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A Weft Knit Data Glove
Emmanuel Ayodele1, Syed Ali Raza Zaidi1, Jane Scott2, Zhiqiang Zhang1, Ali Hayajneh3, Samson Shittu4, Des

McLernon1

Abstract—Rehabilitation of stoke survivors can be expedited
by employing an exoskeleton. The exercises are designed such
that both hands move in synergy. In this regard often motion
capture data from the healthy hand is used to derive control
behaviour for the exoskeleton. Therefore, data gloves can provide
a low-cost solution for the motion capture of the joints in
the hand. However, current data gloves are bulky, inaccurate
or inconsistent. These disadvantages are inherited because the
conventional design of a glove involves an external attachment
that degrades overtime and causes inaccuracies. This paper
presents a weft knit data glove whose sensors and support
structure are manufactured in the same fabrication process thus
removing the need for an external attachment. The glove is made
by knitting multifilament conductive yarn and an elastomeric
yarn using WholeGarment technology. Furthermore, we present
a detailed electromechanical model of the sensors alongside its
experimental validation. Additionally, the reliability of the glove
is verified experimentally. Lastly, machine learning algorithms
are implemented for classifying the posture of hand on the basis
of sensor data histograms.

Index Terms—Weft Knit Sensor, Data glove, Wearable, Elec-
tromechanical modelling, Classification.

I. INTRODUCTION

A. Motivation

S
TROKE is one of the major causes of disabilities in

adults. A major challenge most stroke survivors face is

the loss of their motor skills, especially the individual finger

movements in the hand [1], [2]. Although only 15% fully

recover, a large majority will relearn some of their motor skills

by performing repetitive tasks in therapy [3]. A key factor

in improving rehabilitation is progress measurement. Progress

measurement involves collecting the data on the relearning

rate of the affected joint and the patient’s recovery in general.

Furthermore, 45% of post-stroke patients return home and

still need ongoing therapy to recover their motor skills [4].

Therefore, only patients who can afford private therapists who

visit to take measurements have chances of a full recovery.

Even with a private therapist, there is a chance that their visits

might not coincide with rare occurrences that are important to

the patient’s progress measurement [5].

Therefore, an approach is needed that enables the collection

of data from the the patient’s hand without the need to schedule

a therapist’s appointment. There are two major methods in
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measuring the flexion of finger joints and they are camera-

based and data glove approaches. Camera-based approach

involves the use of a camera and markers in which images

acquired are processed to calculate the flexion at the joints

[6], [7]. Although the accuracy of this approach has been

improved by the use of more novel and complex image

processing techniques, they are not commercially feasible in

remote monitoring due to privacy concerns as these cameras

can be vulnerable to attacks and could be used to record the

private lives of the patients. Furthermore, the use of stationary

cameras deprives the patient of free movement as they have to

be stationary for the camera to accurately capture the fingers

motion. Multiple cameras such as in [8] could alleviate this

problem but this increases cost and may be higher than the

cost of multiple therapist home visits.

In contrast, data gloves provide a cheaper and more efficient

alternative as the patient can wear it while performing their

daily activities. However, the conventional design of data

gloves prevent their large scale adoption in the rehabilitation

industry. Particularly, the conventional design comprises of an

external attachment that adheres the sensors to the support

structure. The support structure is usually a textile glove that

places the sensors at the phalangeal joints. This design causes

the data glove to be bulky and produce inconsistent results

progressively with the degradation of the attachment. Table

I illustrates a summarised review of different data gloves,

highlighting their sensors and the method of attachment. Fabric

padding is the most common method of attachment in data

gloves. It involves placing strain sensors such as fibre-optic

and flex sensors in between multiple layers of fabric in a textile

glove. Popular commercial data gloves such as Cyberglove

and 5DT 5 Ultra have utilised this method [9], [10], [11],

[12]. However, this leads to at least three layers of sensor and

support structure which causes a bulky data glove and might

impede the progress of patients in sensitive applications.

Ink printing is a great lightweight alternative to the fabric

padding method as it involves printing conductive ink on a tex-

tile glove at phalanx joint locations. This ensures that the glove

is not as bulky as the number of layers are limited to one in

most places and two in the phalanx joints [13][24]. However,

conductive inks are vulnerable to environmental degradation

which will lead to inconsistent results when the data gloves

are not used in the optimum environmental conditions. Other

chemical methods of attachment such as silicon rubber curing

and cyanoacrilic glue are also degradable and will eventually

lead to distorted results.

In contrast, weft knit sensors present a unique potential

in the design of wearable devices as the sensors and the

support structure can be created in a single knitting process.

Particularly, knee sleeves and respiration belts have been
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TABLE I
A COMPARISON OF DATA GLOVES.

Type of Sensor Attachment method Reference

Conductive elastomer composites Ink printing [13]
Fibre optical sensors (5DT 5 Ultra) Fabric padding [9], [10], [12]

Hall effect sensors Fabric padding [14]
Piezo-resistive sensors (Cyberglove) Fabric padding [11]

Magnetic sensing coils Electrical wires [15]
Flex sensors Fabric padding [16], [17], [18], [19], [20]

Accelerometers (KHU-1) Hook-and-loop fasteners [21]
Flex sensors Cyanoacrilic glue [22]

Bend sensors and IMUs Fabric padding [23]
Conductive polymer (PEDOT:PSS) ink Ink jet printing [24]

IMUs and force sensors Cable ties [25]
IMUs Hook-and-loop fasteners [26], [27]

Soft sensor Silicon rubber curing [28]
IMUs Textile cables [29]

Metalized fabric conductors Sewing and fabric padding [30]
Bend sensors (Shadow glove) Plastic sheath padding [31]
Semi-Conducting scotch tape Fabric padding [32]

developed using weft knit sensors [33], [34], [35]. However,

there has been no data glove created with weft knit sensors.

Therefore, this paper presents a weft knit smart data glove

capable of measuring the finger flexion at the interphalangeal

joints is proposed. Furthermore, this glove utilises Whole-

Garment technology to fabricate the sensors and the support

structure in a single manufacturing process thus eliminating

the need for an external attachment. This ensures that the

glove is unobtrusive, lightweight and accurate. Additionally,

the glove is commercially feasible because custom-sized data

gloves can be manufactured easily as we depart from a one-

size-fits-all philosophy.

In addition, a novel loop configuration comprising of an

elastomeric yarn and a conductive yarn is knitted in a plain

structure to create the sensor. Moreover, the electromechanical

behaviour of this sensor is modelled using Postle’s geometrical

model [36] and validated experimentally. The advantage of

using Postle’s model is that it enables the modelling of

the length of the loop legs and head based on the loop’s

interlocking and loop angles. Finally, the weft knit data glove

is validated in terms of its consistency and the performance of

some classical machine learning algorithms on the application

of the glove in a classification scenario is evaluated.

B. Related Work

Weft knitting is one of the most popular knitting techniques

and it involves interlocking loops of yarn in a horizontal

direction such that the feet of the loop legs lock with the

head of the previous knitting cycle’s loops [37]. Therefore,

when conductive yarn is weft knitted, contact resistances occur

because of the interlocking of conductive loops. The contact

resistance is dependent on the contact pressure between the

interlocked loops which varies based on the load applied on

the sensor [38], [39], [40].

Consequently, the weft knit sensor is classified as a piezore-

sistive sensor due to the changes in the resistance of the sensor

caused by the applied load. The conductive yarn could be

a yarn coated with conductive ink or a multifilament yarn

comprising of stainless steel fibres. Multifilament conductive

yarns are preferable to silver-coated yarns in the creation of

wearable sensors because they are more environmentally stable

[41]. Furthermore, the behaviour of the sensor is dependent on

the sensor’s knit structure and its knitting parameters.

The strain sensing properties of weft knit fabric knitted

with conductive yarn was investigated in [42]. The sensor was

knitted in a plain knit structure with a stainless steel multifila-

ment conductive yarn and tested experimentally to observe the

sensor’s piezo-resistivity. It was observed that the resistance of

the sensor reduced exponentially as the load applied increased.

This occurred because the contact resistance formed by the

contact between the interlocked loops of conductive yarns

varied due to the change in contact pressure caused by the

load applied.

Furthermore, the effect of mechanical preconditioning was

investigated in [43]. Different sensors were knitted in a plain

knit structure but with different loop configurations and were

experimentally tested. Subsequently, it was observed that me-

chanical preconditioning caused the resistance of the sensors

to reduce till it reached a stabilised value.

In addition, Atalay et al. [44], [45] investigated the effect of

the conductive yarn’s input tension and linear density on the

sensor’s piezo-resistivity. In contrast, the sensor was knitted

in an interlock structure. It was observed that the electrical

resistance of the sensor increased when the input tension or the

linear density was decreased. This effect materialised because

the input tension and the linear density affected the contact

pressure between the intermeshed loops.

Despite the breakthroughs in these investigations, there have

been few studies illustrating the application of weft knit sen-

sors in motion capture. Particularly, a respiration monitoring

belt was developed using an interlock knit strain sensor [35].

The belt measured the respiration rate from the expansion

and contraction of the abdominal area. Moreover, the sensor’s

electromechanical model was derived from the Peirce’s [46]

geometrical model. This model derived the lengths of the loop

head and legs from the diameter of the yarn used. Additionally,

the sensor was knitted with conductive yarn made by coating

non-conductive yarn with silver.

Conventionally, the creation of knitted garments followed

the design methodology of current data gloves. It involved
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knitting the different parts of the garment separately and

then attaching them by sewing. However, the introduction of

WholeGarment technology has facilitated the fabrication of

entire knitted garments in a single process. This is relevant in

the creation of textile sensors because it enables the creation

of both the sensors and the non-conductive support structure

in the same fabrication process. Additionally, in applications

which might require a complex design of the sensor such as

for progress measurement in the knee or ankle, it enables the

creation of the sensor in a single process. This is advantageous

because sewing different parts of the sensor together will

impact the extensibility and the piezoresistive behaviour of

the sensor.

C. Contributions

The main contributions of this paper are as follows:

1) We propose a novel electromechanical model of a weft

knit sensor based on the loop and interlocking angles

in the conductive loops. In addition, we devise an

algorithm that simplifies the computation of the contact

resistance between each intermesh of conductive loops

from the equivalent resistance of the sensor. Moreover,

we validate the accuracy of the model experimentally in

a tensile test.

2) We design a novel textile data glove comprising of weft

knit sensors with no external attachment between the

sensors and the support structure. The configuration of

the sensors are novel and we observe their repeatability

in a flexion-extension experiment.

3) We investigate the effect of drift in the sensor’s output

on the performance of machine learning algorithms in

a classification scenario. Notably, it is the first time

machine learning algorithms have been utilised in clas-

sifying data from a weft knit sensor.

II. WEFT KNIT SENSOR

The weft knit sensor was designed with a novel combination

of conductive and elastomeric yarn knitted in a plain knit

structure. The design is illustrated in Fig. 1. Unlike [42]

where the sensor was knitted with only conductive yarn, we

integrated an elastomeric yarn to create a more elastic sensor.

Particularly, we achieve this by knitting 50% of the courses

with elastomeric yarn in a pattern where a course of conductive

yarn courses is succeeded by a course of elastomeric yarn

loops and is repeated till the last course of the sensor. In

addition, a plain knit structure was selected ahead of an

interlock structure because interlock knitted fabrics are less

extensible than plain knitted fabrics.

A. Electromechanical Model

The conductive yarn used in fabricating the sensor is a

multifilament yarn comprising of 80% polyester and 20%

stainless steel. Due to the metallic properties of the conductive

yarn, its length resistances of the loop head and legs were

modelled as Rh and Rl while the contact resistances between

interlocking conductive yarn loops were modelled as Rc. The

model also follows the basic assumption that the geometry of

each loop is constant across the sensor.

Due to the knitting action of the cam box in a knitting

machine, when two yarns are used interchangeably across

different courses, there is a crossover at the edge of the fabric

between the previous and the current course knitted by the

same yarn. In our sensor, the crossover between the conductive

courses is modelled as Rco. The combination of the resistances

in a conductive course and its respective crossover is termed

as a conductive section. The equivalent resistance of each n
conductive section is modelled as Rs(n). Therefore, the circuit

of the sensor represented in Fig. 2 represents a series network

of conductive sections and the number of conductive sections

is equal to the number of conductive courses in the sensor.

Vs(n) represents the voltage across each conductive section.

Due to the aforementioned modelling assumption stating that

the geometry of each conductive loop is constant across the

sensor, the equivalent resistances of the conductive sections

are equal. Thus, the voltage across each conductive section,

Vs(n) is calculated as:

Vs(n) =
V

n
, (1)

where V is the voltage across the sensor. Let I1 - IZ represent

the hypothetical currents flowing in the meshes of the circuit

(as shown in Fig. 2) and are solved using Kirchoff voltage law

and Ohm’s law as:

i = R−1v, (2)

where in a sensor with 72 courses (36 conductive courses) and

36 wales (i.e. Z=37),

i = [I1, I2, . . . , I36, I37]
T , (3)

v = [Vs(n), 0, . . . , 0, 0
︸ ︷︷ ︸

36zeros

]T , (4)

The equivalent resistance of each conductive section is

calculated as:

Rs(n) =
Vs(n)

I1
. (6)

B. Determination of Length Resistances

The length resistances are derived from the Postle’s geomet-

rical model of a weft knit loop [36]. This model determines the

length of the loop legs and head from the loop and interlocking

angles of the loop. The loop angle, α, is the angle between the

loop’s tangent and the vertical at the centre locus of the loop

while the interlocking angle, β, is the angle at the interlocking

locus between the loop’s tangent and the vertical.

By considering the loop leg as a bent beam, its length was

derived as:

Ll =
p

√

2(sin(α) + sin(β))
f(k, γ), (7)
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Fig. 1. Design of the Weft Knit sensor. α is the loop angle, β is the interlocking angle and a course represents a horizontal row of knitted loops.
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Fig. 2. Circuit model of the weft knit sensor. (Z − 1) is the number of wales in the sensor.

where p is the course spacing. f(k, γ) is the difference

between the complete and incomplete integrals and can be

calculated as:

f(k, γ) =

∫ π

2

0

dγ
√

1− k2 sin2(γ)
−
∫ γ

0

dγ
√

1− k2 sin2(γ)
,

(8)

and parameters k and γ are calculated as:

k = sin
(π

4
+

α

2

)

, (9)

γ = sin−1

(
1

k
√
2

(

cos

(
β

2

)

− sin

(
β

2

)))

. (10)

The length of the loop head was considered to be the sum

of two equal segments of a circle and is derived as:

Lh =
p(π2 − β)

2(sin (α) + sin (β))
. (11)

The resistances of the held loop’s legs and head are then

calculated as:

Rl =
ρLl

Ar

, (12)

Rh =
ρLh

Ar

. (13)

where Ar is the cross-sectional area of the conductive yarn.

The length of the crossover was empirically observed to be

twice the course spacing, p. Therefore, the resistance of the

conductive crossover is calculated as:

Rco =
2p · ρ
Ar

. (14)

C. Determination of Contact Resistance

Contact resistance only occurs when there is contact be-

tween two conductors. Particularly, it occurs at the contact



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021 5

R =











18(Rc +Rh) +Rco −Rc −Rh . . . −Rh

−Rc Rc +Rh + 2Rl −Rl . . . 0
−Rh −Rl Rc +Rh + 2Rl . . . 0
−Rc 0 −Rl . . . 0
. . . . . . . . . . . . . . .
−Rc 0 0 . . . Rc +Rh + 2Rl











. (5)

between the conductive loop legs as illustrated in the enlarged

frame in Fig. 1. According to Holm’s contact theory, the

contact resistance can be calculated as:

Rc =
ρ

2

√

πH

nPr

, (15)

where, Rc is the contact resistance, ρ is the electrical resistiv-

ity, H is the hardness of the material used, n is the number

of contact points and Pr is the contact pressure between the

conducting materials.

Typically, the material hardness and the electrical resistivity

are constant based on the properties of conductive yarn used,

while the number of contact points is subject to the sensor’s

design. Therefore, the changes to the contact resistance is

dependent on changes to the contact pressure between the

loops.

However, simulating or predicting the contact pressure

between the interlocking loops has proven cumbersome due to

the geometrical complexity of a weft knit sensor. Therefore,

alternative methods such as obtaining the contact resistance

empirically from the contact force have been proposed [35].

However, Zhang et al. [42] suggested from experimental

observations that the relationship between the contact and

equivalent resistances can be depicted as:

Req = RcD, (16)

where D is a variable coefficient based on the sensor design.

By using a control algorithm illustrated in algorithm 1, we

determine the contact resistance from the equivalent resistance.

The algorithm is initialised with any positive value as D.

Subsequently, the algorithm employs a control feedback by

inputting the calculated contact resistance into the modelled

circuit. The output equivalent resistance termed as Rsim is

then used to determine the new coefficient, D. The optimised

contact resistance is produced when the difference between the

previous simulated equivalent resistance and its current value

is less than 3% of the current value. This threshold was chosen

empirically as no significant change in accuracy of the model

was detected below the threshold.

D. Model Validation

This model was verified by fabricating sensors with the

aforementioned sensor design and the knitting parameters

enumerated in Table II. Subsequently, the sensors were dry

relaxed for 48 hours to remove any excess strain between

the loops as a result of the knitting process. The sensors

were then put through a tensile test in an Instron3369 tensile

machine where it was extended till 35% extension while its

resistance was measured with a digital multimeter. The loop

Algorithm 1 Contact Resistance Solution

1: Initialise:

2: Rsim ← 0
3: D ← 0 < D < inf
4: Loop:

5: Rc = Rexp/D
6: Input Rc into modelled circuit to determine Rsim

7: if |Rsim(n) −Rsim(n−1)| > (0.03 ·Rsim(n)) then

8: D = Rsim/Rc

9: goto Loop

10: else

Return Rc

11: end if

⊲ Rsim and Rexp are the simulated and

experimental equivalent resistances respectively.

(a) (b)

Fig. 3. (a) Experimental setup with Instron 3369 and Multimeter. (b) Image
of sensor’s loop configuration.

configuration of the sensor and the experimental setup are

shown in Fig. 3. Furthermore, a simulation of the model

was also performed using Matlab and LTspice with the same

numerical parameters.

III. DATA GLOVE

The weft knit data glove was designed using Shima Seiki’s

sds one apex3 apparel CAD software such that the weft knit

sensors were located at the distal and proximal interphalangeal

joints while the rest of the glove was knitted with an elas-

tomeric yarn. Particularly, the sensors were knitted to wrap

around the joints to maximise its sensitivity. An elastomeric
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Fig. 4. Block diagram illustrating the design and implementation of the weft knit Data glove.

TABLE II
NUMERICAL PARAMETERS FOR SIMULATION AND EXPERIMENTAL

VALIDATION

Parameters Values

Number of conductive courses 36
Number of elastomeric courses 36

Number of wales 36
α 24.75◦

β 10.85◦

Course spacing 3mm
Yarn diameter 0.4mm

Resistivity 300(ohm·mm)

yarn was selected for the rest of the glove because it provides

a tight and flexible fit that is optimal for sensing applications

while also providing a comfortable experience for the user.

WholeGarment technology enabled the knitting of all sensors

and the support structure of the glove in a single manufacturing

process without any external attachment. The glove design

and the fabricated glove are illustrated in Fig. 4. The glove

was knitted with Shima Seiki Mach2s which is equipped with

WholeGarment technology. Furthermore, the dimensions used

in knitting the glove were selected based on the main author’s

hand size. This illustrates its commercial feasibility as several

data gloves can be fabricated based on sizes similar to the

creation of conventional fabrics.

A. Data Acquisition

A data acquisition system is embedded in the glove to

transmit data to a computer. Particularly, it consists of a

microprocessor and a set of resistors that form a voltage

divider circuit with the ADCs (analog-digital converter) of

the microprocessor. The microprocessor used was an Arduino

lilypad and it was selected because of its 6 analog inputs which

can be connected to the sensors via sewing. However, due to

the limited number of analog inputs in the microprocessor,

only the sensors at the PIP (proximal interphalangeal) joints

were connected to the microprocessor. In our subsequent

work, a custom-made microprocessor with 9 analog inputs

and wireless capabilities will be embedded on the glove to

retrieve data from all sensors and remotely transmit it to a

cloud platform.

(a) (b)

Fig. 5. Robotic hand used for glove evaluation. (a) Side view (b) Front view
illustrating its motors.

Furthermore, the sensors at the PIP joints were connected to

the analog inputs of the microprocessor by sewing conductive

thread in front of the glove while the sensors were also

connected to the negative pin of the microprocessor at the back

of the glove to prevent a short circuit between the positive and

negative threads. These analog inputs have individual ADCs

that convert analog voltages between 0 and 3.3volts to digital

values between 0 and 1023. This allows the microprocessor to

read the data of all fingers in parallel. The microprocessor was

programmed to transmit data from the sensor at a frequency

of 100 Hertz. However, the analog output of weft knit sensors

is electrical resistance, therefore a voltage divider circuit is

required to convert the sensor’s resistance to voltage. The

sensor voltage is obtained as:

Vsensor = Vinput ·
Rsensor

Rfixed +Rsensor

, (17)

where Vsensor is the calculated sensor’s voltage, Vinput is the

input voltage, Rfixed is a fixed resistor value and Rsensor is

the variable resistance of the weft knit sensor. Furthermore, the

computer also provides power to the microprocessor although

a coin-cell battery can be embedded in the glove to enable it

store data for upload at a later date.
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Fig. 6. Experimental and simulation results of strain test.
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Fig. 7. Relationship between the contact resistance between the conductive
loops and the equivalent resistance of the sensor.

B. Glove Evaluation

The robotic hand shown in Fig. 5 was applied as an emula-

tion tool in evaluating the glove’s sensor. Its joint angle was set

accurately without constraints such as fatigue and stability that

may plague human participants when instructed to maintain

a posture for a considerable period. The robot was obtained

commercially and consists of stepper motors that control the

joints at each finger. All evaluations were performed with

the proximal interphalangeal joint of the middle finger of the

robot.

1) Flexion and Extension: The first experiment consists of

the opening (extension) and closing (flexion) of the hand. This

test simulates one of the prominent hand motions and depicts

the repeatability of the sensor. The robot was programmed to

perform this at a frequency of one oscillation every 18 seconds.

2) Drift: Weft knit sensors are known to observe phenom-

ena such as hysteresis and drift that negatively impact the

sensor’s output [44]. Drift occurs when the sensor’s output

stray away from the original measurement when the extension

of the sensor is constant.

A second experiment was performed to visualise the drift

in the sensor and illustrate the use of machine learning in

reducing the impact of this phenomenon in a classification

scenario. In this scenario, the sensor’s output was recorded

when the joint was held at 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦

0 10 20 30 40 50 60

450

500

550

600

650

700

0 10 20 30 40 50 60

200

400

600

800

1000

1200

Fig. 8. Flexion and extension experimental result.

0 10 20 30 40 50 60 70 80

200

300

400

500

600

700

Fig. 9. Data plot of drift experimental result. Mean and median are shown
to illustrate skew of data.

for 90 seconds. The first 5 seconds and the last 5 seconds

were eliminated to remove the noise caused by the impact of

switching to the next angle. Subsequently, classical machine

learning algorithms such as Support vector machines (SVM),

Logistic Regression and Gaussian naı̈ve Bayes were used to

classify the sensor’s output.

IV. RESULTS AND DISCUSSION

A. Model Validation

The average experimental and simulation results of the

strain test are illustrated in Fig. 6. The sensor exhibits an

exponential relationship between its resistance and extension.

The piezoresistivity plot of the sensor can be divided into three
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Fig. 10. Histogram plots and respective mixed gaussian distribution fits of the sensor’s output at (a) 0◦ (b) 15◦ (c) 30◦ (d) 45◦ (e) 60◦ (f) 75◦
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Fig. 11. Mixed gaussian distribution fits of the sensor’s output at various
angles.

phases. In the first two phases, the sensor resistance decreases

linearly as the sensor is extended but the slope of decrease

varies between the two phases. In the third phase, the sensor’s

resistance is relatively constant. This occurs because at this

level of extension, the contact resistances between certain

conductive loops in the sensor are negligible. The first linear

phase occurs between 0% and 6% extension, the second linear

phase occurs between 6% and 25%, and the third phase occurs

after 25% extension. Our simulation results largely agree with

the experimental results. Particularly, the average percentage

error between the simulation and experimental for the entire

range of extension was 11.47%. However, the error was lower

when excluding the third phase. The average percentage error

in the linear phases was 7.33% while the average percentage

error in the third phase was 21.66%. The increase in the error

in the third phase ensued because of the difficulty in simulating

the specific loops whose contact resistances are negligible

when the sensor is extended beyond 25%. Particularly, our

simulation assumes uniform behaviour across all knit loops in

the sensor but in reality, this is not the case especially as the

sensor approaches its breaking point.

In addition, we illustrate the relationship between the de-

rived contact resistance and the simulated equivalent resistance

at each level of strain in Fig. 7. We observed that the change

in contact resistance between the conductive loops is directly

proportional to the change in the equivalent resistance of

the sensor. Moreover, the R2 value of its linear fit was

calculated to be 0.9742, thereby showing a high linearity

of the relationship between the contact resistance and the

equivalent resistance. This is important because it can sim-

plify future simulations of the electromechanical behaviour

of weft knit sensors. Furthermore, this relationship explains

the contact between the loops as the sensor is stretched.

From equation 15, we observe that the contact pressure is

inversely proportional to the contact resistance. Therefore,

since the equivalent resistance is directly proportional to the

contact resistance, we assume that the equivalent resistance is

inversely proportional to the contact pressure. Furthermore, by

observing the relationship between the equivalent resistance

and the extension of the sensor in Fig 6, we derive that

the contact pressure between the conductive loops increases

exponentially as the sensor is extended.

B. Glove Evaluation

1) Flexion and Extension: Fig. 8 shows the result of the

flexion and extension at the robot’s joint. Due to the high

sampling rate, the sensor’s output was very noisy. Therefore,

a Savitzky-Golay filter (polynomial order of 5 and window
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Fig. 12. Receiver operating curve for the classifiers at the different angles. NB, LR and SVM represent Gaussian naı̈ve Bayes, Logistic regression and Support
vector machine classifiers respectively.
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Fig. 13. Area under the ROC for the different classifiers at the various angles.

length of 301) was applied on the output. The filter removes

most of the noise that was present in the raw signal and

illustrates the repeatability of the sinusoidal oscillations in the

sensor’s output. However, there are still minor distortions in

the filtered signal. These distortions represent the hysteresis

and drift common in weft knit strain sensors.

2) Drift: The sensor’s output at each angle threshold in the

drifting experiment is shown in Fig. 9. This figure provides a

preliminary visualisation of the experiment’s results. The mean

and median values illustrate the skew of the data. We observed

that the output of the sensor reduced as the angle increased for

most of the experiment. However, some angles opposed this

observation. This was expected as prior experimental results

from the tensile test had shown instability and non-linearity in

the sensor’s output. In addition, we hypothesise that the high

sampling rate may have increased the noise in the sensory

data.

A detailed visualisation of the data is illustrated in Fig.

10 with an histogram plot and its probability distribution

fit. As illustrated in the histogram plots, the sensor’s output

fluctuates despite the fixed angle of the robot’s joint. However,

we observe that the most of the data were within a limited

range during these fluctuations. Particularly, we observe that

the data at each angle were mostly distributed into two classes.

Therefore, we implemented a mixed Gaussian distribution

(MGD) using expected maximisation (EM) algorithm [47]

to provide an accurate fit of the data. We also limited the

number of classes to two based on our empirical observations

to prevent overfitting. From the MGD fits, we observed that

one class was significantly smaller than the other class in

terms of the density. We hypothesise that the smaller class

is noise and the bigger class is the real signal. However, we

did not eliminate the noise to prevent biasing the results of

the classifiers.

Furthermore, we plot the MGD fits of all angles in Fig. 11.

This depicts a comprehensive view of the effect of drift on the

sensor’s output. We observed that drift causes the distribution

fits of the angles to overlap each other. In particular, the

presence of drift in the sensor’s output may adversely affect

the performance of linear classifiers.

Subsequently, we evaluate the performance of three classi-

fiers in accurately classifying the sensor’s data. These clas-

sifiers are Linear SVM, Logistic Regression and Gaussian

naı̈ve Bayes algorithms [48], [49]. Particularly, each classifier

is evaluated on its performance in classifying the data of a

specific angle from all other angles. The data consisted of 4000

samples for each angle (24,000 samples in total) with each

sample representing 20 milliseconds thereby reflecting real-

time measurement. The temporal order was kept unchanged
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Fig. 14. Precision-Recall curve for the classifiers at the different angles.
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Fig. 15. Area under the Precision-Recall curve for the different classifiers at
the various angles.

and no additional pre-processing techniques were applied on

the data as it would be impractical due to the novelty of

weft knit strain sensors. In addition, it was important that the

classifiers were applied on the raw sensory data to accurately

investigate the effect of drift. The classifiers were trained and

validated using 10-fold cross-validation to prevent overfitting.

The performance metric for evaluating the classifiers is the

area under the receiver operating curve. Firstly, a confusion

matrix comprising of the true positive rate (TPR) and the false

positive rate (FPR) of the classifier is computed. The TPR is

the proportion of correctly identified data values while the

FPR is the proportion of incorrectly identified data values.

The TPR and FPR for each classifier is plotted as a receiver

operating curve (ROC). The area under the ROC (AUC) is

then calculated using the trapezoidal rule.

The classification results are shown in Fig. 12 and Fig. 13.

We observed that Gaussian naı̈ve Bayes classifier performed

better than other classifiers with an average AUC of 0.9753

while Logistic regression and SVM had an average AUC of

0.7997 and 0.6644 respectively. Logistic regression under-

performed because as observed in the visualisation of the data,

the overlap of data from different angles complicate the linear

classification of the data. Moreover, this also explains why

SVM under-performed because of the difficulty of its linear

kernel in classifying the data. It is likely that if a non-linear

kernel such as the Gaussian kernel is implemented, it would

improve its performance. Consequently, the Gaussian naı̈ve

Bayes classifier performed adequately because of its non-linear

kernel.

In addition, the Precision-Recall curve and the area under

the curve are illustrated in Fig. 14 and Fig. 15. The results

further reinforce the superiority of non-linear algorithms over

linear algorithms in classifying the data of weft knit strain

sensors. In particular, the average area under the precision-

recall curve was 0.85, 0.46 and 0.4 for the Gaussian naı̈ve

Bayes, Logistic regression and Linear SVM respectively.

These results show that non-linear classifiers can accurately

classify sensory data from weft knit strain sensors in spite of

the noise, hysteresis and drift. In contrast, linear classifiers

may struggle to accurately classify the sensory data of weft

knit strain sensors.

V. CONCLUSION

In this paper, we have proposed a wholly textile data glove

capable of measuring the joint angles of the interphalangeal

joints. We achieved this by creating its novel weft knit sensors

and its textile support structure in a single fabrication process.

Additionally, we presented the electromechanical model of its

sensors and verified it experimentally. Moreover, we evaluate
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the repeatability of the glove in a flexion and extension exper-

iment. The results show that when a filter is applied to remove

the noise, the glove performs excellently. Furthermore, we

evaluate three machine learning algorithms in classifying the

output of the data. We observe that the drift in the sensor limits

the performance of linear classification algorithms. However,

the performance of naı̈ve Bayes classifier illustrates that a

non-linear classifier can perform excellently in classifying the

glove’s output.

Future work will investigate the performance of deep learn-

ing algorithms in a real-world classification scenario such as

grasp or gesture recognition. The glove will also be improved

by creating a wireless version with an embedded power source

to make it a portable system that can be used without any

movement constraints.
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