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The sympathetic sceptic’s guide to semigroup representations

Brent Everitt⋆

Abstract. This is an elementary, examples driven, introduction to the representation theory of finite semigroups. We

illustrate the Clifford-Munn correspondence between the representations of a semigroup and the representations of

its maximal subgroups. The emphasis throughout is on naturally occurring examples.

Introduction

This is an elementary introduction to the representation theory of finite semigroups. As the title

suggests, it is not necessarily intended for semigroup theorists.

We start with a quick primer on the semigroups that will interest us – the inverse and regular

monoids – and spend a certain amount of energy selling these objects to the general mathemat-

ical public. Section 2 introduces from scratch linear actions of semigroups on vector spaces,

where the emphasis is on those aspects of the theory that are in common with group representa-

tions. By this point the symmetric group Sn will have appeared a number of times, so we divert

to describe its “atomic” representations. There are two fundamental constructions, reduction and

induction, that connect group theory and semigroup theory, at least when it comes to represen-

tations. These are described in Sections 3-4. Section 5 contains, what is, from the point of view

of these notes, the fundamental theorem of semigroup representation theory: the Clifford-Munn

correspondence. It gives a mechanism for producing the atomic representations of semigroups

using only knowledge from group theory. The last section is essentially a gratuitous excuse to

draw pictures of our favourite polytope, the permutohedron, dressed up as a worked example of

the representations of an interesting Renner monoid.

Throughout, three running examples, Sn (a group), In (an inverse monoid) and Tn (a regular

monoid) are used as illustration. By the end of Section 4 the emphasis will have completely

moved to inverse monoids. We also start with actions on vector spaces over an arbitrary field k,

but in later sections we retreat to the relative safety of representations over C. We borrow heavily

from a number of sources – full attributions are given in the Notes and References section at the

end.

1. Semigroups

A semigroup is a set equipped with an associative multiplication. This leaves us with quite a bit

of scope! In this section we feel our way towards a manageable class of semigroups to study.

Our guiding principle will be the role of inverses in semigroup theory.
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We start with three finite examples that are the most typical of their type. Throughout, we

write [n] for the set {1, 2, . . . , n}.

– The symmetric group Sn: consisting of all bijections g : [n] → [n] with multiplication the

usual composition of maps.

– The symmetric inverse monoid In: consisting of all partial bijections s : [n] → [n], i.e. bi-

jections s : X → Y where X,Y ⊆ [n]. The multiplication is composition of partial maps as

shown in Figure 1. All our functions, actions, etc, will be on the left, so the partial map st

st

dom (st)

im(st)

im t

dom s

t

s

Fig. 1. composition of partial maps of [n].

has domain the t-preimage of im t ∩ dom s and image the s-image of im t ∩ dom s, and is the

usual composition of t followed by s between these two sets. If im t ∩ dom s is empty, then

st is the unique bijection ∅→ ∅, which we will call the zero map 0.

– The full transformation monoid Tn: consisting of all mappings s : [n] → [n] with multiplica-

tion the usual composition of maps.

Inverses in semigroup theory. Naively, a semigroup is a group, except without inverses. But to

completely rule out inverses in a semigroup is unnecessarily defeatist. The elements of Sn are

“global” symmetries of the set [n] – with global inverses – while the elements of In are “local”

symmetries of [n], with local inverses to match. Our three running examples motivate three ways

in which inverses arise:

(i). The symmetric group Sn is a group, obviously, so for every g ∈ Sn there is a unique

h ∈ Sn with gh = id = hg. Write h = g−1 as usual.

(ii). If s : X → Y is an element of In then there is a unique X ← Y : t, that is the inverse of s,

but only defined on the set Y . Indeed, st = idY and ts = idX , where idX : X → X and idY : Y → Y

are partial identities, and in particular, idempotents (i.e: idXidX = idX and idY idY = idY ).

As a working definition of the local inverse of s, we could take it to be an element t such that

st and ts are idempotents, but not necessarily the global idempotent id. It turns out that this isn’t

quite satisfactory, as any map defined on some subset of the image of s, and equal to the inverse

of s on this subset, also has this property.
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s

1 n

1 n

fibers/kernel of s

t

1 n

1 nfibers/kernel of t

x

sx

Fig. 2. inverses in Tn.

Instead, we have s idX = s = idY s. Together with st = idY and ts = idX we get that t satisfies

sts = s; similarly tst = t.

A semigroup with the property that for every s there is a unique s∗ satisfying

ss∗s = s and s∗ss∗ = s∗ (1)

is called an inverse semigroup; a semigroup with an identity id is a monoid, and an inverse

semigroup with an identity id is an inverse monoid. In is thus the most inverse monoid-like of

the inverse monoids. We will sometimes call s∗ an inverse “in the sense of semigroup theory”

and reserve the notation s−1 for inverses in a group.

(iii). Definition (1) of inverses opens up new possibilities. The element s ∈ Tn shown on the

left of Figure 2 has kernel the partition of [n] whose blocks are the fibers of s: the s-preimages

of a point in the image of s. Now construct an element t ∈ Tn in the following way:

– partition the image copy of [n] so that each block of the partition contains exactly one element

of the image of s; this partition will be the kernel of t.

– For each block in this new kernel choose an x in the domain copy of [n] such that the block

contains the point sx; then define t so that it maps this block to x; see the right of Figure 2.

The t just constructed satisfies sts = s and tst = t; conversely, any t satisfying these relations

must come about in this way. But this t is clearly not unique – there is choice in the partition of

the image [n] and for each block of this partition, choice in the x so that the block is labelled by

sx.

A monoid with the property that for every s there is some t satisfying sts = s and tst = t is

called a regular monoid.

From now on: S will be a finite regular monoid.

The structure of semigroups: Green’s relations. These allow us to draw strategic pictures of

semigroups. Define an equivalence relation L on S by sLt when Ss = St, where Ss = {rs : r ∈

S } is a left ideal (hence the “L”). Dually, define sRt when sS = tS .

In Sn, and indeed any group, these relations are trivial: any two elements are L and R-related.

In In and Tn they take a particularly simple form:

– sLt when the fibers of s are equal to the fibers of t (or s and t have the same kernel). In In this

is equivalent to dom s = dom t.

– sRt when im s = im t.

If we consider the equivalence relation 〈L,R〉 generated by L and R, then something very

nice happens. The L-class of any element t that is R-related to s intersects the R-class of any

element r that is L-related to s. It is particularly easy to see for In as on the left of Figure 3.
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Fig. 3. In the symmetric inverse monoid In, the L-class Lt of any element t that is R-related to s intersects the R-class

Rr of any element r that is L-related to s (left) and an eggbox grid of a 〈L,R〉-class (right) partitioned into mutually

intersecting L and R-classes.

The 〈L,R〉-classes are thus partitioned into L-classes and partitioned into R-classes, with any

L-class intersecting any R-class and vice-versa. Semigroup theorists call this grid an “eggbox”

– see the right of Figure 3.

Moreover, pursuing the ideal theme, define a relation J on S by sJt when SsS = StS . Again,

this has a simple form in In and Tn, with sJt when im s and im t are sets of the same size. But

the 〈L,R〉-class of In in Figure 3 consists precisely of those partial bijections whose image has

the fixed size | im s | = |Y |. Thus J = 〈L,R〉 in In, and in general for any finite S .

Our final relation is H = L∩R, so that sHt when they are both L and R-related. In In and Tn

a pair sHt means that s and t have the same fibers (or domains in In) and the same images. The

H-classes are thus the small boxes in the eggbox grid with one marked on the right of Figure 3.

Write Ls,Rs, Js and Hs for the equivalence class of s ∈ S under these relations.

The J-classes are not just floating around in the ether in a disembodied fashion. They can be

compared to each other; in other words, they form a poset. This is what we mean by “strategic

picture”.

Again we can see this quite naturally by looking at In and Tn, where the J-classes are

parametrised by the possible sizes of the images: by {0, . . . , n} in In and by {1, . . . , n} in Tn.

Indeed, SsS consists of the maps having image size ≤ | im s |, so that SsS ⊆ StS exactly when

| im s | ≤ | im t |. We will write Jm for the J-class consisting of those maps with image size m.

In general, define a partial order on the J-classes of a semigroup S by Js ≤ Jt whenever

SsS ⊆ StS .

Idempotents. An idempotent is an element e with the property that e2 = e. In a group there is

precisely one: the identity id. But in In there are others, and in Tn even more again.

The idempotents in In are the maps idX : X → X that are the identity on some X ⊆ [n];

they are the partial identities. In the eggbox on the right of Figure 3, idX lives on the diagonal in

the row and column labelled by X. Moreover, idX is the only idempotent in its row and column.
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J5

J4

J3

J2

J1

J0

J5

J4

J3

J2

J1

Fig. 4. The H-classes containing idempotents in I5 (left) and T5 (right).

In fact, this is true for any inverse semigroup: each R-class and each L-class contains a unique

idempotent.

To find idempotents in Tn, fix any partition of [n]; this will be the fibers/kernel of e. In each

fiber fix a point, and then define e to map each fiber to the point chosen in it – see Figure 5.

(A slicker way to say it is that e restricts to the identity on its image.) If the fibers – and hence

the L-class – are fixed, there is still wiggle-room in the choice of point in each one. So a given

L-class may contain several idempotents. Dually, fixing some image points (and hence the R-

class) there are many partitions of [n] with a unique image point in each block of the partition,

and so several idempotents in a given R-class. This behaviour is typical of regular, non-inverse

semigroups. Figure 4 compares the H-classes containing idempotents in I5 and T5.

In any case, in both In and Tn – and in a regular monoid in general – each H-class contains

at most one idempotent.

Subgroups. In any monoid the units are the elements that have inverses in the sense of group

theory, and these form a subgroup. In our three examples Sn, In and Tn, these are the bijections

1 n

1 n

e

Fig. 5. An idempotent in Tn.
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Fig. 6. Strategic picture of In. The J-class poset (left), the stacked eggboxes (middle) and the eggbox picture of the

J-class Jm (right); there are
(

n

m

)

rows and columns with the maximal subgroups � Sm down the diagonal.

[n] → [n], so the group of units is Sn with identity id : [n] → [n]. In Sn this is the whole story,

but in In there are other subgroups, disjoint from the units, and in Tn even more again.

For X ⊆ [n] fixed, the bijections X → X form a subgroup of In isomorphic to Sm, where

m = |X|. This subgroup is precisely the diagonal H-class containing the idempotent idX : X → X.

In general, if He is the H-class containing the idempotent e, then this is a subgroup of S

with identity e. Moreover, any subgroup of S is a subgroup of an He for some e, hence these are

maximal subgroups of S . We write Ge for He from now on, to stress its group structure.

Tn has many more H-classes containing idempotents, hence many more maximal subgroups.

The H-class containing the idempotent e on the left of Figure 7 consists of the maps with fibers

X1, . . . , Xm and image points y1, . . . , ym, and where these maps give a bijection {X1, . . . , Xm} →

X1 X2

y1 y2

e

X1 X2

y1 y2

Fig. 7. Maximal subgroup of Tn with identity the idempotent e (left) and a typical element (right).

{y1, . . . , ym}. The maximal subgroups of Tn are thus symmetric groups Sm as well, but in a slightly

different way to In. Figure 4 therefore also shows these Sm subgroups (shaded), for 0 ≤ m ≤ 5,

in I5 and T5.

The strategic picture for In: is given in Figure 6. The J-class poset is on the left – the image

sizes {0, . . . , n} with their usual total order – and the stacked eggboxes are in the middle. The
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X
e
→ X

X
s
→ Y

Z
t
→ X

s(−)

(−)t

Ge

Re

Le

Hs

Ht

bijection

bijection

Fig. 8. Green’s lemma.

maximal J-class consists of all the bijections with image size n, so is the symmetric group Sn,

and the minimal J-class has single element the zero map 0 : ∅ → ∅. The class Jm has rows

and columns indexed by the
(

n
m

)

subsets of size m, with the blue box in Figure 6 containing the

bijections s : X → Y . The idempotents idX : X → X lie down the diagonal, with the maximal

subgroups consisting of all the bijections X → X for fixed |X| = m, and thus � Sm.

Green’s lemma. The maximal subgroups can be used to parametrise the L and R classes con-

taining them – indeed, the H-classes in Re are like right cosets of the subgroup Ge and the

H-classes in Le are like left cosets.

It is easy to see in In: let e be the idempotent idX : X → X, contained in the maximal subgroup

Ge of all bijections X → X (see Figure 8). An s ∈ Le is a bijection s : X → Y . For any g ∈ Ge,

the composition

X
g
→ X

s
→ Y

is a bijection X → Y , and all such bijections arise in this way via some g. Put another way, left

multiplication by s is a bijection s(−) : Ge → Hs. Thus:

every element of the H-class Hs can be uniquely expressed as sg for some g ∈ Ge (2)

(so Hs = sGe is the left coset in Le of the maximal subgroup Ge). Dually, if t ∈ Re is some

bijection t : Z → X then every element of Ht has a unique expression as gt for some g ∈ Ge, and

so Ht is the right coset Get of Ge in Re. These observations are called Green’s lemma.

An important consequence is that the maximal subgroups in a fixed J-class are isomorphic.

Again we see it in In; let e = idX and f = idY be idempotents in the J-class Je = J f and

let Ge,G f be the corresponding maximal subgroups – see Figure 9. Somewhat incidentally,

Ge � Sm � G f with |X| = m = |Y |, but this isomorphism also arises naturally as follows.

“Complete the square” of H-classes that has the maximal subgroups at its diagonal corners, and

fix a representative s : X → Y of the H-class lying the the same column as Ge and row as G f .

The inverse s∗ : Y → X then lies in the diagonally opposite H-class.

Any h : Y → Y in the group G f can now be decomposed as:

Y
h
→ Y = Y

s∗

→ X
g
→ X

s
→ Y
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X
e
→ X

Y
f
→ Y

Y
s∗

→ X

X
s
→ Y

�

(−)s

(−)s∗

s(−) s∗(−)

Ge

G f

s∗(−)s

s(−)s∗

Fig. 9. Maximal subgroups are isomorphic.

for some g ∈ Ge, and the map g 7→ sgs∗ is a homomorphism Ge → G f with inverse the map

h 7→ s∗hs.

The inverse monoids S(G, L). Mathematics contains many examples of a group acting on a

poset or a lattice – we now describe an inverse monoid that wraps up the group, the lattice and

the action into a single object. It turns out that many naturally occurring inverse monoids arise

this way. It is also a particularly useful format for understanding their representations – we will

find it essential for the examples of §6.

Let G be a finite group and L a finite lattice – a poset in which every pair of elements a, b has

a greatest lower bound, or meet a∧ b, and a least upper bound, or join a∨ b. Suppose that G acts

on L: each g ∈ G gives rise to a poset map a 7→ g · a, so that if a ≤ b in L then g · a ≤ g · b. As

this must also be true for g−1, we have a ≤ b iff g · a ≤ g · b.

We form a semigroup S(G, L) out of this input data: the elements have expressions of the

form ga where g ∈ G and a ∈ L. Two different expressions can represent the same element:

ga = hb in S(G, L) iff a = b and g−1h · c = c for all c ≤ a (3)

Finally, the product is given by

gahb = (gh)h−1·a∧b (4)

where gh is the product of g and h in G. If it seems a little mysterious, you can think of ga

as the element of the symmetric inverse monoid on the set L and having domain the interval

L≤a = {c ∈ L : c ≤ a} with effect the restriction of g to this interval. Then (4) is just the

composition of partial bijections for IL and (3) warns us that different elements of G can restrict

to the same partial bijection in S(G, L).

As L is a finite lattice it has a maximum 1 =
∨

a∈L a and a minimum 0 =
∧

a∈L a, hence

S(G, L) has an identity id1, where id is the identity in G, and a zero g0, for any g ∈ G (as

g · 0 = 0 = h · 0 for any other h, we have by (3) that g0 = h0). More significantly, ga has the

semigroup inverse g∗a = g−1
g·a so that S(G, L) is an inverse monoid.
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The Green’s relation structure follows the dictates of the symmetric inverse monoid on L: we

have gaLhb exactly when a = b and gaRhb when g · a = h · b. In particular the L-class of ga

consists of all the ha as h ∈ G varies, and the R-class of all the hh−1·a.

The H-class of ga consists of the ha for those h ∈ G such that h · a = g · a. The J-classes

correspond to the orbits of the G-action on L; if {a1, . . . , am} is an orbit, then the eggbox decom-

position of the corresponding J-class has rows and columns indexed by the ai and the J-class

consists of all the ga where g ∈ G and a is one of the ai.

To complete the strategic picture, let J1 and J2 be J-classes corresponding to the G-orbits

{a1, . . . , am} and {b1, . . . , bℓ}. Then J1 ≤ J2 exactly when ai ≤ b j in L for some ai and some b j

(or equivalently ai ≤ b j for any ai and some b j, or, any b j and some ai).

The idempotents of S(G, L) are the ida for id the identity of G, and the units are the g1 with

1 the maximum of L. By (3)-(4) the units form an isomorphic copy of G in S(G, L).

The maximal subgroup Ga containing the idempotent ida consists of the ga with g · a = a,

subject to our running ambiguity (3). It turns out that the ambiguity can be easily ironed out: let

Ga be those elements of G with g · a = a and let G≤a be those elements of G with g · c = c for all

c ≤ a. Then G≤a is a normal subgroup of Ga and there is an isomorphism

Ga � Ga/G≤a (5)

from the maximal subgroup Ga to this sub-quotient of the group of units G.

Let s = ga be an element in the L-class of the maximal subgroup Ga and s(−) : Ga → Hs

the bijection promised by Green’s lemma. We can make the decomposition (2) quite explicit: if

t = ha is another element of Hs then

t = s · g−1
b ha (6)

where b = g · a and g−1
b

ha ∈ Ga.

Example 1. We can shoehorn In into this setting: G = Sn and L is the lattice of subsets of [n]

ordered by inclusion with Sn acting on L in the obvious way. We leave the reader to show that

S(Sn, L) � In via the map that sends ga to the partial permutation obtained by restricting g to the

subset a.

Exercise 1. If [G : H] is the index of the subgroup H in G, show that |S(G, L)| =
∑

a∈L

[G : G≤a].

Hence |In| =
∑

X⊆[n][Sn : SX], where SX is the symmetric group on the set X.

Example 2. An important lattice in combinatorics is the partition lattice Π(n), having elements

the partitions Λ = {Λ1, . . . , Λp} of [n] ordered by {Λ1, . . . , Λp} ≤ {∆1, . . . , ∆q} iff each Λi is a

subset of some ∆ j. The symmetric group Sn acts on Π(n) via g · {Λ1, . . . , Λp} = {gΛ1, . . . , gΛp}.

The resulting S(G, L) is called the monoid of uniform block permutations and the strategic pic-

ture, when n = 4, is in Figure 10. The J-class poset is the poset of partitions λ = {λ1, . . . , λp}

of the integer n (see the beginning of the Interlude), and the corresponding maximal subgroup

is isomorphic to the Young subgroup Sλ1
× · · · × Sλp

. In particular, the order of the monoid of

uniform block permutations is
∑

Λ∈Π(n)[Sn : S λ1
× · · · × S λp

].

2. Representations

This section contains the basics of representation theory that are common to all finite regular

monoids. The theme is the extent to which representations can be decomposed into “atomic”



10 Brent Everitt

(a).

(b).

{a, b, c, d}

{ab, c, d}

{abc, d} {ab, cd}

{abcd}

{abcd}
S4

(c).

{abc, d}

S3 × S1

{ab, c, d}

S2 × S1 × S1

{a, b, c, d}

S1 × S1 × S1 × S1

S2 × S2

Fig. 10. Strategic picture of S(G, L) when G = S4 and L = Π(4) from Example 2: (a). the partition lattice Π(4); (b).

the poset of J-classes labelled by the type of partitions; (c). the strategic picture.

pieces. These can then be reassembled to get a handle on the sociology of the representations of

a semigroup. It turns out that this is almost always possible for groups and inverse monoids, but

less so for regular, non-inverse monoids.

Throughout, k is a field and V a finite dimensional vector space over k. Let End(V) be the

monoid, under composition, of all vector space homomorphisms (or linear maps) V → V .

An S -action on V or linear representation of S is a monoid homomorphism

ϕ : S → End(V).

We adopt the convention that all monoid homomorphisms send 1’s to 1’s, so that ϕ(1S ) is the

identity homomorpism id : V → V . In particular imϕ , {0}, and so our representations are not

null. If S is a group then necessarily imϕ ⊂ GL(V), the group of vector space isomorphisms

(or invertible linear maps) V → V . The notion of a semigroup representation is thus a straight

generalisation of that of a group representation.



The sympathetic sceptics guide to semigroup representations 11

s = (1, 2, 3)

v1

v2

v3

U
W + 1

n
u s = [1, 2, 3]

v1

v2

v30

Fig. 11. From left to right: Permutation action of Sn; the line U which is the k-span of u = v1 + · · · + vn; the (affine)

hyperplane W + 1
n
u coming from the reflectional representation; the partial reflection action of In. The pictures are

for n = 3 and the notation for partial permutations is described in the Notes and References section.

We will identify s ∈ S and ϕ(s) ∈ End(V), so that if v ∈ V , we just write s · v, or even

sv, for the effect of the linear map ϕ(s) on the vector v. Mostly we will just write V for an

S -representation without explicit reference to the action.

The following representation of our three running examples Sn, In and Tn will turn out to

display the full range of possible behaviours:

Example 3 (mapping representations). Fix a basis {v1, . . . , vn} for the space V and for s ∈ Sn, In

or Tn define

s · vi = vs(i) (s ∈ Sn,Tn) or s · vi =

{

vs(i), if i ∈ dom s

0, else.
(s ∈ In) (7)

and then extend linearly. To analyse the structure of the mapping representations, we need to

know how to decompose representations in general.

Sub-representations and reducibility. These allow us to understand representations in the large.

If V is a representation and U is a subspace left invariant by the S -action, i.e. S U = U, then

we call U an (S -)subrepresentation of V . The quotient space V/U then carries an S -action via

s · (v + U) = sv + U, well-defined, as sU = U. There is then a 1-1 correspondence between the

subrepresentations of V/U and the subrepresentations W of V such that U ⊆ W ⊆ V .

If V has a proper, non-zero subrepresentation U, then call V reducible; V is irreducible if the

only subrepresentations are {0} and V .

A subrepresentation U of V is maximal when U , V but for any subrepresentation W of

V with U ⊆ W ⊆ V we have either W = U or W = V . Because of the 1-1 correspondence

mentioned above, U is maximal exactly when V/U is irreducible.

If U,W are subrepresentations of V such that V = U ⊕ W as vector spaces, then the rep-

resentation V is the (internal) direct sum of U and W. Externally, if U and W are arbitrary S -

representations then the vector space direct sum U⊕W carries an S -action via s·(u+w) = su+sw,

and U ⊕W is the (external) direct sum of U and W.

Example 4 (the permuting coordinates and reflectional representations of Sn). The Sn-action in

(7) is by “permuting coordinates” (or more accurately, permuting basis vectors). In particular, for

(i, j) ∈ Sn the resulting isomorphism V → V is the reflection in the hyperplane with equation xi−

x j = 0. As Sn is generated by the transpositions, its image in GL(V) is generated by reflections,

i.e: is a reflection group.
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The vector u = v1 + · · · + vn is fixed by any permutation in Sn, so that if U is the k-span of u

then SnU = U, a subrepresentation. As each vector in U is fixed by every element of Sn, this is

the trivial representation of Sn (see Figure 11).

Thus if n > 1 then the permuting coordinates representation V is reducible. Moreover, as

U is 1-dimensional it has only the two subspaces, Sn-invariant or otherwise, namely {0} and U.

Hence U is irreducible. When n = 1 we have V = U is irreducible.

Now let W be the hyperplane with equation x1 + x2 + · · · + xn = 0, that is, the set of points

whose coordinates with respect to the vi sum to 0. Permuting the coordinates of such a vector

doesn’t change the fact that they add to 0, hence W is also a subrepresentation of V . Figure 11

has the plane W when n = 3, shifted off the origin to make it easier to see. For reasons that are

maybe a little obscure at the moment, W is called the reflectional representation of Sn.

Moreover, if the characteristic char(k) of the field does not divide dim V = n, then W is

irreducible. For suppose that X , {0} is a Sn-invariant subspace of W and let v ∈ X with v , 0.

If all the coordinates of v are equal to some λ ∈ k, then these sum to 0 to give nλ = 0, hence

– by the restriction on the characteristic – we must have λ = 0, hence v = 0, a contradiction.

The vector v must therefore have two coordinates that are different. For each 1 ≤ i < n we can

engineer a gi ∈ Sn such that in the vector gi · v it is the i-th and (i + 1)-st coordinates that are

different. Then (i, i + 1)gi · v − gi · v is a non-zero multiple of vi − vi+1. As X is Sn-invariant we

conclude that for each 1 ≤ i < n the vector vi − vi+1 is an element of X. But these vectors form a

basis for W, so X = W, and W is irreducible as claimed.

The permuting coordinates representation of Sn can thus be decomposed V = U ⊕W into the

trivial and reflectional representations, with both of these irreducible.

Example 5 (the partial reflectional representation of In). The In-action (7) is by partial permuta-

tions of coordinates and the image of In in End(V) is a reflection monoid.

Assume that n > 1. The line U spanned by u = v1+ · · ·+ vn is no longer In-invariant: if s ∈ In

is the partial identity with domain {1} then s · u = v1 < U. Similarly W is not In-invariant.

In fact, V itself is irreducible: for suppose U is an In-invariant subspace containing 0 , v ∈ U

with v =
∑

λivi and λ j , 0 for some j. For each 1 ≤ i ≤ n let si ∈ In be the partial permutation

shown in Figure 12. Then si · v = λ jvi, hence vi ∈ U for all i, and so U = V .

1 j n

1 i n

si = [ j, i]

Fig. 12. si ∈ In for 1 ≤ i ≤ n; the notation [ j, i] is explained in the Notes and References section.

Example 6 (the mapping representation of Tn). Again suppose that n > 1. The hyperplane W

goes back to being a subrepresentation of V: if w ∈ W with w =
∑

λivi where
∑

λi = 0, then sw

for s ∈ Tn is shown in Figure 13. In particular the non-zero coordinates of sw are sums of the

coordinates of w, and so still sum to 0: i.e. sw =
∑

µivi where µi =
∑

λi j, the sum over the j in

the fiber of i. As
∑

µi =
∑

λi = 0, we get sw ∈ W.

If S is any monoid, V an S -representation and T a submonoid of S , then it is easy to see

that restricting the S -action to T makes V into a T -representation. This observation gives that
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w = λ1 λ2 λ3 λ4 λ5 λ6 λ7

s · w = λ4 + λ5 0 λ1 + λ2 + λ3 λ6 + λ70

Fig. 13. The hyperplane W is a Tn-subrepresentation.

W is irreducible: if X is a subrepresentation of W then it is an Sn-subrepresentation of the S n-

representation W. The irreducibility of this – when char(k) does not divide n – then gives X = {0}

or W.

Just as for In, the line U spanned by v1+ · · ·+vn is not a subrepresentation: for example when

s is the constant map in Tn that sends all of [n] to 1, then su = nv1 < U.

In fact, when n > 2 we claim that there are no 1-dimensional subrepresentations of the Tn-

mapping representation V . For, suppose that v , 0 so that v =
∑

λivi with λ j , 0 for some j. If

s1, s2 ∈ Tn are given by Figure 14, where everything apart from j is sent to n, with si sending j

to i, then

s1(v) = λ jv1 +

(

∑

i, j

λi

)

vn and s2(v) = λ jv2 +

(

∑

i, j

λi

)

vn.

As these are independent, any non-trivial Tn-invariant subspace must be at least 2-dimensional,

and the claim follows.

1 j n 1 j n

1 n 2 n

s1 s2

Fig. 14. The s1 and s2 in Tn for Example 6.

Semisimplicity. If S is a finite regular monoid and k a field, then the pair (S , k) is semisimple

when every S -representation V over k can be decomposed

V =
⊕

Vi

with the Vi irreducible subrepresentations of V .

Such a decomposition is then unique in the following sense: a morphism q : V → U of

S -representations is a linear map that commutes with the S -actions on V and U, i.e. for all s ∈ S



14 Brent Everitt

the diagram

V
s·(−)

V

q q

U
s·(−)

U

commutes, where the top s · (−) is the S -action on V and the bottom is the S -action on U. Call

q an isomorphism if it is a bijective morphism. Uniqueness then means:

Theorem 1 (Jordan-Hölder). Let V be an S -representation and V =
⊕

Vi with the subrepre-

sentations Vi irreducible. If W is an irreducible subrepresentation of V then W is isomorphic to

one of the Vi.

We saw at the end of Example 4 that the reflectional representation of S n can be so decom-

posed, and indeed:

Theorem 2 (Mashke). If S is a finite group then (S , k) is semisimple if and only if the charac-

teristic char(k) does not divide the order of S .

In particular, (Sn, k) is semisimple exactly when char(k) doesn’t divide n!, so that character-

istic 0 representations can always be decomposed. The situation for inverse monoids is almost

as good:

Theorem 3 (Munn-Oganesyan). If S is a finite inverse monoid then (S , k) is semisimple if and

only if char(k) does not divide the order of any subgroup of S .

As any subgroup of S is in turn a subgroup of a maximal subgroup Ge for some idempotent

e, it suffices that the characteristic does not divide the order of any Ge.

For our model inverse monoid In, we have already seen that the maximal subgroups are

isomorphic to Sm for 1 ≤ m ≤ n. The pair (In, k) is thus semisimple when the characteristic of

k does not divide m! for any m ≤ n, i.e. when it does not divide n! We therefore get the same

condition for the semisimplicity of In and Sn representations.

For Tn things are not so good. If the mapping representation V of Tn is decomposable

V =
⊕

Vi with the Vi irreducible, then by Theorem 1, one of the Vi is isomorphic to the represen-

tation on the hyperplane W with equation x1 + · · · xn = 0 that we saw above. The decomposition

of V must then be V � W ⊕W′ with W′ a 1-dimensional subrepresentation. But we have seen for

n > 2 that there are no 1-dimensional subrepresentations of V , and so no such decomposition of

V can exist when n > 2.

Thus the pair (Tn, k) is not semisimple, when n > 2, for any k whose characteristic does not

divide n. In particular, not even for k of characteristic 0.

Here then is what we have learned from the three examples: in characteristic 0 the partial per-

muting coordinates (or reflectional) representation of In is “atomic”; the permuting coordinates

representation of Sn is not atomic but can be decomposed into pieces that are; the mapping

representation of Tn is not atomic and cannot even be decomposed into atomic pieces.
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λ1

λ2

.

.

.

λp

2 3 12 7 13 15

5 1 10 14

4 9 11 16

6 8

2 7 12 3 13 15

1 10 5 14

16 11 9 4

8 6

Fig. 15. A Young diagram (left), a tableau T (middle) and the resulting tabloid {T } (right) corresponding to a partition

λ = {λ1, . . . , λp} ⊢ n.

Interlude: the symmetric group

The moral of §§3-5 is that the representations of a (finite regular) monoid S are largely driven

by the representations of its maximal subgroups. In every example that we have seen so far these

maximal subgroups have been symmetric groups, or products of symmetric groups. It seems

reasonable then to understand better the representations of the symmetric group, at least when

k = C.

We do this in a completely self-contained-tailored-to-Sn way, without any reference to the

general theory of representations of finite groups. This will make it seem a little like pulling

a rabbit out of a hat; the reader who is interested in the broader context of these facts should

consult the Notes and References at the end.

By Theorem 2, any Sn-representation over C is a direct sum of irreducible representations;

we will thus content ourselves with describing just these. Despite the comments in the previous

paragraph, we allow ourselves one general fact: the irreducible representations over C of a finite

group are in 1-1 correspondence with the conjugacy classes of the group. For Sn, these in turn

are in 1-1 correspondence with the possible cycle structures of permutations of degree n and

these in turn with the partitions of the integer n: the integer sequences λ1 ≥ . . . ≥ λp > 0 with
∑

λi = n. Write λ = {λ1, . . . , λp} ⊢ n.

Fix λ = {λ1, . . . , λp} ⊢ n a partition of n. A Young diagram of shape λ illustrates the structure

of λ, as on the left of Figure 15, and a tableau T is a Young diagram filled with entries from

[n] with no repeats allowed – as in the middle of Figure 15. The tableau is standard, or T is

a standard tableau, when the entries increase along the rows and down the columns. Finally, a

tableau T yields a tabloid {T }, which is just a tableau where we no longer care about the ordering

in the rows – see the right of Figure 15.

The symmetric group Sn acts on the set of tableau of shape λ, via g : T 7→ gT for g ∈ Sn,

where gT is the tableau that has g(i) in the box in which T has i. This action extends to the set

of tabloids of shape λ via g · {T } = {gT }. For a tableau T , the column group cT is defined

cT = {g ∈ Sn : g preserves each column of T } ⊆ Sn

Let Mλ be the C-vector space with basis the tabloids {T } of the fixed shape λ. Via the action

above, Sn acts on Mλ by permuting the basis vectors. For the partition λ = {n − 1, 1} we will see

below that Mλ is the permuting coordinates representation of §2. Now we have other represen-

tations of Sn.

In any case, the Mλ are in general reducible – much like the permuting coordinates represen-

tation – and we will pass to a particular subrepresentation. If T is a tableau then let vT ∈ Mλ be

the vector

vT =
∑

h∈cT

sign(h) h · {T } (8)



16 Brent Everitt

where sign(h) = 1 or −1 depending on whether h is an even or odd permutation. We will see

below that in general the vectors vT , as T ranges over the tableau of shape λ, are not independent.

(The vT for T standard are an independent subset, although we won’t need this fact here.) In any

case, let

S λ := the subspace of Mλ spanned by the vT . (9)

It turns out that S λ is an irreducible subrepresentation of Mλ, and as λ varies over the partitions

of n, the S λ – called Specht representations – give a complete and non-redundant list of the

irreducible Sn-representations over C.

Example 7. If λ = then there is a single tabloid:

T = 1 2 3 n

and the column group cT is trivial. There is thus just one vector vT = {T } in the 1-dimensional

space Mλ, with g · {T } = {T } for all g ∈ Sn, so that Mλ = S λ is the trivial 1-dimensional

representation of Sn.

Example 8. At the other extreme we have:

λ =

For any tableau of this shape the column group cT is the full symmetric group Sn, and upto sign,

there is just one of the vectors

vT =
∑

h∈Sn

sign(h) h · {T } = A − B,

where A is the sum of those terms with h even and B the sum involving those with h odd. An

even permutation g ∈ Sn preserves both summands and an odd one swaps them over, so that

g · vT =

{

A − B = vT , g even,

B − A = −vT , g odd.
= sign(g) · vT

The resulting Specht representation S λ is thus 1-dimensional (hence irreducible) but not the

trivial representation; it is called the sign representation of Sn.

Example 9. If now λ = then Mλ is an n-dimensional space with basis the tabloids:

v1 =
2 3 n

1
· · · vn =

2 3 n − 1

n
, ,
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S

1-dimensional

trivial representation

S
1-dimensional

sign representation

S

2-dimensional

reflectional representation
12

3

v1 − v2

v2 − v3

v1 − v3

Fig. 16. The three irreducible S3 representations over C: the trivial representation, the sign representation and the

reflectional representation. The last corresponds to the symmetries of an equilateral triangle.

and the Sn-action is g · vi = vg·i; it is thus the permuting coordinates representation of Example

3. If

T =
i

j
then vT =

j

i
−

i

j

i.e. vT = vi − v j ∈ Mλ, and the vT , as T ranges over the tableau of shape λ, give the vectors

{vi − v j}1≤i, j≤n, which span the hyperplane in Mλ having equation
∑

xi = 0 (and as promised,

the vT , as T ranges over all tableau, form a dependent set). The restriction of the Sn-action on

Mλ to this hyperplane then gives that S λ the reflectional representation of Example 4.

When n = 3 the possible λ are , and and the S λ are the three examples in Figure

16.

Exercise 2. Show that the exterior power
∧p S � S , where there are n − p boxes in the

first row of the Young diagram of the second Specht representation. (The exterior powers of the

reflectional representation are thus also irreducible).

3. Reduction

This section and the next give two constructions for shuttling back and forth between repre-

sentations of a finite regular monoid S and representations of the maximal subgroups Ge of S .

The first of these – reduction – squashes S -representations down to Ge-representations; the sec-

ond, induction, blows up Ge-representations into S -representations. In Section 5 we will see that

with a little care in the choice of e, these constructions turn out to be inverses of each other.

Throughout, the underlying field k = C.

We start with two examples that illustrate all the key features:

Example 10. Let S = In, the symmetric invere monoid, and let V be the partial reflectional

representation of Example 5; we saw in that example that V is irreducible with basis {v1, . . . , vn}.

Now let e be an idempotent in the J-class Jm in the strategic picture for In of Figure 6. This

idempotent is the identity map idX : X → X on some subset X ⊆ [n] of size m and is the identity

of the maximal subgroup Ge consisting of all bijections X → X, which in turn is a copy of the

symmetric group Sm.
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V = partial reflectional
representation of In

eV = permuting coordinates
representation of Sm

(0 ≤ m ≤ n)
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eV
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eV = 0

W = hyperplane from
Example 6

representation of Tn

eW = reflectional
representation of Sm

(1 ≤ m ≤ n)
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eW irreducible

eW
ir

re
d
u
ci

b
le

JW

eW = 0

Fig. 17. Reducing irreducible representations of In (left) and Tn (right). The apexes JV , in red, are at the bottom of

the red intervals.

To squash V down to a representation of Ge � Sm, we take its image under e: let eV := e ·V =

{ev : v ∈ V}. Then, as e · vi , 0 exactly when i ∈ dom (e) = X, in which case e · vi = vi, the

space eV has basis the vi for i ∈ X. Define an action of Ge on eV by:

g · (ev) = (ge) · v, (g ∈ Ge) (10)

observing, as e is an identity for Ge, that (ge) · v = (eg) · v = e · (gv) ∈ eV . Indeed, eV with this

action is just the permuting coordinates representation of Sm given in Example 4. We saw there

that this representation is reducible when m ≥ 2, irreducible when m = 1, and if e ∈ J0 is the

zero map then eV = 0.

Upto isomorphism of representations, eV doesn’t depend on the choice of the idempotent e in

Jm. For suppose that f = idY : Y → Y is another idempotent in Jm, with Y a subset of size m, and

f the identity of the maximal subgroup G f . We know from Figure 9 that G f � S Y � S X � Ge via

the map h 7→ s∗hs, where s is some bijection X → Y and s∗ is its semigroup inverse. Defining a

G f -action on f V as in (10) gives a representation of G f .

The spaces f V and eV are incidentally isomorphic as they both have dimension m; but the

map f · v 7→ (s∗ f ) · v naturally gives an isomorphism f V → eV that respects the actions of G f

and Ge: firstly s∗ f = es∗, so that (s∗ f ) · v = (es∗) · v = e · (s∗v) ∈ eV . Then

f V
h(−)

f V

� �

eV
s∗hs(−)

eV

commutes, and so the representations f V and eV are indeed isomorphic as claimed. The results

of the example are summarised on the left of Figure 17.

Example 11. The calculations, if not necessarily the results, are similar for the mapping repre-

sentation of Tn from Example 6. Now V is reducible, so we start instead with the hyperplane W

consisting of the w =
∑

λivi with
∑

λi = 0; this is an irreducible representation of Tn.

Let e be the idempotent in Jm (the maps [n] → [n] having image size m) given in Figure

18. Then the maximal subgroup Ge consists of all bijections from the fibres of e to the image of
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1 2 m − 1 n

1 2 m − 1 m n

Fig. 18. e ∈ Jm ⊂ Tn for Example 11.

e – again, isomorphic to the symmetric group Sm. The space eV has basis {v1, . . . , vm} and the

subspace eW is the hyperplane in eV whose coordinates add to 0 with respect to this basis. Via

the action (10) the space eV is again the permuting coordinates representation of Sm and eW is

now the reflectional representation – see Figure 17 (right).

The general picture is as follows: let S be a finite regular monoid and V an irreducible rep-

resentation of S . Choose an idempotent in each J-class of S ; the spaces eV , equipped with the

action (10), are then representations of the maximal subgroups Ge for the various choices of e. It

doesn’t matter, upto isomorphism of the resulting representations, which idempotent in a given

J-class is chosen.

In particular, whether eV = 0, or not, is a property of the J-class containing e. The J-classes

for which eV , 0 form an interval in the poset of J-classes: there is a J-class JV such that

eV , 0 exactly when e ∈ Js with Js ≥ JV .

The J-class JV is called the apex of the representation V , although “trough” would probably be

a better name. Figure 19 shows the idea for the J-class poset of Figure 10 (left and middle) and

generically (right).

In Example 10, the partial reflectional representation has apex the J-class J1 consisting of the

partial bijections on sets of size 1; the interval of J-classes ≥ J1 is marked on the left in Figure

17. For the irreducible representation W of Tn in Example 11, the apex is the J-class J2 of maps

with image size 2 – see the right of Figure 17.

In both examples, starting with an irreducible S -representation V , we get an irreducible Ge-

representation when e is in the apex J-class JV . If f is an idempotent lying in a J-class strictly

greater than JV , then the resulting G f -representation may or may not be irreducible.

Definition. (reduced representations) Let V be an irreducible representation of S with apex

JV and e ∈ JV an idempotent. Then the reduced Ge-representation is given by

V ↓ Ge := eV (11)

together with the Ge-action (10).

Exercise 3. We can verify the general picture for In and then for inverse monoids of the form

S = S(G, L). The reader might want to leave this exercise until after they have read §5.

1. Let S = In and let V be a representation of S . Let I be the set of J-classes Je such that eV , 0.

Show that I , ∅ and if Je ∈ I and Je ≤ J f in the J-class poset, then J f ∈ I. Hence I forms a

(closed) interval in the J-class poset. Denote the minimum element by JV .
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e1

e2

e3

e4

e5

e1V , 0

e2V = 0 e3V , 0

e4V = 0

e5V = 0

J-class poset

JV

apex

eV irreducible
eV = 0

eV , 0

interval
≥ JV

Fig. 19. Schematic of reduction: the example of Figure 10 (left and middle) and the generic set-up (right).

2. Let e be an idempotent in this minimal J-class JV and let T = {si} be a collection of repre-

sentatives for the H-classes in the L-class Le. Suppose that we have 0 , eW , eV with eW

a Ge � Sm-subrepresentation of eV , and consider the subspace

U =
∑

si∈T

sieW (12)

of V . Show that U is an In-subrepresentation of V .

3. If now V is an irreducible In-representation, then use the arguments of §5 (about the compo-

sition Irrm(In) → Irr(Sm) → Irrm(In)) to show that V =
⊕

si∈T
sieV . Deduce that 0 , U , V

for the U of (12) and hence that eV is irreducible as a Sm-representation.

4. Repeat the whole thing for an inverse monoid of the form S = S(G, L).

4. Induction

Induction is the opposite of reduction: it takes as input a representation of a maximal subgroup

and spits out a representation of the whole semigroup.

We start with the general construction when k = C. Let e be an idempotent in the semigroup

S , with Ge the maximal subgroup having identity e, and let V be a representation of the group

Ge.

The induction of V to an S -representation is controlled by the H-classes that are in the

L-class Le containing Ge. Choose a transversal for these H-classes, i.e. a set T = {si} with

exactly one si in each H-class of Le; choose e itself as the representative in the H-class Ge. The

transversal is just scaffolding for the construction – the resulting S -representation is independent

of the choice of T .

For each si ∈ T , let Vi be an isomorphic copy of the space V having the elements

Vi = {si ⊗ v : v ∈ V}

and vector space operations given by λ(si ⊗ v)+ µ(si ⊗ u) = si ⊗ (λv+ µu). The “si ⊗” notation is

just a device to tell us which particular copy of V we are working in; other than that it serves no

purpose and just comes along for the ride in the vector space operation on Vi (although see the

comments in the Note and References section)
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Ge-representation

S -representation

U =
⊕

T
Vi
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g · v

si ⊗ v

s j ⊗ v

si ⊗ g · v

s j ⊗ g · v

g

t

V

Vi

V j

Fig. 20. Schematic of the first step of induction.

Let U be the space

U =
⊕

si∈T

Vi (13)

and define an S -action on U by

t · (si ⊗ v) =

{

s j ⊗ g · v, if tsi ∈ Le, hence tsi = s jg

0, if tsi < Le,
(14)

for t ∈ S . The action of t thus kills the vector si ⊗ v, unless tsi is also in the L-class Le, in which

case by (2) there are unique s j ∈ T and g ∈ Ge with tsi = s jg. The vector v is then moved in V

by the action of g, with the resulting image transferred to the corresponding element of V j – see

Figure 20.

Example 12 (trivial S1 to trivial In). Let S = In and e be the zero map 0 : ∅→ ∅. The subgroup

Ge is the trivial group (or S1!) with the single element 0. If V is the trivial representation of S1

then (slightly confusingly) 0·v = v for all v ∈ V , and the transversal T consists of the one element

{0}, so U = V0 is a single copy of V . Finally, for any t ∈ In we have t · (0 ⊗ v) = 0 ⊗ 0 · v = 0 ⊗ v,

and so U is the trivial 1-dimensional representation of In.

Example 13. At the opposite end of the strategic picture for In we have the idempotent e = id :

[n] → [n], the identity of the group of units Sn. If V is any representation of S n, then again we

have a transversal T containing the single element {e} and so U = Ve. Moreover t ·U = 0 unless

t ∈ Sn is also a unit, in which case it has effect that of the representation V .

Every Sn-representation is thus also an In-representation, just by making that part of In not in

Sn (i.e. the stacked J-classes 0, J1, . . . , Jn−1 in the middle of Figure 6) act as the zero map. It is

easy to check that in general any G-representation is also an S -representation in this way, when

G is the group of units of S .
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0

1

n − 1

n
1

i

1

j

1
e
→1

j→i

1
e
→1

1
si
→i

1

i

1 Ge = {e}

V 1-dimensional
basis v

e · v = v

Fig. 21. The trivial representation of the subgroup Ge, where e : 1 7→ 1, induces up to the partial reflectional

representation of In.

Example 14 (trivial S1 to partial reflectional In). Moving up one rung from the bottom in the

strategic picture for In in Figure 6, let e be the partial identity 1 7→ 1 with domain and im-

age {1}, so that Ge is again the trivial group {e}. Also again, let V be the trivial 1-dimensional

representation of Ge, with basis vector v, and action e · v = v.

The J-class containing the subgroup Ge consists of all the bijections with domain and image

of size 1 (Figure 21) and Le is the column of all the maps with domain 1. There is no choice for

the representatives T : they are the partial bijections si : 1 7→ i. The copy Vi of V has basis the

vector si ⊗ v, and so the space U of (13) is n-dimensional with basis {si ⊗ v}1≤i≤n.

For the In-action, we have tsi ∈ Le when it has domain 1, and this is exactly when i lies in

the domain of t, in which case tsi = st(i) = st(i)e. Thus

t · (si ⊗ v) =

{

st(i) ⊗ v, if i ∈ dom (t),

0, else.

Replacing si ⊗ v by vi we get the formula (7), and so U is the partial reflectional representation

of In.

In Examples 12-14 an irreducible Ge-representation V becomes an irreducible S -representation

U. We are not always so lucky:

Example 15 (trivial S1 to mapping Tn). This is very similar to Example 14. Let S be the full

transformation monoid Tn, with strategic picture on the left of Figure 22.

The J-class at the bottom consists of the maps with image size 1 – the constant maps. There

is a single L-class and n R-classes, each containing the single constant map ei : [n] 7→ i for

1 ≤ i ≤ n. These are all idempotents, so that every H-class in this J-class is a maximal subgroup.

(You can see this in Figure 4, where every box of J1 is a maximal subgroup). In anycase, there

is no choice once again for T , which must be the {ei}1≤i≤n.

Let e1 be the constant map e : [n] 7→ 1 and V be the trivial Ge1
-representation with basis the

vector v. For each i, the space Vi has basis the vector ei ⊗ v and the U of (13) is n-dimensional

with basis {ei ⊗ v}1≤i≤n.

For any t ∈ Tn we have t · ei = et(i) = et(i)e1, so that (14) becomes t · (ei ⊗ v) = et(i) ⊗ v, and

once again we have the formula (7), after replacing ei ⊗ v with vi. The space U thus carries the
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1 n
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1 i n

e1

ei

Ge1
= {e1}

V 1-dimensional
basis v

e1 · v = v

Fig. 22. An irreducible V doesn’t necessarily give an irreducible U: the trivial representation of the subgroup Ge1
,

where e1 is the constant map [n] 7→ 1, induces up to the mapping representation of Tn.

mapping representation of Tn, which is reducible, even though the seeding representation V of

the subgroup Ge1
� S1 is irreducible.

Before leaving the example we observe something for later on: the R-class Re contains just

the single element {e1} with e1 · (ei ⊗ v) = e1 ⊗ v for all i. Suppose that u ∈ U is a vector that is

annihilated by e1, i.e.

u =
∑

λi(ei ⊗ v) with e1 · u = 0.

Then

e1 · u = 0⇔

(

∑

λi

)

(e1 ⊗ v) = 0⇔
∑

λi = 0,

so that, after replacing ei ⊗ v with vi, the set of such annihilated vectors is the hyperplane W

consisting of the w =
∑

λivi where
∑

λi = 0.

These annihilated vectors thus form a subrepresentation of U. Even more is true: U is the n-

dimensional mapping representation and W ⊂ U is (n−1)-dimensional, so the quotient represen-

tation U/W is 1-dimensional, hence irreducible. In particular, W is a maximal subrepresentation

of U.

Returning to generalities, let V be a representation of the maximal subgroup Ge and U the

space given in (13). As in the example just done, consider the vectors in U that are annihilated

by the elements of the R-class Re:

Anne(U) := {u ∈ U : s · u = 0 for all s ∈ Re}. (15)

Definition. (induced representations) Let V be a representation of the maximal subgroup Ge

of S and U be the S -representation given by (13) and (14). Then the S -representation induced

by V is the quotient

V ↑ S := U/Anne(U) (16)

As in Example 15, if V is irreducible, then Anne(U) is a maximal subrepresentation of U,

and V ↑ S is irreducible. The construction depends only on the J-class of e: if e and f lie in the

same J-class then the resulting induced representations are isomorphic.



24 Brent Everitt

X
e
→ X Y

s∗
j

→ X

X
s j

→ Y

im = X

im = Y

dom = X dom = Y

Re

Le

Fig. 23. Anne(U) = 0 in In.

Example 16. We can verify some of these general claims in the setting of In. In the Exercise

following, we do this for an inverse monoid of the form S(G, L).

Suppose that |X| = m and V is a representation of the maximal subgroup Ge � Sm, with e the

partial identity X → X, and let U be the In-representation described in (13)-(14). We show first

that the annihilator Anne(U) is trivial.

To see this, let T = {si} be the transversal used for the induction and u =
∑

i si⊗vi ∈ Anne(U).

Fix an s j : X → Y ∈ T with s∗
j

: Y → X the semigroup inverse of s j – see Figure 23. Then for

any i we have:

s∗j si ∈ Le ⇔ dom (s∗j si) = X ⇔ im(si) = dom (s∗j)⇔ im(si) = Y ⇔ si = s j.

Thus, on the one hand, by (14):

s∗j · u = s∗j · (s j ⊗ v j) = e ⊗ v j,

while on the other, s∗
j
∈ Re and u ∈ Anne(U) gives s∗

j
· u = 0. The conclusion is that v j = 0 and

hence s j ⊗ v j = 0. Letting j vary we see that u = 0 and hence Anne(U) = 0 as claimed.

The annihilator is then certainly an In-subrepresentation of U, albeit for trivial reasons! Sup-

pose now that V is an irreducible Sm-representation. We claim that the annihilator is a maximal

subrepresentation, or equivalently, that U is an irreducible In-representation. Let u be a non-zero

vector in U =
⊕

T
si ⊗ V with u =

∑

i si ⊗ vi and s j ⊗ v j , 0 for some j (so that in particular,

v j , 0). Let W = In · u ⊂ U be the set (hence subspace – Exercise) of all images of u under the

elements of In.

We claim that W = U. We have s∗
j
· u ∈ W, where as above

s∗j · u = e ⊗ v j

with 0 , e ⊗ v j ∈ V . On the one hand, we have Sm · (e ⊗ v j) ⊆ W (as Sm ⊂ In), while on the

other Sm · (e⊗v j) is a non-zero Sm-subrepresentation of the irreducible Sm-representation V . The

conclusion is that Sm · (e ⊗ v j) = V , and hence V ⊆ W. For any si ∈ T we have by the definition

of the action in (14) that

si · (e ⊗ v) = si ⊗ v

and so si · V = si ⊗ V . Thus, as soon as we have V ⊆ W then we have si ⊗ V ⊆ W for each si,

and thus U ⊆ W. This proves the claim, and so the In-representation U is irreducible.
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To summarise: if V is an irreducible Sm-representation then the induced representation V ↑ In

is the space U, and this in turn is an irreducible In-representation.

Exercise 4. Let S be an inverse monoid of the form S = S(G, L) and V an irreducible represen-

tation of the maximal subgroup Ge. Let U be the S -representation given by (13)-(14).

1. Show that Anne(U) = 0 (hint : prove the following fact first: if the finite group G acts on the

lattice L, and if a, b lie in the same G-orbit with a ≤ b, then a = b; in other words, distinct

elements of L in the same G-orbit are not comparable.)

2. Mimic the argument above for In to show that U is irreducible.

Here is how induction works for an inverse monoid of the form S = S(G, L). Let e = ida be an

idempotent and V a representation of the maximal subgroup Ga given in (5).

The H-classes in Le are parametrised by the G-orbit of a, say G · a = {a, b, . . .}; let α =

id, β, . . . be elements of G such that

α : a 7→ a, β : a 7→ b, . . .

We then take our transversal T to be αa, βa, . . . In light of Exercise 4, the induced representation

is carried by the space

V ↑ S =
⊕

βa∈T

b ⊗ V

where (after simplifying notation a little) b ⊗ V = {b ⊗ v : v ∈ V} and, as usual, the vector space

operations happen in the “v” coordinate, with the “b⊗” just a label for the copy of V .

Suppose that s = gc is some element of S . To understand the action in (14) we need to

compute products like s βa: as s βa = gcβa = (gβ)β−1·c∧a, we have that s βa lies in Le exactly

when

β−1 · c ∧ a = a⇔ a ≤ β−1 · c⇔ b ≤ c

(recall that β ∈ G sends a to b). Moreover, if b ≤ c, then s βa lies in the H-class Hd, where

d = g · b. The description (6) gives the element δ−1
d

s βa = (δ−1gβ)a of Ga and

s βa = δa · (δ
−1gβ)a

Thus, for b ⊗ v an element of V ↑ S and for gc an element of S = S(G, L) we have the action:

gc · (b ⊗ v) =

{

d ⊗ h · v, if b ≤ c

0, if b � c,
(17)

where d = g · b and h = (δ−1gβ)a with δ : a 7→ d one of the elements of G chosen above.

We can say more. If s lies in the J-class Jc with Ja � Jc, then for any b in the G-orbit of a

we have b � c in L, hence s · (b ⊗ v) = 0, and so s · V ↑ S = 0. On the other hand, if s = idc ∈ Jc

with a ≤ c and if a⊗ v , 0 in V ↑ S , then s · (a⊗ v) = a⊗ v, and so s ·V ↑ S , 0. The conclusion

is that s · V ↑ S , 0 precisely for those s lying in the J-classes that are ≥ Ja in the J-class poset.

In particular, the apex of V ↑ S , for V a representation of Ga, is Ja.

Example 17. We return to Tn and Example 15 where e1 : [n] 7→ 1 is our idempotent, V is the

trivial representation of Ge1
� S1 and U the mapping representation of Tn. We saw at the end of

Example 15 that Anne(U) is the hyperplane W in U consisting of the w =
∑

λivi with
∑

λi = 0.

The induced representation V ↑ Tn = U/W is thus 1-dimensional, and as vi − v j ∈ W we have

vi +W = v j +W for all i and j. Taking v1 +W to be the basis vector for V ↑ Tn, we have for any

t ∈ Tn that:

t · (v1 +W) = t(v1) +W = vt(1) +W = v1 +W,

so that V ↑ Tn is the trivial representation.
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Fig. 24. Schematic of the Clifford-Munn correspondence: the irreducibles of S (left) partitioned into their various

apexes (middle) which in turn are in 1-1 correspondence with the irreducibles of the corresponding maximal sub-

groups (right).

5. The Clifford-Munn correspondence

Induction creates irreducible representations of a (finite regular) monoid out of irreducible rep-

resentations of its maximal subgroups. With a little care in the accounting, this process gives a

1-1 correspondence between the irreducible S -representations and the irreducibles of a certain

collection of maximal subgroups. This bijection is called the Clifford-Munn correspondence.

The bijection comes about by showing that reduction is the inverse of induction; for us, this

is the principal purpose of reduction. The apex of an S -representation V tells us the “right”

maximal subgroup to reduce to.

Figure 24 illustrates the correspondence, where as usual, the strategic picture of S drives the

whole process. Let Irr(S ) be the set of isomorphism classes of irreducible S -representations and

E = {ei} be a set of idempotents in 1-1 correspondence with the J-classes of S . For e ∈ E let

Irre(S ) = {V ∈ Irr(S ) : JV = Je},

be the irreducible S -representations V whose apex JV is the J-class Je containing e. Every irre-

ducible V has a uniquely determined apex – the set of S -irreducibles Irr(S ) is thus partitioned

into the Irre(S ) as e ranges over E. Finally, let Irr(Ge) be the irreducible representations of the

maximal subgroup Ge.

Theorem 4 (Clifford-Munn correspondence). For a fixed e ∈ E, the maps:

Irre(S )
V→V↓Ge

Irr(Ge)
V↑S←V

are mutual inverses, inducing a bijection Irr(S )⇄
⋃

e∈T Irr(Ge).

We will prove the correspondence in the context of the symmetric inverse monoid In when

k = C. Exercise 5 at the end of the section asks for a proof for an inverse monoid of the form

S = S(G, L).

Fix then, in In, the J-class Jm for some 0 ≤ m ≤ n and the idempotent e = id : [m] → [m].

The maximal subgroup Ge is isomorphic to Sm and consists of all partial bijections [m] → [m].

As we have a nice total order on the J-classes, we write Irrm(In) for Irre(In).
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Fig. 25. The sY ∈ Le in a transversal T (left) and f sY (right).

The map Irrm(In)→ Irr(Sm) given by V 7→ V ↓ Sm: as V ∈ Irrm(In), it is irreducible with apex

Jm, and hence V ↓ Sm = eV is an irreducible Sm-representation by §3. Thus V ↓ Sm ∈ Irr(Sm).

The map Irr(Sm)→ Irrm(In) given by V 7→ V ↑ In: first, we show that this is indeed a map. For

V ∈ Irr(Sm), we saw in Example 16 that Anne(U) = 0 where U is the In-representation given in

(13)-(14) and that V ↑ In = U is irreducible. Thus V ↑ In ∈ Irr(In); we need it to be in Irrm(In),

i.e. to have apex the J-class Jm. The following essentially repeats the more general arguments

immediately preceding Example 17, but in a concrete setting.

The L-class Le consists of all the partial bijections with domain [m]. If Y = {i1, . . . , im} is

some subset of size m, then let sY : [m] → Y be the map sY : j 7→ i j given on the left of Figure

25. We take T = {sY } to be the transversal used in the induction process, for Y ranging over all

m-subsets of [n]. Thus

V ↑ In = U =
⊕

sY

VY

where VY is the vector space consisting of the vectors sY ⊗ v for v ∈ V . The In-action on U is

given by (14).

We claim the following: if f is an idempotent, then f (V ↑ In) , 0 exactly when f lies in a

J-class Jℓ with Jm ≤ Jℓ. Moreover, e(V ↑ In) is itself isomorphic, as an Sm-representation, to V .

We choose f conveniently in its J-class Jℓ: f = id : [ℓ]→ [ℓ]. We have Jℓ < Jm exactly when

ℓ < m, in which case the right part of Figure 25 shows that m < dom ( f sY ) for any m-subset Y .

Hence f sY < Le (the partial bijections with domain [m]) for any Y , and so by (14)

f · (sY ⊗ v) = 0

for all Y and all v. Thus f (V ↑ In) = 0 when Jℓ < Jm. If now f = e then we have

esY ∈ Le ⇔ dom (esY ) = [m]⇔ Y = [m]⇔ sY = e

in which case

e · (sY ⊗ v) , 0⇔ sY ⊗ v = e ⊗ v.

The map e ⊗ v 7→ v is then an isomorphism of vector spaces e(V ↑ In)→ V , and for any g ∈ Sm

the diagram

e ⊗ v e ⊗ gv

v gv

g(−)

g(−)
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commutes. Thus, the Sm-representations e(V ↑ In) and V are isomorphic as claimed. Finally,

Exercise 3 part 1 gives that f (V ↑ In) , 0 when Jℓ > Jm. This establishes all our claims.

In particular, Jm is the apex of the In-representation V ↑ In, and so V ↑ In is indeed in Irrm(In).

The composition Irr(Sm) → Irrm(In) → Irr(Sm): We have just seen, for V an irreducible Sm-

representation, that e(V ↑ In) � V . Thus (V ↑ In) ↓ Sm � V , and the composition is the identity.

The composition Irrm(In) → Irr(Sm) → Irrm(In): we now show that (V ↓ Sm) ↑ In � V

when V is an irreducible In-representation with apex JV = Jm. The strategy is to reconstruct the

representation (V ↓ Sm) ↑ In inside V .

We have already the idempotent e = id : [m] → [m] and the transversal T = {sY } in Figure

25 for the m-sized subsets Y of [n].

Consider now the subspaces (sYe)V of V for the various Y . Then:

– Each vector space (sYe)V is isomorphic to eV: the linear map eV → (sYe)V given by ev 7→

(sYe)v has inverse the map (sYe)v 7→ s∗
Y

(sYe)v = e2v = ev, and so is an isomorphism.

– The sum
∑

Y (sYe)V of these spaces is direct: for which we need to show that for a fixed subset

Y , the intersection

sYeV ∩
∑

Z,Y

sZeV (18)

is the zero space. We have just seen that s∗
Y

gives an isomorphism sYeV → eV , hence maps

the subspace sYeV ∩
∑

Z,Y sZeV of sYeV isomorphically onto its image in eV . But

s∗Y

(

sYeV ∩
∑

Z,Y

sZeV

)

⊆ s∗Y sYeV ∩ s∗Y

(

∑

Z,Y

sZeV

)

= eV ∩
∑

Z,Y

s∗Y sZeV (19)

where Z , Y gives that the domain of s∗
Y

sZe has size strictly less than m, and so s∗
Y

sZe lies

in a J-class lower down the strategic picture than Jm does. As Jm is the apex of V we have

s∗
Y

sZeV = 0 for all Z, so that the right hand side of (19) is 0, and hence (18) is too.

– Restricting the S -action on V to the subspace
⊕

Y
sYeV: if t ∈ In then there are two possibili-

ties for the product tsY . Either:

(i). tsY ∈ Le, in which case by (2), there is a g ∈ Ge and an m-subset Z such that tsY = sZg;

or

(ii). tsY < Le, and since this L-class consists of all partial bijections with domain [m], and

dom (tsY ) ⊆ [m], we have that dom (tsY ) is a proper subset of [m]. In particular tsY lies in

a J-class lower down the strategic picture than Jm.

The S -action on
⊕

Y
sYeV is therefore given by

t · (sYe) · v =

{

(sZe) · (g · v), if tsY ∈ Le, or

0, else.

We conclude, first of all, that the subspace
⊕

Y
sYeV is in fact a subrepresentation of V; more-

over
⊕

Y
sYeV contains, by taking Y = [m], the subspace eV , 0. Thus

⊕

Y
sYeV is a non-zero

subrepresentation of the irreducible representation V , hence

⊕

Y

sYeV = V.
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Finally, if tsY ∈ Le then the diagram

(sYe) · v

sY ⊗ e · v

(sZe) · (g · v)

sZ ⊗ (eg) · v

t(−)

t(−)

commutes (it trivially commutes if tsY < Le). Thus (V ↓ Sm) ↑ In � V as In-representations, and

the composition Irrm(In)→ Irr(Sm)→ Irrm(In) is the identity map.

This completes the proof of the Clifford-Munn correspondence when S = In.

Exercise 5. Mimic the proof above for an inverse monoid S of the form S = S(G, L) (hint: much

of the proof can be found scattered among what we have already said).

Example 18 (The irreducibles of In). We are finally in a position to describe the irreducible rep-

resentations over C of the symmetric inverse monoid In. By Theorem 3, every In-representation

over C is a direct sum of these. As we will be doing things this way in §6 – and this is sort of a

dry run at it – we will use the S(Sn, L) description of In that we saw at the end of §1, where L is

the lattice of subsets of [n]. This allows us to follow the recipe for induction given at the end of

§4.

Fix an m in the range 0 ≤ m ≤ n, hence a J-class corresponding to the Sn-orbit on L consisting

of the subsets of [n] having size m. Let a = {1, 2, . . . ,m} and Ga the maximal subgroup containing

the idempotent ida. The elements of Ga are the ga where g ∈ Sn is such that g · a = a (rather than

being the bijections a → a as they would be in the “usual” way of describing In). Finally, let λ

be a partition of m and S λ be the Specht representation spanned by the vT in (8) as T ranges over

the tableau of shape λ.

We will describe the representation S λ ↑ In. The Clifford-Munn correspondence tells us that

the S λ ↑ In, as both λ and m vary in λ ⊢ m, form a complete and non-redundant list of the

In-irreducibles over C.

If b = {i1, . . . , im} is a subset of [n] of size m, then let β be an element of Sn that sends j ∈ a

to i j ∈ b. We then take the transversal T needed for induction to be the resulting βa as b ranges

over the subsets of size m.

If T is a tableau of shape λ filled with entries from a, then β · T is a tableau of shape λ filled

with entries from b. Let S λ,b be a copy of S λ, spanned by the

b ⊗ vT =
∑

h∈cβ·T

sign(h) h · {β · T },

as T varies over the tableau (on a), and where cβ·T are those elements of the symmetric group

on the set b preserving the columns of T . The vector b ⊗ vT is just the vector vT , but with every

occurence of j ∈ a in a tabloid replaced by i j ∈ b, and S λ,b is the space spanned by the b ⊗ vT .

The representation S λ ↑ In acts on the space

S λ ↑ In =
⊕

|b|=m

S λ,b

To see how, fix an s = gc ∈ In. We saw at the end of §4 that the apex of S λ ↑ In is the J-class

containing the maximal subgroup Ga that we started with, so if |c| < m we get s · S λ ↑ In = 0.
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On the other hand, by (17), if c has size at least m, then it will not kill those summands S λ,b

for which b ⊆ c. In this case s βa lies in the H-class labelled by the subset d = g · b, so that for

b ⊗ vT spanning S λ,b we get

s · (b ⊗ vT ) = d ⊗ h · vT

where h = (δ−1g β)a ∈ Ga.

6. A sexy example

For the purposes of these notes, “sexy” will mean a certain family of Renner monoids. These

encode much of the structure of algebraic monoids, and are ubiquitous in nature.

We first set the examples up in the form S(G, L) from Section 1. As usual G is the symmetric

group Sn, but the lattice is one we haven’t seen before. Let L0 consist of the ordered partitions

of [n], i.e. the tuples Λ = (Λ1, . . . , Λp) with {Λ1, . . . , Λp} a partition of [n]. Partially order the

ordered partitions via (Λ1, . . . , Λp) ≤ (∆1, . . . , ∆q) if and only if

– each Λi ⊆ some ∆ j, and

– if Λi ⊆ ∆ j and for i < k we have Λk ⊆ ∆ℓ, then j ≤ ℓ.

L0 then has maximum element the ordered partition ([n]) with a single block and minimal ele-

ments the ordered partitions where every block has size one; these minima are in 1-1 correspon-

dence with the permutations of [n].

Formally adjoin a minimum 0 to L0 to get the lattice L. The Sn-action on L is the usual

g · (Λ1, . . . , Λp) = (g · Λ1, . . . , g · Λp) together with g · 0 = 0.

A short diversion on where the example comes from. A linear algebraic group G, over an

algebraically closed field k, is an affine algebraic variety over k, together with a morphism

ϕ : G × G → G of varieties, such that the product gh := ϕ(g, h) gives G the structure of a

group. Generalising this idea, a linear algebraic monoid M arises when ϕ : M ×M → M gives

M the structure of a monoid.

The canonical examples are G = GLnk, the group of invertible matrices over k, and M =

Mnk, the monoid of all n × n matrices over k (both under multiplication). In fact GLnk is the

group of units of the monoid Mnk, and indeed for sensible M the group of units G is an algebraic

group with Zariski closure G =M.

There is a standard construction of algebraic monoids that starts with a sensible algebraic

group G0 and a sensible representation f : G0 → GL(V). The resulting algebraic monoid is then

M = k× f (G0) ⊂ Mmk with group of units G = k× f (G0). For example, if G0 = SLn,SOn and

Spn and f is the natural representation of G0, then the resulting M are the classical monoids:

the general linear monoids Mn = k×SLn, the orthogonal monoids MSOn = k×SOn and the

symplectic monoids MSpn = k×Spn.

Associated to a (reductive) algebraic group G is a finite group – called the Weyl group –

that encodes much of the structure of G; for a (reductive) algebraic monoid M there is a finite

inverse monoid R – called the Renner monoid – that plays an analogous role. For example, the

Weyl group of GLnk is the symmetric group Sn and the Renner monoid of Mnk is the symmetric

inverse monoid In. In general the group of units of the Renner monoid R of M is the Weyl group

W of the algebraic group of units G of M.
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Fig. 26. The 3-permutohedron, after identifying the hyperplane x1 + x2 + x2 + x4 = 10 ⊂ R
4 with R

3 (left) and part of

the lattice of ordered partitions overlaid on the faces (right), with the blocks of the partitions separated by commas.

If R is the Renner monoid of the algebraic monoid M having group of units the algebraic

group G, then R is an inverse monoid of the form S(W, L): the group W is the Weyl group of G

and the lattice L turns out to be the face lattice of a convex polytope.

To see what this means, a polytope P in R
m is the convex hull of a finite set of points. It

has r-dimensional faces, for −1 ≤ r ≤ m, with the 0-dimensional faces being the vertices, 1-

dimensional faces the edges, and so on, with P itself the unique m-dimensional face; for formal

reasons (mainly so that we get a lattice below) we take the empty set ∅ to be the unique face of

dimension −1. The face lattice of P consists of the faces ordered by inclusion; it is a lattice with

meet σ ∧ τ the intersection and join σ ∨ τ the smallest face containing both σ and τ.

The Renner monoid of Mnk has the form S(W, L) where W is the symmetric group Sn and L is

the face lattice of an (n−1)-dimensional simplex. If [n] = {1, . . . , n} are the labels of the vertices

of the simplex, then L is the lattice of subsets of [n] ordered by inclusion, and the Sn-action on

L is the usual one. This is the description of In we gave at the end of §1.

Now to the example we are interested in: let G0 = SLn and V0 be the natural module for G0.

Let
∧p V0 be the p-th exterior power of V0 and finally

V =

n−1
⊗

p=1

p
∧

V0, with dim V := m =

n−1
∏

p=1

(

n

p

)

.

If f : G0 → GL(V) is the corresponding representation then let M = k× f (G0) and let R be the

Renner monoid of M. Then R � S(W, L) with W the symmetric group Sn and L the face lattice of

the (n−1)-dimensional permutohedron. This is the polytope in R
n obtained by taking the convex

hull of the n! points arising from all permutations of the coordinates of the point (1, 2, . . . , n).

As all these points lie in the hyperplane with equation x1 + x2 + · · · + xn = 1 + 2 + · · · + n, the

polytope is actually (n − 1)-dimensional.

The face lattice of the permutohedron is isomorphic to the lattice L of ordered partitions,

with 0 adjoined, described at the beginning of the section. Figure 26 shows the n = 4 case.
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To describe the irreducible representations over C of our Renner monoid, we use the S(G, L)

description from the beginning of the section, and start by drilling down a little more into the

structure of the monoid, following §1.

First, we have our usual ambiguity with the elements of S(G, L), where ga = hb when a = b

and g−1h · c = c for all c ≤ a. In this case it turns out to disappear. If a is the ordered partition

(Λ1, . . . , Λp) and c is a minimal element , 0 with the property that c ≤ a, then c has the form

c = ({x11, . . . , x1q1
}, . . . , {xp1, . . . , xpqp

})

where Λ1 = {x11, . . . , x1q1
}, . . . , Λp = {xp1, . . . , xpqp

}. If k is an element of Sn with k · c = c then

k = id. Thus ga = hb iff a = b and g = h.

If (Λ1, . . . , Λp) is an ordered partition with λi = |Λi|, then the ordered tuple (λ1, . . . , λp) is

called a composition of n: namely, the λi are totally ordered with
∑

λi = n. Call the compo-

sition the type of the ordered partition. Two ordered partitions are then in the same Sn-orbit

when they have the same type, and the J-class poset has elements the compositions ordered by

(λ1, . . . , λp) ≤ (µ1, . . . , µq) whenever

(λ1, . . . , λp) = (λ11, . . . , λ1m1
, . . . , λp1, . . . , λp,mp

)

with µi = λi1 + . . . + λi,pi
. Figure 27 shows this poset when n = 4.

Fix a composition (λ1, . . . , λp) and consider the J-class of ordered partitions of this type. If

a is one of them, then the maximal subgroup is Ga = {ga : g · a = a}, and this is isomorphic to

the Young subgroup Sλ1
× · · · × Sλp

of Sn. We saw above that our usual ambiguity in expressing

elements vanishes in R; this is why there is no need to form a quotient when describing Ga.

Let a = (Λ1, . . . , Λp) be the ordered partition of type (λ1, . . . , λp) given by:

Λ1 = {1, . . . , λ1}, . . . , Λp = {n − λp + 1, . . . , n}, (20)

We now describe the irreducible representations of R that arise by inducing up those of the

maximal subgroup Ga � Sλ1
× · · ·×Sλp

. Varying the composition produces a complete list of the

irreducibles over C of the Renner monoid R. We borrow one more fact from the representation

theory of finite groups: if {Vi}i∈I and {U j} j∈J are the irreducibles of the groups G and H, then the

{Vi ⊗ U j}I×J are the irreducibles of G × H, with Vi ⊗ U j a (G × H)-representation via the action

(g, h) · v ⊗ u = g · v ⊗ h · u.

Now fix partitions µ1 ⊢ λ1, . . . , µp ⊢ λp and consider the irreducible (Sλ1
× · · · × Sλp

)-

representation

S µ1 ⊗ · · · ⊗ S µp (21)

where S µi is the Specht representation of Sλi
corresponding to the partition µi ⊢ λi. The repre-

sentation (21) is spanned by the vectors

vT1
⊗ · · · ⊗ vTp

defined in (8) and as the Ti range over the tableau of shape µi filled with the numbers Λi in

(20). To describe S µ1 ⊗ · · · ⊗ S µp ↑ R, let b = (∆1, . . . , ∆p) be another ordered partition of type

(λ1, . . . , λp) and let β ∈ Sn be such that β : Λi 7→ ∆i in an order preserving way, i.e. if x < y ∈ Λi

then β(x) < β(y) ∈ ∆i. Let S µ1, β⊗· · ·⊗S µp, β be a copy of (21) with spanning vectors of the form:

β ⊗ vT1
⊗ · · · ⊗ vTp

,
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Fig. 27. The J-class poset of our Renner monoid R when n = 4, corresponding to the poset of compositions of 4.

defined to be vT1
⊗· · ·⊗vTp

, but with every occurence of j in a tabloid replaced by β( j). (Warning:

this vector is linear in the vTi
coordinates only; the “β⊗”, as usual, is just notation that comes

along for the ride).

The representation S µ1 ⊗ · · · ⊗ S µp ↑ R is carried by the space

S µ1 ⊗ · · · ⊗ S µp ↑ R =
⊕

b

S µ1, β ⊗ · · · ⊗ S µp, β

with the direct sum over the ordered partitions of type (λ1, . . . , λp). Let s = gc ∈ R with g ∈ Sn

and c the ordered partition (Ω1, . . . , Ωq) of type (ω1, . . . , ωq). If (λ1, . . . , λp) � (ω1, . . . , ωq) then

s · (S µ1 ⊗ · · · ⊗ S µp ↑ R) = 0.

Otherwise, when (λ1, . . . , λp) ≤ (ω1, . . . , ωq) we have s · (S µ1, β ⊗ · · · ⊗ S µp, β) , 0 when b =

(∆1, . . . , ∆p) ≤ (Ω1, . . . , Ωq) and in this case

s · (β ⊗ vT1
⊗ · · · ⊗ vTp

) = δ ⊗ h · (vT1
⊗ · · · ⊗ vTp

)

where d = g · b and h = (δ−1g β)a ∈ Ga � Sλ1
× · · · × Sλp

.

Notes and References

There are numerous books that deal with semigroup representations, starting with the classic

[CP61, Chapter 5]; more modern sources are [GM09, Ste16]. The reader who has got this far

will see large overlap with [GM09], making [Ste16] a good next step. The original papers of

Clifford [Cli42] and Munn [Mun55]-[Mun64] are still very readable, as is the later reworking by

Rhodes [RZ91].

Semigroups. The standard reference on semigroups is [How95], where we have followed Chap-

ters 1, 2 and 5; see also [CP61,Law98,GM09]. The three running examples are very much in the

style of [GM09]. For the reader who is wondering about the “full” transformation semigroup,

there is a partial version PTn, which is a sort-of-amalgam of In and Tn; see [GM09, Chapter 2].
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The restriction to finite regular monoids is purely to make things cleaner. An expert (who

shouldn’t be reading this anyway) can make the appropriate adjustments, especially in Section 5.

One convenience that results is that the relation 〈L,R〉, usually called D by semigroup theorists,

coincides with J. So all mention of D (which gives the eggbox pictures) has been merged with

J (which gives the partial order on the eggboxes). Figure 4 is adapted from a picture by James

East.

The inverse monoids S(G, L) appear in [EF10, Section 9.2] as monoids of partial permuta-

tions, although they are implicit in the literature. Their purpose in [EF10] is to shed light on

the factorisable inverse monoids: these are monoids S with the property that S = EG = GE,

where G is the group of units of S and E the idempotents – see [CH74,Fit10]. Exercise 1 can be

done by counting the ga, but bearing in mind the ambiguity; another way, more natural in this

context, is to count up the entries in the boxes in the strategic picture. The monoid of uniform

block permutations of Example 2 first appears in [Fit03]. The picture of the Hasse diagram for

the partition lattice Π(4) in Figure 10 is based on one by Tilman Piesk [JB].

Representations. There are many books on group representation theory; we have followed the

notation and style of [FH91, Part I]. In particular the approach is elementary, aka “module-free”.

In this section the representations are over an arbitrary field k; one moral to be extracted at the

end is that in dealing with semigroup representations in characteristic p > 0, one needs to be

just as careful, if not more careful, than one does in group representation theory. The emphasis

thus moves to k = C in later sections. Another omission is the theory of semigroup characters,

which is well developed for the running examples.

The restriction to monoids (rather than semigroups) and monoid homomorphisms removes

null representations from consideration – this makes a number of statements less cluttered.

The standard reference on reflection groups is [Hum90]. A finite reflection group (acting on

a real vector space) can be boiled down to a very concise piece of combinatorial data called

a Coxeter symbol. Starting from a Coxeter symbol one can construct a representation of the

reflection group, called the reflectional representation; a fundamental result in the theory of

reflection groups is that the reflectional representation is irreducible. Starting from the type A

Coxeter symbol:

s1 s2 sn−2 sn−1

this process gives the reflectional representation of Example 4. The elementary argument show-

ing that this is irreducible was supplied by Michael Bate.

Munn [Mun57b] extends the cycle notation for permutations in Sn to elements s ∈ In

in the following neat way: for x ∈ [n], repeated application of s either results in a cycle:

x, s(x), s2(x), . . . , sk+1(x) = x, in which case we write (x, s(x), . . . , sk(x)) as usual; or, sk(x) is

the first iteration of S that does not lie in the domain of s, so that no more applications of s can

be made. In this case we have a link [x, s(x), . . . , sk(x)]. Any s ∈ In can then be written uniquely

as a juxtaposition of disjoint cycles and links; the element [1, 2, 3] ∈ I3 on the right of Figure 11

is an example. Reflection monoids appear in [EF10], where In is a Boolean monoid of type A.

The formulation of semisimplicity suffers a little from the module-free approach, where it is

cleaner to talk in terms of the semisimplicity of the semigroup algebra kS . We have also avoided

the notion of decomposability: the mapping representation of Tn is thus indecomposable but

not irreducible, even in characteristic 0. One imagines that this is the aspect of the whole thing

that group theorists find most distressing. Theorem 1 is standard – we have followed [Wei03,
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Theorem 6.1.15]; Theorem 2 similarly (see e.g. [Wei03, Theorem 3.1.14]); Theorem 3 is less

well known, except to the cognoscenti; see [CP61,Ste16]. For In and Tn see also [GM09, Section

11.5].

Interlude: the symmetric group. A standard introductory text to all aspects of the representa-

tions of Sn is [Sag01]; for the Young tableau of this section we have followed [Ful97, Section

7.2]; see also [FH91, Chapter 4]. The irreducibles of Sn are more commonly called Specht

modules rather than representations; as we are not mentioning modules, we hope the change

of nomenclature is not too discombobulating. The representation S in Figure 16 is S3 as the

symmetries – obtained by permuting its three vertices – of the equilateral triangle. In general

S is the representation of Sn acting as the symmetries of the regular (n − 1)-simplex; it is

another incarnation of the reflectional representation of Sn mentioned in Example 4 and in the

notes to the previous section. The number of irreducible representations of Sn over C is equal to

the number p(n) of partitions λ ⊢ n; there is no known closed formula for p(n), but many weird

and wonderful properties are known. To choose just one, there is the generating function

∞
∑

n=0

p(n)xn =

∞
∏

k=1

(

1

1 − xk

)

Exercise 2 is [FH91, Exercise 4.6].

Reduction. We have generally followed [GMS09]. The philosophy of the Clifford-Munn cor-

respondence described in Section 5 is that knowledge of group representations yields knowledge

of semigroup representations. The passage from groups to semigroups is the induction construc-

tion of Section 4. The current section is thus a little more perfunctory, as reduction – for us –

is merely the inverse construction, its principal purpose being to establish the Clifford-Munn

bijection. The usual terminology is “restriction” in much of the literature, but we have gone for

reduction on two counts: it is first of all a double restriction – in that an action of S on V is being

restricted to both a subgroup of S and a subspace of V – and secondly, reduction seems a more

satisfying counterpoint to induction.

Induction. The section is based on [GM09, Chapter 11]. Like there we adopt an elementary

approach; for example, in module-theoretic terms the representation U is kS ⊗kGe
V; the notation

si⊗v for the elements of the copy Vi of V is a nod to this. That the construction is independent of

the transversal T is [GM09, Theorem 11.3.1(ii)]. The general picture is from [GMS09, Theorem

7]. The justification in Example 16 that U is an irreducible In-representation closely follows

[GM09, Theorem 11.3.1].

The Clifford-Munn correspondence. Again we have followed [GM09, GMS09] for the gen-

eral picture. The irreducibles of the symmetric inverse monoid in Example 18 are a venerable

topic. Munn [Mun57b] took a character-theoretic approach while Grood [Gro02] constructed the

“Specht” representations for In from scratch, and seemingly without reference to the Clifford-

Munn correspondence. Our approach follows [Alb], where this and representations of other

Boolean reflection monoids are described.

A sexy example. For algebraic groups and Weyl groups see [Hum75] and for algebraic monoids

and Renner monoids, the books of Putcha and Renner [Put88, Ren05]. A beautiful expository

article is [Sol95]; the example in this section is taken from [Sol95, Example 5.7].
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The meaning of “sensible”, when talking about algebraic groups and monoids, depends on

the context. If M is irreducible, meaning its underlying variety is irreducible, then the units G are

a connected algebraic group with G =M. If G0 is connected semisimple and the representation

f : G0 → GL(V) is rational with finite kernel, then we have the construction for M = k× f (G0)

described.

The Renner monoid of Mnk is isomorphic to the symmetric inverse monoid; in this incar-

nation, In is called the Rook monoid and consists of the n × n matrices, with 0, 1-entries, such

that each row and column contains at most one 1. The name comes about as the matrices can

be identified with n × n chessboards, with rooks in the positions occupied by 1’s, and with the

property that no two rooks are attacking each other. Warning: the Renner monoid is not in gen-

eral a submonoid of M, much as the Weyl group is not in general a subgroup of G; both GLnk

and Mnk are a little special in this way.

Good references for polytopes are [Grü03, Zie95] where one can also find the combinatorial

description of the face polytope of a permutohedron in terms of ordered partitions.
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