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Abstract: Laser shock peening (LSP) as a surface treatment technique can improve the fatigue

life and corrosion resistance of metallic materials by introducing significant compressive residual

stresses near the surface. However, LSP-induced residual stresses are known to be dependent on a

multitude of factors, such as laser process variables (spot size, pulse width and energy), component

geometry, material properties and the peening sequence. In this study, an intelligent system based on

machine learning was developed that can predict the residual stress distribution induced by LSP. The

system can also be applied to “reverse-optimise” the process parameters. The prediction system was

developed using residual stress data derived from incremental hole drilling. We used artificial neural

networks (ANNs) within a Bayesian framework to develop a robust prediction model validated

using a comprehensive set of case studies. We also studied the relative importance of the LSP process

parameters using Garson’s algorithm and parametric studies to understand the response of the

residual stresses in laser peening systems as a function of different process variables. Furthermore,

this study critically evaluates the developed machine learning models while demonstrating the

potential benefits of implementing an intelligent system in prediction and optimisation strategies of

the laser shock peening process.

Keywords: laser shock peening; modelling; residual stress; Bayesian neural networks; genetic

algorithm; optimisation

1. Introduction

Laser shock peening (LSP) is an advanced surface enhancement technique that has
been used extensively in aerospace industries to improve the fatigue life of metallic al-
loys [1,2]. In LSP, high-power laser pulses interact with the surface of metal parts, resulting
in the generation of a high-temperature plasma. The pressure generated by the expansion
of the plasma generates shock waves that propagate into the material causing plastic defor-
mation, leading to the surface having a compressive residual stress of high magnitude and
depth [3,4]. From a structural integrity standpoint, this can be potentially beneficial as it can
extend the life of engineering components [5,6]. Recent developments of industrial systems
and feasibility studies illustrating the application of LSP in an industrial environment make
it an amenable process for use in the production line [7].

Importantly, the extent of improvement in the fatigue life from the LSP process relies
on the magnitude of the induced residual stresses, hence the choice of peening parameters
is critical. The distribution of the LSP-induced residual stresses can play a significant
role in fatigue crack initiation and propagation. At present, the process parameters for
a new application are often determined using a trial-and-error approach. Hence, there
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are serious gaps in comprehending the evolution of residual stress field resulting from
the plastic deformation and material hardening characteristics. These aspects represent a
major challenge for inclusion of LSP in structural design, as it can be potentially expensive
and time-consuming. Furthermore, the residual stress distribution resulting from LSP
exhibits a complex response to the process parameters, such as the spot diameter, power
density and number of layers [8–10]. However, a clear understanding of the effect of these
individual parameters on the induced residual stress distribution is lacking and can vary
with different laser systems. Considering all these factors, selection of optimal process
parameters depending on the service condition can represent an arduous task in laser
shock peening.

Several analytical models of laser peening based on finite element modelling have
been developed to predict the residual stress distribution and to optimise the process
parameters in a range of materials [11–16]. These models suffer from the drawback of
being inherently complex and highly biased on the assumptions of the analyst and in-
volve excessive computational cost and requirements. Experimental methods based on
diffraction [17] and strain relaxation [18] are used for characterisation of the residual stress
distribution and to validate simulation models. However, the diffraction-based methods
can be expensive and difficult to perform due to logistical challenges and limitations to
acquire beam time at large-scale facilities. On the contrary, methods based on strain relax-
ation can be performed in situ but are at least semi-destructive in nature. It is precisely in
this context that machine learning techniques, namely artificial neural networks (ANNs)
and genetic algorithms (GA), can be used as surrogate models within an integrated system
for prediction and optimisation purposes using experimental data. ANNs are applied suc-
cessfully in a range of applications, including the prediction of welding-induced residual
stresses using data acquired from diverse residual stress measurement techniques [19,20].
In the area of laser peening, the application of ANNs has been demonstrated to model
the response of the laser peening process [21] and to predict the residual stress profile
using finite element data [22]. The Taguchi multi-objective optimisation approach has
been used for parameter design and optimisation of laser peening parameters with limited
success [23,24]. The major drawbacks are that the mathematical formulation of the objective
function is undefined in an industrial setting and there are limitations associated with
solving optimisation problems where process parameters have discretised values. The
combination of Artificial intelligence (AI) techniques has been found to be very useful
for prediction and optimisation problems, for instance, the application of ANNs and GA
within an integrated system is reported in a range of manufacturing processes [25–27].
Sticchi et al. [28] reported a parametric study showing the effect of laser spot size and
coverage on the LSP-induced residual stresses. Such studies can also be undertaken using
ANNs by generating data from artificial single-variable experiments that could provide
valuable insights into understanding the relationships existing in the data.

One criticism with applying ANNs is that they lack objective grounding: A complex
model can fit the training data well but fail to provide acceptable generalised predictions
in the unseen data. MacKay [29,30] introduced the concept of using an ANN within a
Bayesian framework where the scalar hyperparameters of a network are estimated using
the evidence program. The inclusion of a regularization term with the weight matrix in
the error function reduces the possibility of overfitting and enables marginalisation of the
network predictions.

In this study, we present neural network models developed within a Bayesian frame-
work that can reliably predict the residual stress distribution induced by LSP, as well as
GA models that can optimise the laser peening process parameters. This study aims to
develop a data based cost-effective prediction and optimisation methodology without
having to consider the complex physics involved in LSP process. Section 2 presents the LSP
process data used in this work and the collated residual stress measurement data using hole
drilling. Section 3 discusses the Bayesian neural networks and estimation of contribution
of the input variables using Garson’s algorithm [31] that takes into account the weights
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in the different layers of ANN architecture. Section 4 describes the developed GA model
to optimise the process parameters based on the trained neural network. In the results
and discussion (Section 5), we characterise the relative importance of the process variables
and investigate the variation of induced residual stresses as a function of different process
parameters using parametric studies. We critically evaluate the efficacy of the developed
machine learning models using different case studies and recommend strategies for the
implementation of the developed system.

2. Laser Peening Residual Stress Data

A schematic of the LSP process is shown in Figure 1. During the LSP process, the
surface of the target is typically covered with an ablative medium (usually aluminium
or vinyl tape). The laser-generated plasma is confined using a transparent layer (usually
water) on top of the ablative layer to direct the high-pressure shock waves into the target
material. The experimental samples used in this work were manufactured from aluminium
2624-T39 grade alloy, which was subjected to cold working and aging post solution heat
treatment. The material was received as large plates of thickness 25 mm. The mechanical
properties of Al-2624 alloy in the T39 heat treatment condition are given in Table 1.

Figure 1. Schematic of laser peening process on a metal plate operating in a confined mode.

Table 1. Mechanical properties of Al-2624 alloy in the T39 heat treatment condition.

Mechanical
Property

Elastic Modulus
E/GPa

Yield Strength
σy/MPa

E/σy
Ultimate Tensile

Strength/MPa
Elongation to

Failure/%

Al-T39 alloy 70 460 152 550 14

2.1. Experimental Laser Peening Data

2.1.1. Single-Shot Laser Peening (Dataset 1)

In this dataset, peen spots were applied in each location using 100% overlap, that
is, subsequent laser spots were applied directly on top of the preceding spot. The power
density was varied by changing the laser spot size at constant pulse energy and duration:
A larger spot size led to a reduction in the power density and vice versa. However, in
reality, there are fluctuations in the energy and pulse duration. Henceforth, both laser spot
size and power density were treated independently and were considered as input variables
for modelling the resulting residual stress distribution.

Peening was undertaken by Metal Improvement Company at Earby, UK. The peening
parameters for the single-shot configuration are given in Table 2, and more detailed exper-
imental studies have been described by the authors of [8]. Test coupons were machined
from the parent material to a size of 70 × 70 mm2 and thickness of 12.7 mm. A total of
12 specimens were prepared, with each specimen containing 4 single square spots spaced
to enable repeat measurement of residual stress.
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Table 2. Residual stress datasets using the incremental hole drilling method for training and testing

the artificial neural network (ANN). Dataset 1 and 2 represent single-shot laser peening with square

spots and multiple-shot laser peening with circular spots.

Laser Shock Peening Process Parameters

Dataset 1 Spot Size/mm Layers Power Density/GW cm−2

8.5 1 1
8.5 2 1
8.5 4 1
8.5 7 1
5 1 3
5 2 3
5 4 3
5 7 3

3.5 1 6
3.5 2 6
3.5 4 6
3.5 7 6

Dataset 2 Spot Size/mm Layers Offset Distance/mm

1.5 3.6 0.7
1.5 4.9 0.6
1.5 7 0.5
1.5 11 0.4
2.0 6.4 0.7
2.0 8.7 0.6
2.0 12.5 0.5
2.0 19.6 0.4
2.5 10 0.7
2.5 13.6 0.6
2.5 19.6 0.5
2.5 30.7 0.4
3.0 14.4 0.7
3.0 19.6 0.6
3.0 28.3 0.5
3.0 44.2 0.4

2.1.2. Multiple-Shot Laser Peening with Overlap (Dataset 2)

In this dataset, laser spots (circular shape) were offset from and overlapped with
proceeding spots to generate a patch of peened material. The experimental laser peening
facilities available at Universidad Politécnica de Madrid (UPM), Madrid, Spain, were used.
The pulse energy was approximately 2.4 J, with a time duration of about 9.4 ns full width
at half maximum (FWHM). The spatial profile of the final pulse incident on the treated
surface was nearly Gaussian. The samples were a size of 60 mm × 60 mm and thickness of
12 mm. A total of 16 LSP processing parameters covering a range of laser spot diameter
and pulse overlapping distance were used as shown in Table 2. The LSP patch, sized
30 mm × 30 mm, was located centrally on the surface of the samples and the laser tracking
direction was perpendicular to the material rolling direction as shown in Figure 2a.

• Laser offset distance was measured from centre-to-centre of each laser spot. The

number of laser spots per cm2 is a function of offset distance (∆X, ∆Y) along X and Y
directions as shown in Figure 2b. It can be expressed as:

Number o f spots/cm2 =
1

∆X × ∆Y
(1)
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• The effective number of layers can then be calculated as a function of offset distance
and spot diameter (Ø) using:

Number o f layers =
πO2

4(∆X × ∆Y)
(2)

Figure 2. Schematic of the laser scanning strategy of the multiple-shot patch data with overlap showing (a) dimensions of

test coupons and definition of the axis system. Residual stresses denoted as σ1 are parallel to the laser tracking direction

and perpendicular to the rolling direction. (b) Laser offset distance ∆X was measured from centre-to-centre points of each

laser spot.

2.2. Analysis of Residual Stresses Using Incremental Hole Drilling

Incremental hole drilling [32] is commonly used for measuring residual strains on the
surface and near the surface. The measurement procedure is described in the standardised
version of the ASTM Standard Test Method E837 [33]. First, a hole is drilled concentrically
at the location of interest, and then relaxed strains are measured at each increment in three
directions using a strain gauge rosette attached on the surface of the component around
the hole. The magnitude and directions of the in-plane stresses are calculated from these
strains as a function of drilled depth. However, the hole-drilling method is limited by
the measurement depth and is affected by plasticity when the magnitude of the residual
stresses is close to the yield strength of the material. Laser peening typically introduces a
compressive residual stress field with a relatively steep stress gradient. Therefore, holes
were drilled in small increments in order to obtain a depth profile. Hole drilling mea-
surement was undertaken using a setup developed by Stresscraft, UK. For reliable and
accurate measurement, the UK NPL Good Practice Guide No. 53 and standard ASTM 837
were followed [32,33]. Hole-drilling rosettes contain three radial strain gages to identify
the in-plane stress components σx, σy and τxy. The strain gages are arranged as shown
in Figure 3. A 2 mm-diameter hole was drilled in an orbital motion in a series of small
increments. We drilled 4 increments each of 32 µm and 64 µm, followed by 8 increments of
128 µm, totalling 16 increments up to a depth of 1.4 mm.
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Figure 3. Schematic of the incremental centre hole-drilling technique (ICHD).

2.3. Prediction Using Artificial Neural Networks

ANNs are abstract computational models connected layer-by-layer to form a network
that replicates the behaviour of biological neurons in the human brain [34]. The multilayer
perceptron (MLP) model [35] is a commonly used architecture consisting of interconnected
neurons between the input, hidden and output layer that can be used to learn complex rela-
tionships existing in the input and output data. Figure 4 shows a schematic representation
of the network architecture showing the input parameters and the output. All input param-
eters were normalised to a value ranging between −1 and +1 using a simple mathematical
transformation. Residual stresses in the longitudinal and transverse directions (output
parameters) were normalised between −1 and +1 by dividing them by the yield strength
of the material. The ANNs work by adapting the network parameters (synaptic weights
and bias) to minimise an error function using the backpropagation (BP) algorithm [36].
The network continues to fit the data to converge at a minimal state of the error function.
The sum of the squares error E(x,w) is defined as the sum of squares of the actual (ak) and
predicted (pk) output vectors:

E(x, w) =
1

2

N

∑
k=1

{ak − pk}

2

(3)

where x is the input matrix, w the weight matrix, and N the total number of measured
residual stress data points at a given depth.

Additionally, different statistical indicators were used to compare the performance of
different models, and optimisation of neurons in the hidden layer were primarily based
on the measure of root-mean-square error (RMSE). Performance indicators such as RMSE,
absolute fraction of variation (R2) and mean absolute percentage error (MAPE), as ex-
pressed in (4)–(6), were used for the evaluation of network performance. The performance
indicators for different numbers of hidden neurons for developing prediction models of
residual stresses using two datasets are summarized in Table 3. The best performance
was achieved with 12 hidden neurons for the first dataset and 13 hidden neurons for the
second dataset.

RMSE =

√

1

N ∑
i

(ai − pi)
2 (4)
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R2 = 1 −







∑
i
(ai − pi)

2

∑
i

ai
2






(5)

MAPE =
1

N ∑
i

∣

∣

∣

∣

(ai − pi)

ai

∣

∣

∣

∣

× 100 (6)

where ai is the actual residual stress, pi the predicted residual stress and N the sample size.

Figure 4. Schematic representation of artificial neural network architecture representing the input parameters and output

used in this study.

Table 3. Network pruning for optimising different number of neurons in the hidden layer of the

ANN model showing the statistical performance indicators. Datasets are single-shot laser peening

(dataset 1) and multiple-shot laser peening with overlap (dataset 2).

Number of Hidden Neurons RMSE R
2 MAPE

Dataset 1

4 0.1022 0.8965 28.9731
5 0.1020 0.9289 28.9711
6 0.1005 0.9461 28.0551
7 0.1049 0.9599 26.9964
8 0.1001 0.9603 25.9371
9 0.0997 0.9671 26.0025

10 0.0992 0.9614 25.5172
11 0.1000 0.9651 25.2216
12 0.0992 0.9719 23.8603
13 0.0994 0.9739 24.2183
14 0.0997 0.9739 25.8913
15 0.1001 0.9740 26.2089

Dataset 2

4 0.1043 0.9727 13.4467
5 0.1017 0.9779 13.4128
6 0.0981 0.9806 13.1154
7 0.0974 0.9830 13.1073
8 0.0975 0.9831 13.0648
9 0.0947 0.9856 13.0278

10 0.0943 0.9866 13.0253
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Table 3. Cont.

Number of Hidden Neurons RMSE R
2 MAPE

Dataset 2

11 0.0939 0.9876 13.0198
12 0.0930 0.9890 12.9909
13 0.0912 0.9894 13.1025
14 0.0929 0.9892 13.1480
15 0.0937 0.9893 13.1983

3. Garson’s Algorithm Theory

ANNs are often criticised as being ‘black box’ models, as the network structure
provides limited insights on the objective function being approximated. Moreover, interpre-
tation of the network parameters consisting of synaptic weights and bias represents a major
challenge. Hence, methods for quantifying the input variable contributions are required
to increase transparency and confidence in the model predictions. The contribution of
each independent variable on the predicted response depends mostly on the magnitude
of the synaptic weights of the neural network. For instance, input variables with large
positive weights represent greater intensities of signal transfer and show excitatory effects
on neurons. Conversely, they also show negative weights signify inhibitory effects. Gar-
son’s algorithm [31] provides a quantitative assessment of statistically significant input
variables by calculating the relative importance of the inputs using the weight matrix. The
application of Garson’s algorithm has been reported to predict ecological phenomena with
reasonable success [37,38]. A schematic representation of Garson’s algorithm showing the
different steps involved in the calculation of the relative importance (RI) of input param-
eters is shown in Figure 5. First, the matrix containing weights of the input and hidden
layer and the hidden and output layer are obtained from the connecting neurons. The
contribution of each input neuron to the output via the hidden neuron is evaluated as the
product of the input-hidden layer (HiddenJI) and hidden-output layer (HiddenKJ) connection
weights. The relative contribution is consequently obtained by normalising the signal of
each hidden neuron by the sum of individual input neuron contributions given by:

Input X =

n

∑
J=1

∣

∣HiddenKJ

∣

∣

4

∑
I=1

∣

∣HiddenJ I

∣

∣

(7)

The RI of each input can then be calculated using the expression:

RI of Input 1 =
Input 1

Input 1 + Input 2 + Input 3 + Input 4
× 100 (8)

Figure 5. Cont.



Appl. Sci. 2021, 11, 2888 9 of 22

Figure 5. Schematic representation of Garson’s algorithm showing the different steps involved in the calculation of the

relative importance (RI) of input parameters used in the ANN model.

Bayesian Neural Networks

One of the major drawbacks in the conventional ANN search algorithm is the tendency
to get entrapped in local and global minima that can adversely affect the generalisation
ability of the network. In a Bayesian framework [29], training the neural network entails
minimizing an error function using hyperparameters in order to regularise the weight
matrix and control the noise parameters. Such network-pruning algorithms can effectively
maximize the likelihood function to obtain the best set of parameters to prevent overfitting.
The principle of Occam’s razor [30] emphasizes the importance of preferring simpler
models to complex ones. This is realised within the Bayesian framework and is especially
useful for weight regularisation and marginalisation of the network output [29,30].

The generalisation ability of the network is determined by the error function E(w)
expressed as:

E(w) = βEs + αER (9)

ES =
1

2

M

∑
i=1

{a − p(x, w)}2 (10)

ER =
1

2

R

∑
i=1

|wi|

2

(11)

where β is the hyperparameter controlling the variance in noise, α is the regularisation coef-
ficient and w the weight vector. ES is same as the term E(x,w) described in Equation (3). The
regularisation term (ER) favours small values of network parameters, thereby eliminating
the possibility of overfitting noise in the training data.
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ANNs can perform poorly when the ‘weights’ are reported to have unrealistically
large values to fit the details in the training data. A suitable prior distribution of weights
P(w) was considered before observing the data instead of a single set of weights. Using
Bayes’ rule, the posteriori probability distribution of the weights can be expressed as
described by the authors of [29], where P(D/w) is a dataset likelihood function and P(D) is
a normalization factor.

P(w/D) =
P(D/w)P(w)

P(D)
(12)

We can express the distribution as an exponential of the form if a Gaussian prior is
assumed using [34]:

P(w) =
1

QR(α)
exp

(

−α

2
|w|2

)

(13)

where QR(α) is a normalisation factor. Hence, when |w|2 is large, ER is large, and P(w) is
small. Thus, the choice of prior distribution suggests that smaller weight values lessen the
chances of overfitting the data. In this study, a prior distribution of weights following a
Gaussian distribution was used with the mean centred around 0 and standard deviation of
0.1. The evidence program [29] that assumes a Gaussian approximation of the Bayesian
neural network was used to develop an iterative algorithm for determining optimal weights
and hyperparameters. The evidence procedure estimates the posterior density of the
hyperparameters as:

P(α, β/D) =
P(D/α, β)P(α, β)

P(D)
(14)

This was undertaken by evaluating hyperparameters that increased the posterior
probability of the weight matrix, and the subsequent calculations were carried out with
hyperparameters set to these values.

In neural network regression problems where the outputs happen to be very close to
the target values, the Hessian matrix (H), defined as the second-order partial derivatives
of the error function (E), can be calculated using the outer-product approximation [35]
given by:

Hessian matrix H =
∂2E

∂wjiwkj
= ∑

n

∂yn

∂wji

∂yn

∂wkj
(15)

where y is the predicted output, and wji and wkj denote the first- and second-layer con-

nection weights. The inverse Hessian (H−1) and Eigen value spectrum (ψi) can be then
calculated to evaluate parameter γ using:

γ =
R

∑
i=1

ψ

ψ + α
(16)

The evidence procedure considers the posterior density of the hyperparameters to be
sharply peaked around αMLP and βMLP, i.e., the most probable values of the hyperparame-
ters. Since the Hessian is evaluated at wMLP, it should satisfy the equations [29]:

2βES = N −
R

∑
i=1

ψ

ψ + α
= N − γ (17)

2αER = R −
R

∑
i=1

ψ

ψ + α
= γ (18)

The new values of α and β can be evaluated using:

αnew =
γ

2ER
(19)
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βnew =
N − γ

2ES
(20)

To improve the model accuracy and reliability, the hyperparameters were indepen-
dently reiterated four times separately for the two datasets (see Table 4). The Bayesian
framework can marginalise the output predictions to coincide with the predictions made by
the most probable weight vector, thereby minimizing overfitting. Subsequently, ensemble
networks consisting of output prediction using six models were used to evaluate the mean
and standard deviation of the predicted residual stress distribution. In principle, multiple
networks can be combined to constitute an ensemble or “committee” that can significantly
improve the generalisation ability [39]. Parametric studies (see Section 5.2) comprising
artificial single-variable illustrations were undertaken to study the effect of LSP process
parameters on the induced residual stresses. Case studies demonstrating the efficacy of the
Bayesian neural network model were undertaken using the ‘leave-one-out’ cross validation
method (discussed in Section 5.3).

Table 4. Optimisation of the hyperparameters α and β using the Bayesian evidence framework. The

hyperparameters α and β control other parameters (weight and biases) of the multilayer perceptron

(MLP) network. The hyperparameters were estimated four times.

Iteration Alpha (α) Beta (β)

Dataset 1
1 0.0021 94.8083
2 0.0022 87.1687
3 0.0024 79.9232
4 0.0019 102.9715

Dataset 2
1 0.0045 100.6955
2 0.0044 100.2085
3 0.0043 99.2576
4 0.0047 102.2559

4. Genetic Algorithm for Optimisation of Process Parameters

Genetic algorithms are evolutionary algorithms inspired from Darwin’s theory of
natural selection. GAs have been effectively used to optimise several industrial processes
in welding [40,41], energy consumption [42] and shop scheduling [43]. Figure 6 shows a
flowchart of the ANN-GA system where the ANN is a forward prediction model used
to determine the residual stress distribution based on the process parameters of laser
peening and the GA is a reverse optimisation model used to determine the optimum
process parameters for the desired residual stress level.

For the use of optimisation algorithms, it is critical that a sufficiently accurate model
be developed that can predict outputs from a set of inputs. The GA uses such prediction
models to reverse the process in order to generate optimised parameters that can be used to
obtain the desired outputs. The algorithm starts with assuming several random solutions
known as chromosomes. Each of these solutions is then used to calculate the outputs using
the developed prediction model to calculate the error between the desired and the obtained
outputs. The chromosomes are accordingly assigned a fitness value and ranked. The fittest
chromosomes are then used to generate a new population of chromosomes through a
series of crossover and mutation operations. Crossover refers to interchanging some of the
values in the chosen chromosomes. This has the potential to lead to fitter sections in the
chosen chromosomes to form the new population. Generating such chromosomes through
multiple crossovers can lead to a solution close to the global minimum of the error function.
Crossover is performed at a predetermined rate obtained through trial-and-error during
the development of algorithm parameters. However, it is possible that through crossover,
the search process is trapped in a local minimum, which has an unacceptably high value of
the error function. In order to introduce randomness in the solutions and for the search
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to avoid getting trapped in a local minimum, mutation is performed at a predetermined
rate. Mutation includes randomly changing the values of some of the chromosomes in the
solutions. In some cases, one copy of the best chromosome (solution) is reserved to pass to
the next generation unaltered. This mechanism is called elitism. Elitism ensures that the
best solution is never lost in the process of crossover and mutation. It is also important
to note here that all the parameters used in the GA are optimised between [−1, 1] to be
consistent with the prediction models.

Figure 6. Flowchart of the ANN-genetic algorithm (GA) system. The ANN model is a forward

prediction model used to determine the residual stress distribution based on the process parameters

of the laser peening, and the GA model is a reverse optimisation model used to determine the

optimum process parameters for the desired residual stress level.

For the implementation of GA in optimising the LSP process, the previously developed
ANN models were used. The GA applied for the optimisation tasks used the underlying
principles of elitism, crossover and mutation. The objective of the GA is to obtain the
desired residual stresses in a sample through various combinations of the input parameters.
For the evaluation of every solution, the error function was calculated using:

Ei =

√

(Td − To)
2 + (Ld − Lo)

2

2
(21)
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where Ei is the error in solution for chromosome i, Td is the desired transverse residual
stress, To is the obtained transverse residual stress, Ld is the desired longitudinal residual
stress and Lo is the obtained longitudinal residual stress.

The pseudo-code for elitism and generation of next population used in the applied
GA is shown below:

1. Start Program
2. Initialise chromosomes (Cs)
3. Loop till termination criteria is met

• Evaluate every Cs for its fitness using the validated ANN
• Rank Cs according to the fitness (f)
• Save solution with best f for next generation
• Use rank-based selection for crossover and mutation
• Generate new population using crossover and mutation rate

4. Take elite chromosome as the solution
5. End Program

The parameters of the GA model used for the optimisation studies of single-shot laser
peening (dataset 1) are given in Table 5. The case studies provided in the next section
demonstrate the application of GA for optimisation of the process parameters to obtain the
desired parameter (residual stress) by fixing one or more input parameters. In these cases,
the assigned values of the GA chromosome were reverted to the desired values before
generating the new population.

Table 5. Parameters of GA model used for optimisation studies.

Parameter Value

Number of chromosomes 10
Crossover rate 0.8
Mutation rate 0.3

Termination error 0.001

5. Results and Discussion

5.1. Generalisation Ability and Relevance of Input Parameters

The ANN model performance was evaluated using scatterplots showing the measured
and predicted data using independent training and test datasets (see Figure 7). The
datapoints displayed as squares and circles signify the residual stress measurements at a
point (network outputs) in multiple samples at different depths in the longitudinal and
transverse directions. The training data (75% of the partitioned experimental data) are
shown on the left-hand plots, and the test data (25%) are shown on the right-hand plots
for dataset 1 (Figure 7a,b) and dataset 2 (Figure 7c,d). It is often appropriate to evaluate
the fitting uncertainty of the predictive model using the training data, whereas test data
scatterplots can provide a reliable estimate of the generalisation ability of the network.
Despite the underlying difference in the peening patterns, the ANN model is able to predict
the residual stresses in both datasets with relatively few outlier points as demonstrated in
the test data results (see Figure 7b,d).

Garson’s algorithm is an effective method to illuminate the ‘black box’ architecture of
the neural network by providing more explanatory insight into the contributions of the
input parameters. In LSP research, there is consensus that the process variables have a
significant influence on the resulting residual stress distribution. However, a quantitative
estimate of the relative contribution of process parameters based on measured residual
stress data has not yet been reported. The results showing the relative importance (RI) of
input variables using Garson’s algorithm are presented in Figure 8. In dataset 1, power
density was the most dominant parameter, with a relative importance close to 40% RI,
followed by spot size (~33%) and number of layers (~28%). However, in dataset 2, the effect
of spot diameter was more predominant, with an RI~38%, followed by number of layers
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(~34%) and offset distance (27%). As envisaged, all the input parameters from both datasets
had a substantial influence on the predicted residual stresses. However, it is considered
beneficial if the relevance of the input parameters can be quantitatively determined, as
the parameters having low relevance can then be eliminated from subsequent prediction
models and design of experiments. Second, the process variables that show higher rele-
vance can be closely monitored to achieve the desired goals during peening, for example,
maximum compressive stresses on the surface.

Figure 7. Comparison of predicted and measured residual stresses in longitudinal (datapoint denoted

as square) and transverse (datapoint denoted as circle) directions with linear fitting for (a) training

data and (b) test data using single-shot laser peening data (dataset 1), as well as (c) training data and

(d) test data using multiple-shot laser peening data with overlap (dataset 2).

Figure 8. Relative importance (RI) of inputs for the predicted residual stresses using the ANN model

using Garson’s algorithm for (a) single-shot laser peening data (dataset 1) and (b) multiple-shot laser

peening data with overlap (dataset 2).
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5.2. Parametric Studies

Parametric studies were undertaken using actual data and by bridging artificial single
variable experiments via predicted data to exemplify the complex relationships existing in
the process variables and residual stresses. Parametric studies were used to elucidate the
data dependencies and to reveal complex mechanisms that can also aid in the mechanistic
understanding of the LSP process. In single-shot laser peening (see Figure 9), the residual
stresses are expressed as a function of number of layers for different spot size and power
density combinations. In Figure 9i, for the spot size and power density combination
(8.5 mm and 1 GW/cm2), maximum compressive residual stresses of −200 MPa were
observed at the surface. Importantly, the variation of the residual stresses along the depth
was not significant for different number of layers (1–7). On the other hand, in Figure 9ii,
relatively higher magnitude of residual stresses and extent of penetration were found both
at the surface and deep into the material for the spot size and power density combination
of 5 mm with 3 GW/cm2. This was possibly due to the generation of stronger shock waves
propagated through the material, resulting in higher plastic deformation. It was also found
that the magnitude of compressive stresses and the extent of penetration were much higher
with increasing number of layers. Further, in Figure 9iii, for the spot size and power density
combination of 3.5 mm with 6 GW/cm2, we see a decline in the magnitude of compressive
stresses close to the surface in both longitudinal and transverse directions. However,
in the transverse direction, there was considerable increase in the compressive residual
stresses through the depth even with fewer number of layers. This was not consistent in
the longitudinal direction, which could be attributed to the reverse plasticity effect as a
result of over-peening and the generation of a large elastic strain field, causing a sharp
decrease in the magnitude of compressive residual stresses near the surface. Furthermore,
this analysis demonstrates the nonlinear nature of the process variables and justifies the
use of data-based modelling approaches to extract non-evident relationships in the input
and output data.

Results from the parametric studies in multiple-shot laser peening with overlap
(dataset 2) are shown in Figure 10. Here, the residual stress distribution as a function
of depth below the peened surface is presented as a function of spot size for different
combinations of offset distance and layers. The offset distance also defines the overlapping
density, i.e., the number of laser spots in a given area. It is important to note that with
low offset distance, the overlapping density increased and vice versa. In Figure 10i,ii
(offset distance = 0.4 mm and 0.5 mm), maximum compressive stresses of magnitude over
−400 MPa were observed at the surface and up to a depth of 200 µm in the longitudinal
direction for spot size range 1.8 mm–2.0 mm. In the transverse direction, maximum
compressive stresses of about −300 MPa were observed up to a depth of 250 µm for spot
size less than 1.8 mm. In Figure 10iii, there was a slight decrease in the compressive
zone of residual stresses along the longitudinal direction and no significant changes in the
transverse direction. However, in Figure 10iv, there was a clear decrease in the magnitude
of compressive stresses both at the surface and into the depth. This pattern was consistently
observed in both the longitudinal and transverse directions. Overall, we see a significant
shift in the compressive residual stresses as a function of distance from the peened surface
when the offset distance was varied from 0.4 mm to 0.7 mm.

In the multiple-shot laser peening data with overlap (dataset 2), there was considerably
less scatter in the training data as opposed to the single-shot laser peening data (dataset 1)
as evident in Figure 7a,c. Therefore, in comparison, we do not see the same extent of
variation in the residual stress distribution from the parametric studies.

These studies help to improve the understanding of the residual stress response for a
material subjected to different laser processing conditions and to enhance transparency
and build confidence in the model predictions.
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Figure 9. Parametric studies showing the variation of residual stresses as a function of input number of layers for different

spot size and power density combinations in single-shot laser peening data (dataset 1).
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Figure 10. Parametric studies showing the variation of residual stresses as a function of spot size

for different offset distance and layer parameters in multiple-shot laser peening data with overlap

(dataset 2).

5.3. Case Studies Using ANN and GA Models

Residual stresses were predicted as a function of the input parameters as a function of
the depth below the peened surface using the Bayesian neural networks and applying a
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“leave-one-out” cross-validation method. Table 6 shows a summary of the input parameters
used for the prediction model. Measured and predicted residual stresses are compared
in Figure 11 for different cases. In Figure 11a,b, residual stresses are simulated for (spot
size = 8.5 mm, layers = 4 and power density = 1 GW/cm2) using dataset 1. The ANN
prediction was found to overestimate the residual stresses by about −80 MPa along both
directions, and the mismatch was observed at a depth range of 100–400 µm. Apart from this
discrepancy, the predicted and measured stresses were in reasonable agreement. In further
examples in Figure 11c,d, the predicted and measured residual stresses were in excellent
agreement throughout the depth for input parameters (spot size = 3.5 mm, layers = 2
and power density = 6 GW/cm2). In dataset 2, very good consensus was observed in
all the predicted cases as shown in Figure 11e–h. The predicted stress profile was seen
to closely follow the trend in the measured residual stress profiles, especially with the
peak compressive stresses and the high stress gradients present near the surface. The
scatter within the predictions was markedly low in dataset 2. Therefore, the error bars
that were subsequently calculated using the standard deviation of predicted data of the
ensemble networks were small in the simulated residual stress distribution. Overall, the
ANN model predictions were consistently in good agreement with the measured residual
stress profiles, with differences of less than 100 MPa between the measured and predicted
data. In contrast, the amount of information required to develop the ANN model is not
tedious, unlike mechanistic models, and does not involve comprehensive testing regimes to
evaluate the material properties. Moreover, the ANN model covers the critical parameters
such as LSP process variables and utilizes the measured residual stress data.

Table 6. Process parameters used for case studies using neural network prediction model using a

‘leave-one-out’ cross validation method.

Laser Peening Conditions for Case Studies

Dataset 1 Spot Size/mm Layers Power Density/GW cm−2

(a) longitudinal 8.5 4 1
(b) transverse 8.5 4 1
(c) longitudinal 3.5 2 6
(d) transverse 3.5 2 6

Dataset 2 Spot Size/mm Layers Offset Distance/mm

(e) longitudinal 2 12.5 0.5
(f) transverse 2 12.5 0.5
(g) longitudinal 2.5 13.6 0.6
(h) transverse 2.5 13.6 0.6

The application of GA was demonstrated using multiple case studies from the single-
shot laser peening data. In the first case study, the algorithm was given the freedom to
optimise all the process parameters, namely spot size, layers and power density. The
GA was used to obtain the values of the longitudinal and transverse residual stress at a
given depth as shown in Table 7. On running the algorithm, the solutions for the input
parameters obtained by the GA are shown in Table 8 alongside the predicted residual
stresses from the ANN model. A mean RMSE of 7.61 was obtained with three degrees of
freedom, suggesting that the GA efficiently optimised the input parameters. For the second
case study (see Table 9), the number of layers was two, three and five for three independent
iterations. The solutions showing the optimised process parameters obtained by applying
the GA with fixed number of layers are shown in Table 10. The RMSE value (14.64) nearly
doubled in the second case study with two degrees of freedom, suggesting that parameter
design problems are challenging due to the nonlinear relationships between the output
and input parameters. However, with the application of GA, any set of parameters can be
efficiently optimised through convergence to a global solution within the corresponding
parameter bounds. This approach is superior to the Taguchi optimisation methods [23,24]
where the mathematical formulation of the objective function is undefined in an industrial
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paradigm. On the contrary, GA optimisation models are much more noise-resistant and
can deal with complex systems, potentially improving the quality of surface treatment
using LSP. However, this is based on the availability of adequate high-quality process and
residual stress data to train the intelligent models.

Figure 11. Case studies showing the predicted residual stresses as a function of depth using the ANN model. Uncertainty

bounds calculated using mean ± standard deviation from the output distribution of six committee networks. Predictive

results using dataset 1 shown in (a–d) and dataset 2 in (e–h), respectively. Acronyms stands for spot size (SS), layers (L),

power density (PD) and offset distance (OD).
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Table 7. Case study–1 using GA: Desired longitudinal and transverse residual stresses at different depths for obtaining

optimised inputs.

No. Relative Depth (x/t) Longitudinal Residual Stress/MPa Transverse Residual Stress/MPa

1 0.6 −35 −35
2 0.9 −80 −110
3 0.3 −280 −280

Table 8. Optimised input parameters using the GA to obtain the desired parameters in Table 7 with three degrees of freedom

(only relative depth fixed as an input parameter).

No.
Power

Density/GW/cm2 Layers Spot Size/mm
Longitudinal

Residual Stress (MPa)
Transverse Residual

Stress (MPa)
Mean RMSE

Error

1 1.33 1 8.24 −43.47 −31.84

7.612 1.15 1 7.94 −83.28 −121.49
3 3.26 3 4.28 −289.84 −274.82

Table 9. Case study–2 using GA: Desired longitudinal and transverse residual stresses at different depths for obtaining

optimised inputs with fixed number of layers.

No.
Relative Depth

(x/t)
Longitudinal Residual Stress

(MPa)
Transverse Residual Stress

(MPa)
Fixed Number of Layers

1 0.6 −35 −35 2
2 0.9 −80 −110 3
3 0.3 −280 −280 5

Table 10. Optimised input parameters using the GA to obtain the desired parameters in Table 9 with two degrees of freedom

(relative depth and number of layers fixed as input parameters).

No.
Power

Density/GW/cm2 Layers Spot Size/mm
Longitudinal

Residual Stress (MPa)
Transverse Residual

Stress (MPa)
Mean RMSE

Error

1 1.53 2 8.50 −44.39 −27.28

14.642 1.30 3 8.28 −89.57 −124.38
3 2.38 5 7.93 −270.93 −310.41

6. Conclusions

The main findings in this study can be summarized in the following points:

1. A data-based approach based on artificial neural-network was developed within a
Bayesian framework for analysing residual stress data in laser shock peening. The
ANN prediction model is capable of estimating the residual stress profile as a function
of depth below the peened surface and using different process variables as inputs.

2. The accuracy of the prediction model was evaluated using different performance

indicators, such as root mean square error (RMSE), absolute fraction of variance (R2)
and mean absolute percentage error (MAPE). The ANN model was able to achieve
the respective error values in the test data: Dataset 1—single-shot laser peening
with square spots (RMSE = 0.0992, R2 = 0.9719 and MAPE = 23.8603) and Dataset
2—multiple-shot laser peening with circular spots (RMSE = 0.0912, R2 = 0.9894 and
MAPE = 13.1025).

3. The contributions of different process parameters on the resulting residual stress
distribution were evaluated using Garson’s algorithm and parametric studies.

4. The ANN approach was validated using several case studies employing a ‘leave-
one-out’ cross validation method. Very good agreement was observed between
the predicted and measured results, suggesting that the model was able to iden-
tify the non-evident relationships between the process variables and residual stress
distribution.
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5. The ANN-GA integrated system was used to optimise the process parameters for
different case studies by specifying the desired residual stress magnitude at a given
depth. The GA reported a mean RMSE of 7.61 and 14.64 in case studies with three
and two degrees of freedom, respectively. The application of the ANN-GA system
provides a reliable method for determining the optimal process parameters in laser
shock peening with the caveat that vast amount of data covering a wide range of
process parameters and extensive residual stress data are made available for training
and validation of the machine learning models.
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