toxicity in our QSAR modeling. This is reflected 

in the fact that an important descriptor for the Weighted EZ Metric models and, to some extent, 

the additive EZ metric models - at least for the metal oxide data, was pseudomol. For the 

weighted EZ metric models, this was either the highest ranked or within the top four descriptors 

for all base models in the ensembles (Table 6A & 6B). Pseudomol is an engineered feature 

derived via dividing the dosage concentration, in mass-based ppm units, by the core molecular 

weight (MW), i.e. the weight of the formula unit, and its significance strongly indicates that the 

modelled biological responses are at least typically dose dependent. Here we would like to 

highlight that our models are concerned with data points associated with individual NM samples 

– i.e. a given NM at a specific dose concentration. Hence, they provide insight into whether 

NMs are toxic or non-toxic at a particular concentration, rather than allowing general statements 

about whether the NM is toxic or non-toxic based upon, say, whether it is toxic or non-toxic at 



    

a fixed reference exposure level. The fact that we observed the concentration-related descriptors 

to be significant, according to various modelling strategies – including the decision trees built 

on the entire set of the 44 metal oxides (Figures 8 & 9) – does, indeed, suggest that we are 

modelling exposure related effects and not just noise. Furthermore, it is interesting that 

pseudomol was indicated to be more important than the raw mass-based concentration variable 

(ppm) for explaining toxicity. Considering the ongoing debate in literature regarding the most 

appropriate dose unit to use in nanotoxicology (Verschoor et al. 2019), this finding might 

provide support for the usefulness of pseudomol, as opposed to mass-based concentration, as a 

more appropriate dose unit.  

Of lower significance was the core shape of the NMs (Table 6a & 6B, Figures 8 & 9). This may 

partially be affected by the fact that “unknown” was included amongst the range of qualitative 

shape values. Other studies have shown that shape is related to toxic effects, with fibre-like vs. 

compact particles sometimes suggested to give rise to enhanced toxic hazard, albeit with 

different trends being found in different experiments (Donaldson et al. 2010, Cassano et al. 

2016).  

Across all base models, the agglomerate size was consistently ranked above primary particle 

size. Moreover, for the decision tree models depicted in Figures 8 & 9, only the agglomerate 

size was found to be important, albeit only for explaining the variability in the Additive EZ 

Metric. However, the importance of this variable may have been partially affected by the fact 

that experimental values were not available for around 50% of the metal oxide instances. 

Indeed, the negative split points suggest that the selection of agglomerate size for one of the 

decision trees (Figure 9) was an artefact of the replacement of missing values with negative 

numbers (see “Data Pre-processing”). That the primary particle size of the NMs did not appear 

decisive in determining toxicity chimes with an earlier analysis of NBI data (Karcher et al. 

2016).  



    

It is observed that the decision trees for both the Weighted EZ metric (Figure 8) and Additive 

EZ metric (Figure 9) display noticeable differences. This can be explained by considering the 

differences between the metrics. The Weighted EZ Metric gives greatest weight to the 

unambiguously adverse mortality endpoints, whereas the Additive EZ Metric treats sub-lethal 

endpoints as being of equal importance. 

In Figure 8 the results are presented in mean values of Weighted EZ Metric along with the 

number and percentage of the NMs corresponding to these values. According to the rough 

classification of EZ Metric values discussed in the methods sections, the NM samples, at 

different concentrations in our dataset, may roughly be classified as follows: 118 “likely 

benign” (Weighted EZ≤0.20), 13 with “high toxic potential” (Weighted EZ≥0.62) and 45 

“suspects” (Weighted EZ> 0.20 and Weighted EZ<0.62). The corresponding classification 

offered by the single decision tree as depicted in Figure 8 is 131, 19 and 26, respectively.  

On the other hand, the scores of the Additive EZ Metric, recorded after exposure of the zebrafish 

to certain concentrations of an NM, signify the presence or absence of biological responses in 

general, which are not necessarily adverse (Lewis et al. 2002) and may or may not include high 

mortality rate. This can be clearly seen in the cases of a Zinc oxide (nbi_0187) and a Holmium 

oxide (nbi_0163) NM, both of which have a high Additive EZ score of 0.83 for concentrations 

of 10ppm and 2ppm respectively, which indicates the presence of biological effects. High 

mortality rate is included in the triggered biological responses for this Zinc oxide NM, this is 

not the case for this particular Holmium oxide NM. In keeping with this, the corresponding 

Weighted EZ Metrics for the two metal oxides are 0.39 (“suspect”) and 0.1 (“likely benign”) 

respectively.  

There are also cases where the gap between the two Metrics for certain NMs is considerable 

(low Weighted EZ and high Additive EZ Metric, nbi_0162, nbi_0214, nbi_0183, nbi_0176, 

nbi_0163). In these cases, the high Additive EZ scores reflect the triggering of biological 



    

responses other than mortality (effects on the brain, heart, circulation etc) after exposure to a 

certain concentration. When such responses appear after 72-hpf (when the zebrafish begins to 

swallow) they probably indicate that the zebrafish is more sensitive to the oral (secondary) 

exposure to the NMs than it was to dermal (primary) exposure (Karcher et al. 2016) and may 

imply differences in the mechanisms responsible for the corresponding biological effects.  

(TABLE 6 A&B HERE) 

Considering the differences between the two metrics, it is understandable why there is little in 

common between the decision trees of both endpoints, i.e. only the concentration related 

pseudomol and variables related to core shape. This might suggest that for the metal oxide NMs, 

the decision tree modelling the Weighted EZ Metric provided more insight into factors driving 

unambiguously adverse effects, while exposure concentration and shape were more related to 

biological effects in general. 

(FIGURE 8 HERE) 

(FIGURE 9 HERE) 

Conclusions 

In the present study, using the Nanomaterial Biological Interactions Knowledgebase, we 

created two datasets of 176 (44 nanomaterials)  and 47 (12 nanomaterials) nanomaterial samples 

respectively, both uncoated and coated with a variety of core-shell-functional group 

compositions tested on embryonic zebrafish at different dosage concentrations using 

comparable experimental protocols in the same laboratory. We subsequently modelled their 

toxicity towards embryonic zebrafish with respect to two aggregate measures of biological 

activity integrating measurements of a variety of lethal and sub-lethal endpoints. Our models 

are concerned with data points associated with individual nanomaterial samples, thus providing 

insight into whether nanomaterials are toxic or non-toxic at a particular concentration rather 

than allowing general statements. 



    

We identified a set of 19 intuitive descriptors, including two new engineered descriptors i.e. 

“pseudomol” (concentration in mass-based units/core formula unit weight) and “MC” (core 

formula unit weight/core complexity), related to the core chemical composition, which were 

found, to varying extents, to be relevant to explaining the toxicity of nanomaterial samples 

tested at different dosage concentrations. Pseudomol is proposed as a more appropriate dose 

unit than mass-based concentration while core complexity is introduced as a descriptor for 

nano-QSAR for the first time. Using the selected set of descriptors, we built nano-QSAR 

stacked models as ensembles of Extreme Gradient Boosting, Random Forest, k-Nearest 

Neighbours and Linear Regression algorithms, to predict toxic responses triggered after 

exposure of zebrafish to nanomaterials based on the Weighted and Additive EZ Metric scores. 

Our findings suggest that that for the group of metal and metal oxide nanomaterials, the core 

chemical composition, concentration and properties dependent upon nanomaterial surface and 

medium composition (such as zeta potential and agglomerate size) are significant factors 

influencing toxicity, albeit the ranking of different variables is sensitive to the exact analysis 

method employed and data modelled.  

The ensemble nano-QSAR models performed well (R2 values 0.49 - 0.83, Pearson correlation 

coefficients 0.76 - 0.99, depending upon the aggregate measure of toxicity being predicted) on 

small, (pseudo-)external validation sets. (Statistics obtained from cross-validation on the data 

used to derive the ensembles were more variable.)  It should also be noted that the models 

showed some promise for modelling both metallic and metal oxide nanomaterial data 

simultaneously.  

Hence, our generalized nano-QSAR stacked ensemble models provide a promising framework 

for anticipating the toxicity potential of new nanomaterials with either a metallic or metal oxide 

core and may contribute to the transition out of the animal testing paradigm. However, due to 

the limited data available for true external testing, following our careful selection of high quality 



    

data and exploration of the most suitable descriptors and modelling methods, further 

experimental studies are warranted to confirm the true predictive power of our promising 

ensemble framework. These experimental studies should generate comparable, similarly high 

quality data, using consistent protocols, for well characterised nanomaterials, as per the dataset 

modelled herein. 
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Figure 1. Partition of the data: Distribution of the output variable (Weighted EZ Metric) in the whole 

dataset of the 44 metal oxide NMs as well as in the train-test subsets. 



    

 

Figure 2. Selection of Descriptors. Feature selection with Random Forest (Recursive Feature 

Elimination) for the Weighted EZ Metric Toxicity Modeling of 44 metal oxide NMs. The best 

performance based on the Root-Mean Square-Error (RMSECV) (Svetnik et al. 2003, Kuhn 2019) 

corresponded to a subset of 19 descriptor variables selected as most significant in predicting the 

Weighted EZ Metric values. 

 

 

 

 
Figure 3. Correlation chart of the topmost important descriptors, along with the modelled endpoint, for the Weighted EZ 

Metric Toxicity Modeling of 44 metal oxide NMs. The distributions of the variables, their correlation to each other and to 

the output as well as their individual contribution in explaining the variability of the output Weighted EZ Metric is depicted. 

The Pearson correlation coefficient is reported for each pairwise comparison, with the number of stars assigned increasing 

with the magnitude of the correlation. 

 

 



    

 

Figure 4. Evaluation Metrics for the prediction of the Weighted EZ Metric of 44 metal oxide NMs obtained via cross-validation on 

the training set (80% of the model development set) with different Machine Learning algorithms, with their default hyperparameters, 

following feature selection using cross-validation on the entire model development set. The abbreviations for the Machine Learning 

algorithms are explained in Table 1A, The arithmetic mean (circles) and confidence intervals (95%) are plotted for each distribution. 

Here, in contrast to the R2 values reported elsewhere, “Rsquared” refers to the squared Pearson correlation coefficient. These results 

were obtained prior to optimizing the hyperparameters based upon the cross-validation results.  

 

 

 

Figure 5. Weighted EZ Metric Toxicity Modeling of 44 metal oxide NMs: Pairwise comparison of the cross-validation 

results for the models KNN1, XGB3A, RF1A and RF1B (Table 1B). The scatterplot matrix shows whether the predictions 

from the different models are correlated. The plotted results, for which correlations are examined, are based on the Root 

Mean Squared Error (RMSECV). The models are not very strongly correlated (Pearson correlation coefficients ≤0.80, with 
the exception of the two Random Forest models – RF1A and RF1B) (Table 1B), which indicates they are informative in 

different ways and, therefore, suited to be combined in ensemble models. If any two models are 100% correlated they are 

perfectly aligned around the diagonal. This is best observed between RF1A and RF1B (0.99). The opposite is observed 

between KNN1 and XGB3A, were the correlation is the lowest (0.53), meaning that there is limited redundancy in the 

information given by these models.  This proved valuable for the creation of the ensemble model RFEnsembleX (Table 2) . 

 

 



    

Table 1A. Weighted EZ Metric Toxicity Modeling of the 44 Metal Oxide NMs 

Evaluation Metrics of algorithms used for the Weighted EZ Metric modeling of 44 metal oxide 

NMs. All results were obtained via cross-validation on the training set, following descriptor 

reduction using RFE on the entire model development set. These results were obtained prior 

to optimizing the hyperparameters based upon the cross-validation results. 

Root-Mean-Square-Error (RMSECV) 

Models Min. Mean Max. 

rf 0.0798 0.1680 0.3230 

rpart 0.0716 0.2152 0.3947 

gbm 0.0670 0.1680 0.3324 

knn 0.0758 0.1689 0.3334 

lm 0.0754 0.1833 0.3203 

glmnet 0.0745 0.1790 0.3423 

svmRadial 0.0600 0.1802 0.3937 

xgbTree 0.0578 0.1546 0.3074 

xgbLinear 0.0522 0.1680 0.3179 
 

Squared Correlationcv 

Models Min. Mean Max. 

rf 2.257e-03 0.3961 0.9616 

rpart 9.684e-05 0.2345 0.9280 

gbm 9.775e-03 0.4215 0.9250 

knn 1.007e-06 0.4278 0.9713 

lm 3.938e-05 0.4297 0.9522 

glmnet 1.818e-03 0.3836 0.9677 

svmRadial 4.453e-03 0.3665 0.9548 

xgbTree 7.119e-04 0.4341 0.9810 

xgbLinear 5.584e-07 0.4347 0.9906 

Algorithms: 

rf: Random Forest (84), rpart: Decision Trees (15), gbm: Gradient Boosting Machines (66), 

knn: K-Nearest Neighbor (3), lm: Linear Regression (28), glmnet: Generalized Linear 

Regression (67), svmRadial: Support Vector Machines with Radial Function (27), xgb: 

eXtreme Gradient Boosting (21) 

Table 1B 

Pairwise comparison of the cross-validation results for the selected and optimized models 

KNN1, XGB3A, RF1A and RF1B (Table 2). The Metric used is Root Mean Squared Error 

(RMSECV). Except for the two random forests, the base models were not strongly correlated (≤0.80), indicating that they were informative in different ways and suitable to be combined 

in ensemble models.  

Models RF1A RF1B XGB3A KNN1 

RF1A 1.00 0.99 0.79 0.72 

RF1B 0.99 1.00 0.80 0.70 

XGB3A 0.79 0.80 1.00 0.53 

KNN1 0.72 0.80 0.53 1.00 

 

 

 

 

 

 

 

 

 



    

 

 

Table 2.                                                     Toxicity Modelling of 44 Metal Oxide Nanomaterials [176 instances] 
 

A.-Evaluation of Model Performance for the Weighted EZ Metric 

 

A1: Creation of models and evaluation of model performance with Train set [144 instances ] and 20-fold cross-validation with 3 repeats 

 

Models 

 

R2
CV 

 

RMSECV 

Pearson correlation  

(resubstitution) 

 

model summary & parameters optimized via cross-

validation 

RF1A 0.244 0.158 0.94 mtry=8, ntree=1000 

RF1B 0.234 0.157 0.95 mtry=8, ntree=2500 

 

XGB3A 

  

0.254 

 

0.139 0.99 
nrounds = 400,  max_depth = 3,  eta = 0.1,  gamma = 0, 

colsample_bytree = 1,  min_child_weight = 1,  subsample = 1 

KNN1 0.036 0.166 0.77 k-neighbors=5 

 

A2: evaluation of model performance with Test set [32 instances] 
 

Models 

 

 

R2 

RMSE  

 

Pearson correlation    

 

RF1A 0.230 0.188 0.49 - 

RF1B 0.240  0.186  0.50 - 

XGB3A 0.480 0.154 0.72 - 

KNN1 0.220 0.189 0.55 - 

Creation of the Stacked model (RFEnsembleX) with Random Forest using the test set (10-fold cross-validation with 3 repeat) 

Stacked Model   **RFEnsembleX 

(RF1A+RF1B+ XGB3A+ KNN1) 

R2
CV 

-3.528** 

RMSECV 

0.1942** 

Pearson correlation  

(resubstitution) 

0.92** 

 

- 

 

A3: evaluation of Stacked Model performance with External Validation set [Zinc Oxide NM at different concentrations, 4 instances] 
 

Models 

 

 

R2 

RMSE 

 

Pearson correlation   

  

RF1A -0.144 0.071 0.87 - 

RF1B -0.193 0.073 0.88 - 

XGB3A 0.114 0.063 0.70 - 

KNN1 -1.923 0.114 0.48 - 

Stacked Model   **RFEnsembleX 

(RF1A+RF1B+ XGB3A+ KNN1) 

 

0.830** 0.027** 0.93** 
- 

 

B.-Evaluation of Model Performance for the Additive EZ Metric 

 

B1: Creation of models and evaluation of model performance with Train set [138 instances] and 20-fold cross-validation with 3 repeats 

 

Models 

 

R2
CV 

 

RMSECV 

Pearson correlation  

(resubstitution) 

 

model summary & parameters optimized via cross-

validation 

 

RF2A 0.491 0.308 0.94 mtry=8, ntree=1000 

RF2B 0.494 0.307 0.94 mtry=8, ntree=2500 

 

XGB3A2 

0.477  

0.303 

 

0.99 

nrounds = 400,  max_depth = 3,  eta = 0.1,  gamma = 0, 

colsample_bytree = 1,  min_child_weight = 1,   

subsample = 1 

KNN2 0.155 0.351 0.84 k-neighbors=5 

 

B2: evaluation of model performance with Test set [33 instances] 

 

Models 

 

 

R2 

RMSE 

 

Pearson correlation    

- 

RF2A 0.664 0.353 0.82 - 

RF2B 0.657 0.356 0.82  

XGB3A2 0.661 0.354 0.81 - 

KNN2 0.470 0.443 0.70 - 

Creation of the Stacked model (RFEnsembleXA1) with Random Forest on the test set (10-fold cross-validation with 3 repeats) 

Stacked Model  ** RFEnsembleXA1 

(RF2A+RF2B+ XGB3A2+ KNN2) 

R2
CV 

-0.567 

RMSECV 

0.29** 

Pearson correlation  

(resubstitution) 

0.94** 

 

- 

 

B3: evaluation of model performance with Pseudo-External Validation set [5 instances] 
 

Models 

 

 

R2 

RMSE 

 

Pearson correlation    

- 

RF2A 0.759 0.493 0.9893 - 

RF2B 0.761 0.490 0.9891  

XGB3A2 0.842 0.399 0.9990 - 

KNN2 0.915 0.293 0.9976 - 

Stacked Model  ** RFEnsembleXA1 

(RF2A+RF2B+ XGB3A2+ KNN2) 

 

0.831** 

 

0.412** 

 

0.99** 

 

- 

 



    

Table 3.      Metallic and Metal Oxide NMs (47 instances) / Weighted EZ Metric Toxicity Modeling 

 

Creation of models and evaluation of models’ performance on the Train set (31 instances) and 10-fold cross-validation with 3 repeats 

Models R2
CV RMSECV 

Pearson correlation  

(resubstitution) model summary & parameters optimized via cross-validation 

RF1 -0.620 0.23 0.90 mtry=9, ntree=2000 

RF2 -0.629 0.23 0.89 mtry=8, ntree=1000 

XGB -1.221 0.23 0.93 
nrounds = 150,  max_depth = 6,  eta = 0.025,  gamma = 0, colsample_bytree = 0.8,  min_child_weight = 3,  

subsample = 1 

KNN -1.617 0.22 0.74 k-neighbors=5 

Creation of the stacked model (RF1+RF2+XGB+KNN) with Random Forest using the training set (10-fold cross-validation with 3 repeats) 

Stacked model 

**RFensembleX2 
0.686** 0.09** 0.98** 

 

 

a.-Evaluation of Models’ Performance on the Test Set [6 instances] 

Models R2 RMSE Pearson correlation  

RF1 0.751 
0.174 0.923 

RF2 0.731 
0.181 0.922 

XGB 
0.934 

0.090 0.979 

KNN 
0.540 0.237 0.823 

Stacked model 

**RFensembleX2 
0.943 0.083 0.976 

b.-Evaluation of Models’ Performance on the External Validation set (Silver Metallic NMs, 10 instances, Supporting Information, sheet S1.5, dataset 

S1.5b.A) 

Models R2 RMSE Pearson correlation  

RF1 0.31 0.25 0.60 

RF2 0.31 0.25 0.60 

XGB 0.33 0.25 0.60 

KNN 0.52 0.21 0.80 

Stacked model 

**RFensembleX2 
0.49 0.22** 0.77** 

 

c.- Evaluation of Models’ Performance on the  Pseudo-External Validation set (Metal Oxide NMs, 16 instances, Supporting Information, sheet S1.5, 

dataset S1.5b.B) 
 

Models R2 RMSE Pearson correlation 

RF1 0.58 0.22 0.88 

RF2 0.58 0.22 0.88 

XGB 0.68 0.19 0.84 

KNN -0.18 0.36 0.40 

Stacked model 

**RFensembleX2 
0.64 0.20** 0.82** 

 

Figure 6. Weighted EZ Metric Toxicity Modelling of metallic and metal oxide NMs (47 instances) using the previously selected 19 

descriptors: Plot depicting the Pearson correlation (%) of the experimental Weighted EZ Metric values of nanomaterials in the External & 

Pseudo-External Validation sets versus the values predicted by the stacked regression model RFEnsembleX2 (Table 3). 

 
 

Figure 6a. External Validation set: Pearson correlation of 

experimental versus predicted Weighted EZ Metric values: 77%   

Figure 6b. Pseudo-External validation set: Pearson correlation of 

experimental versus predicted Weighted EZ Metric values: 82% 

 



    

Table 4A. Additive EZ Metric Toxicity Modeling of the 44 Metal Oxide NMs 

Evaluation Metrics of algorithms used for the Additive EZ Metric modeling. All results were 

obtained via cross-validation on the training set, following descriptor reduction using RFE 

on the entire model development set. These results were obtained prior to optimizing the 

hyperparameters based upon the cross-validation results. 

Root-Mean-Square-Error (RMSECV) 

Models Min. Mean Max. 

rf 0.1625 0.3278 0.5206 

rpart 0.2377 0.4707 0.6912 

gbm 0.1848 0.3330 0.5424 

knn 0.1580 0.3928 0.5659 

lm 0.1741 0.3785 0.5200 

glmnet 0.1735 0.3769 0.5204 

svmRadial 0.1671 0.3887 0.5482 

xgbTree 0.1549 0.3114 0.4899 

xgbLinear 0.2221 0.3631 0.5733 

 

Squared Correlationcv
 

Models Min. Mean Max. 

rf 0.2704 0.6508 0.9111 

rpart 0.0001 0.3429 0.8223 

gbm 0.1825 0.6181 0.8660 

knn 0.1587 0.5310 0.8938 

lm 0.2560 0.5691 0.8877 

glmnet 0.2228 0.5648 0.8876 

svmRadial 0.2618 0.5534 0.9093 

xgbTree 0.3048 0.6928 0.9129 

xgbLinear 0.0966 0.5700 0.9517 

 

Table 4B 

 Pairwise comparison of the cross-validation results for the selected and optimized models 

KNN2, XGB3A2, RF2A, RF2B and RF2C (Table 2). The Metric used is Root Mean Squared 

Error (RMSECV). Except for the random forests, the base models were not strongly correlated (≤0.82), indicating that they were informative in different ways and suitable to 

be combined in ensemble models. 

Models RF2A RF2B RF2C XGB3A2 KNN2 

RF2A 1.00 0.99 0.99 0.70 0.82 

RF2B 0.99 1.00 0.99 0.70 0.81 

XGB3A2 0.70 0.70 0.71 1.00 0.45 

KNN2 0.82 0.81 0.81 0.45 1.00 

 

 

 

 

 

 

 

 

 

 

 



    

Table 5.                        Metallic and Metal Oxide NMs (47 instances) / Additive EZ Metric Toxicity Modeling 

 

Creation of models and evaluation of models’ performance on the Train set (32 instances) and 10-fold cross-validation with 3 repeats 

Models R2
CV RMSECV 

Pearson correlation  

(resubstitution) model summary & parameters optimized via cross-validation 

RF3 -0.797 0.35 0.86 mtry=9, ntree=2000 

RF4 -0.738 0.35 0.86 mtry=8, ntree=1000 

KNN3 -1.151 0.36 0.63 k-neighbors=5 

LM -4.727 0.50 0.71  

Creation of the stacked model (RF3+RF4+LM+KNN3)  with Random Forest using the training set (10-fold cross-validation with 3 repeats) 

Stacked model 

**RFensembleX3 
-

0.111** 

0.21** 0.97** 
 

Validation of the models with Test set, External & Pseudo-External Validation sets 

a.-Evaluation of Models’ Performance on the Test set (5 instances) 

Models R2 RMSE Pearson correlation  

RF3 0.57 0.24 0.85 

RF4 0.58 0.24 0.85 

KNN3 0.53 0.25 0.73 

LM 0.70 0.20 0.88 

Stacked model 

**RFensembleX3 
0.57 0.24** 0.89** 

b.-Evaluation of Models’ Performance on the External Validation set (Silver Metallic NMs, 10 instances, Supporting Information, sheet S1.5, dataset 

S1.5b.A) 

Models R2 RMSE Pearson correlation  

RF3 0.38 0.25 0.64 

RF4 0.40 0.25 0.67 

KNN3 0.51 0.22 0.85 

LM 0.21 0.28 0.66 

Stacked model 

**RFensembleX3 
0.53 0.22** 0.84** 

 

c.- Evaluation of Models’ Performance on the  Pseudo-External Validation set (Metal Oxide NMs, 16 instances, Supporting Information, sheet S1.5, 

dataset S1.5b.B) 
 

Models R2 RMSE Pearson correlation  

RF3 0.12 0.54 0.64 

RF4 0.11 0.54 0.70 

KNN3 -0.48 0.70 -0.094 

LM -185155 247.71 0.09 

Stacked model 

**RFensembleX3 
0.53 0.39** 0.76** 

 

Figure 7. Additive EZ Metric Toxicity Modelling of metallic and metal oxide NMs (47 instances) using the previously selected 19 

descriptors. Plot depicting the Pearson correlation (%) of the experimental Additive EZ Metric values of nanomaterials in the 

External and Pseudo-External Validation sets versus the values predicted by the stacked regression model RFEnsembleX3 (Table 5). 

  
Figure 7a. External Validation set: Pearson correlation of 

experimental versus predicted Additive EZ Metric values: 84%   

Figure 7b. Pseudo-External validation set: Pearson correlation 

of experimental versus predicted Additive EZ Metric values: 76% 

 



    

Table 6A.-                                                                                        Modelling the Toxicity of Metal Oxide Nanomaterials (176 instances) 

Overall Variable Importance evaluation by  the base models of the ensemble used to predict the Weighted EZ Metric Toxicity 

*Overall Variable Importance evaluation for RF1A * Overall Variable Importance evaluation for XGB3A  Overall Variable Importance evaluation for KNN1 

pseudomol                                            100 pseudomol                                               100 pseudomol                                   100 

Stable.Average.Agglomerate.Size.in.Media                66.69 Stable.Average.Agglomerate.Size.in.Media                44.40 Concentration..ppm.                            93.37 

Concentration..ppm.                                  62.82 Purity unknown                                           42.13 Surface.Area..Core...Shell...Ligands...mm2..           78.08 

Surface.Area..Core...Shell...Ligands...mm2..            58.32 Surface.Area..Core...Shell...Ligands...mm2..            27.70 Purity                                        21.84 

MC                                                      54.57 MC                                                     26.19 MC                                            18.32 

XlogP_FG                                                53.87 Zeta.potential                                          16.17 Zeta.potential                               13.82 

FG_McGowanVolume 42.28 Pauling.metal.atom.electronegativity                    12.94 Stable.Average.Agglomerate.Size.in.Media      10.51 

Zeta.potential                                         42.04 XlogP_FG                                                10.07 Core..HBAcc                                   7.01 

Purity unknown                                            39.65 Primary.Particle.Size..Avg...nm.                        9.93 Core..Heavy.Atom.Count                      5.00 

Primary.Particle.Size..Avg...nm.                        39.45 MW_Core                                                 8.34 Primary.Particle.Size..Avg...nm.               2.53 

Purity..pure                                              39.20 Concentration..ppm.                                     8.00 Pauling.metal.atom.electronegativity          2.36 

MW_Core                                              37.42 Purity pure                                              6.90 MW_Core                                        1.76 

FG..SMR 36.95 MW_FG 4.26 Surface.Charge...positive..negative..neutral.  1.24 

Pauling.metal.atom.electronegativity                    36.63 Core.Shape regular-angular                               3.41 MW_FG                                         0.07 

FG..GAP..EV.                                             30.96 FG..GAP..EV.                                            1.68 FG..GAP..EV.                                   0.05 

Core..HBAcc 29.49 Purity ultra-pure                                        1.64 FG..SMR                                        0.05 

Core.Shape regular-angular                               28.00 Surface.Charge..positive..negative..neutral. positive    0.96 FG..McGowanVolume                           0.05 

Purity.. ultra- pure 24.93 Core.Shape spherical                                     0.85 XlogP_FG                                      0.04 

Core.Shape spherical 24.49 Surface.Charge..positive..negative..neutral. neutral    0.52 Core.Shape                                     0.00 

Core.Heavy.Atom.Count 23.31 Core.Shape irregular-angular 0.47 -  

      

Overall Variable Importance evaluation by the base models of the ensemble used to predict the Additive EZ Metric Toxicity 

* Overall Variable Importance evaluation for RF2A  *Overall Variable Importance evaluation for XGB3A2 *Overall Variable Importance evaluation for KNN2 

MW_Core                                             100 MW_Core                                                 100 MW_Core                                       100 

Pauling.metal.atom.electronegativity                 93.58 pseudomol                                              99.64 Pauling.metal.atom.electronegativity            93.62 

Stable.Average.Agglomerate.Size.in.Media           82.59 Pauling.metal.atom.electronegativity                   50.64 Core..Heavy.Atom.Count                        41.16 

Purity ultra-pure 79.53 Surface.Area..Core...Shell...Ligands...mm2..         32.00 Core..HBAcc                                    36.76 

Primary.Particle.Size..Avg...nm.                      78.04 Stable.Average.Agglomerate.Size.in.Media               21.36 Purity                                         32.94 

pseudomol                                             73.60 Purity pure                                              16.41 MW_FG                                           31.37 

Concentration..ppm. 68.13 Purity ultra-pure 13.55 FG..SMR                                         31.34 

MC                                                      62.56 Primary.Particle.Size..Avg...nm.                        13.02 FG..McGowanVolume                               31.32 

Zeta.potential                                      58.10 Core.Shape unknown                                      7.27 XlogP_FG                                        31.30 

Surface.Area..Core...Shell...Ligands...mm2..         50.28 Surface.Charge.positive..negative..neutral. unknown   4.57 FG..GAP..EV.                                  31.28 

Purity unknown                                          47.81 MC                                                     4.09 pseudomol                                       27.90 

Purity pure                                              32.77 Zeta.potential                                          3.74 MC                                               10.73 

Core.Shape spherical                                     29.65 MW_FG                                           1.95 Surface.Area..Core...Shell...Ligands...mm2..    9.99 

Core..Heavy.Atom.Count                                  27.58 Core.Shape spherical                                     1.73 Zeta.potential                                  2.93 

Surface.Charge..positive..negative..neutral. unknown     22.69 Core.Shape irregular-angular                             1.47 Stable.Average.Agglomerate.Size.in.Media       2.63 

Core.Shape irregular-angular                            21.56 Surface.Charge.positive..negative..neutral. positive 1.41 Core.Shape                                       2.11 

Core.Shape unknown                                     20.35 FG..GAP..EV.                                          0.94 Primary.Particle.Size..Avg...nm.                0.74 

Core..HBAcc   20.17 Purity unknown                                           0.87 Concentration..ppm.                             0.24 

FG..SMR 18.02 XlogP_FG                                        0.69 Surface.Charge...positive..negative..neutral.   0.00 

Surface.Charge...positive..negative..neutral. neutral     16.27 Surface.Charge...positive..negative..neutral. neutral     0.65 -  

Table 6B.-                                                                                                           Modelling the Toxicity of Metallic & Metal Oxide Nanomaterials (47 instances) 

Overall Variable Importance evaluation by  the models used to predict the Weighted EZ Metric Toxicity  

* Overall Variable Importance evaluation for RF1   * Overall Variable Importance evaluation for XGB  *Overall Variable Importance evaluation for KNN 

Zeta.potential                                         100 Zeta.potential                                                                                     100 Zeta.potential                                  100 

Surface.Charge...positive..negative..neutral.positive   61.73 pseudomol 57.76 Stable.Average.Agglomerate.Size.in.Media       68.57 

Stable.Average.Agglomerate.Size.in.Media                53.04 Stable.Average.Agglomerate.Size.in.Media                27.98 pseudomol                                       53.67 

pseudomol 31.50 Surface.Charge...positive..negative..neutral.positive   25.03 Concentration..ppm.                             42.83 

Concentration..ppm 23.09 Concentration..ppm.                                     10.4 MW_Core                                                  27.71 

XlogP_FG 19.89 Primary.Particle.Size..Avg...nm.                        4.42 Pauling.metal.atom.electronegativity             16.21 

Primary.Particle.Size..Avg...nm.                        19.66 Purity pure 2.88 Surface.Charge...positive..negative..neutral.    8.35 

FG..SMR                                                 16.45 XlogP_FG                                                 2.80 XlogP_FG                                        5.79 

Core.Shape unknown                                        14.75 Purity unknown                                            1.17 FG..GAP..EV.                                    5.79 

Pauling.metal.atom.electronegativity                    14.61 Core.Shape unknown                                                                                  0.36 Core.Shape                                      4.28 

FG..GAP..EV.                                                14.37 MW_Core                                                  0.20 Core..HBAcc                                              3.84 

Purity pure 12.43 MW_FG 0.13 Core..Heavy.Atom.Count 3.49 

MW_FG                                                   10.92 -  FG..SMR                                         2.92 

Core..Heavy.Atom.Count 9.12 -  MW_FG 2.92 

FG..McGowanVolume                               8.13 -  FG..McGowanVolume                               2.92 

Core..HBAcc                                              6.17 -  MC                                                       1.31 

MC                                                       5.92 -  Primary.Particle.Size..Avg...nm.               1.09 

MW_Core                                                                                           4.77 -    

Purity unknown                                            2.18 -  -  

Surface.Charge...positive..negative..neutral.unknown     1.26 -  -  

    -  

Overall Variable Importance evaluation by the base models used to predict the Additive EZ Metric Toxicity 

* Overall Variable Importance evaluation for RF3  * Overall Variable Importance evaluation for LM  *Overall Variable Importance evaluation for KNN3 

Zeta.potential                                        100 Surface.Charge...positive..negative..neutral.positive    100 Stable.Average.Agglomerate.Size.in.Media       100 

Stable.Average.Agglomerate.Size.in.Media                93.94 Stable.Average.Agglomerate.Size.in.Media                 69.19 Zeta.potential                                 75.90 

Surface.Charge...positive..negative..neutral.positive   56.64 Purity unknown                                            67.46 Pauling.metal.atom.electronegativity            17.75 

Primary.Particle.Size..Avg...nm.                       41.97 MW_FG                                                    67.040 pseudomol                                       16.94 

Puritypure                                              30.06 Puritypure                                               40.81 Concentration..ppm.                             13.34 

XlogP_FG                                                28.91 Zeta.potential                                         28.47 MW_Core                                         11.90 

FG..GAP..EV.                                            27.53 pseudomol                                               5.36 Primary.Particle.Size..Avg...nm.               9.63 

MC                                                      24.60 Concentration..ppm.                                      1.66 MC                                               7.62 

Core.Shape unknown                                       23.18 Surface.Charge...positive..negative..neutral.unknown     1.12 Purity                                           7.44 

MW_Core                                                 22.12 -  Core..Heavy.Atom.Count                           2.88 

FG..McGowanVolume                                      20.42 -  Core..HBAcc                                      2.03 

MW_FG                                                   19.68 -  XlogP_FG                                         0.46 

Purityunknown                                          19.54 -  FG..GAP..EV.                                     0.46 

Surface.Charge...positive..negative..neutral.unknown    18.86 -  Core.Shape                                       0.16 

Pauling.metal.atom.electronegativity                   18.09 -  Surface.Charge...positive..negative..neutral.    0.11 

FG..SMR                                                 17.80 -  -  



    

Surface.Area..Core...Shell...Ligands...mm2..            14.26 -  -  

Core..HBAcc                                              11.37 -  -  

Core..Heavy.Atom.Count                  10.16 -  -  

pseudomol                                               6.630 -  -  

 

 

 

 

 
Figure 8. Single Decision Tree for the Weighted EZ Metric Toxicity Modelling of 44 Metal Oxide NMs. A single decision tree was created on the original dataset (44 

NMs) with the 19 descriptors selected from RFE. The decision path clarifies which features are associated with every decision as well as their threshold values. As explained under “Data Pre-processing and Variable Selection”, non-missing numeric values were normalized between zero and one and missing values were replaced 

with -20. This is reflected in the split points. The toxicity potential of the instances (NM samples at a specific concentration)  is depicted progressively from white (“likely benign”) to deep blue (“high toxic potential”). The results are presented in mean values of Weighted EZ Metric, along with the number and percentage of the NMs corresponding to these values. The tree roughly classifies 131 instances as “likely benign” (Weighted EZ≤0.20), 19 as having “high toxic potential” (Weighted EZ≥0.63) and 26 as “suspects” (Weighted EZ> 0.20 and Weighted EZ<0.62), according to the rough classification scheme previously introduced based upon various 

assumptions (Liu et al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 



    

 
Figure 9.  Single Decision Tree for the Additive EZ Metric Toxicity Modelling of 44 Metal Oxide NMs. A single decision tree was created on the original dataset (44 NMs) 

with the 19 descriptors selected from RFE. As explained under “Data Pre-processing and Variable Selection”, non-missing numeric values were normalized between zero 

and one and missing values were replaced with -20. This is reflected in the split points, e.g. the negative split points for surface area and agglomerate size suggest that these 

split points actually reflect differences between instances (NM samples at specific concentrations) for which this information was available and those for which they were 

not. The potential of an instance  to trigger biological responses at a certain concentration is depicted progressively from white to deep blue. The results are presented in 

mean values of Additive EZ Metric, along with the number and percentage of the instances corresponding to these values. High Additive EZ scores indicate the presence of 

biological responses in general, which may or may not include unambiguously adverse effects.   

 

 


