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Model Predictive Control (MPC) is an advanced optimal
control strategy with powerful and well-defined procedures
for complex multivariate processes (Mayne, 2014). Nev-
ertheless, its computation-heavy nature has traditionally
favoured applications with slow dynamics, although the
increasing availability of cheap computing resources has
significantly widened its scope and utility in recent years
(Fernandez-Camacho and Bordons-Alba, 1995; Qin and
Badgwell, 2003). But there are areas and applications,
for example industrial servo loops, where such an im-
plementation would be logically and financially infeasible
and where a cost-effective approach like PID still makes
more sense. However, there are scenarios when PID falls
short, for instance processes with significant dead-time or
tight physical constraints; such cases require additional
complexity such as Smith predictors (Skogestad, 2018) and
anti-windup algorithms (Visioli, 2006) for improvement.
Nonetheless, these solutions are generally ad hoc and, more
often than not, degrade other performance attributes; poor
robustness to uncertainties is one prominent side-effect of
such post-design alterations.

Clearly, there is a need for a systematic yet simpler and
cost-effective algorithm, and over the years Predictive
Functional Control (PFC) has proved its efficacy as a
viable alternative (Richalet et al., 1978). PFC belongs
to the family of model-based predictive controllers, and
exhibits similar characteristics. As a result, process dead-
times and physical constraints are easily integrated in
the design, with some degree of robustness owing to the
use of a receding horizon (Rossiter, 2018). The main dif-
ference, however, arises from the parametrisation of the

1. INTRODUCTION

Arguably the unique selling point of PFC is its simplic-
ity. Nevertheless, it lacks flexibility to tackle challenging
dynamics. For example, open-loop instability, where unre-
liable predictions cause ill-posed decision-making (Rossiter
and Haber, 2015), has been difficult to control with PFC.
Previous studies in this area (Rossiter, 2016; Abdullah and
Rossiter, 2018a) have proposed algorithmic level modifica-
tion by shaping the control input, that although they can
improve the closed-loop performance, do so with increased
computational complexity, thus negating the core notion
of simplicity. Pre-stabilisation of dynamics (Rossiter et al.,
1998; Mayne et al., 2000) is fairly common in the MPC
literature as a means to modify dynamic behaviour of
a difficult system to ensure reliable control performance.
Surprisingly however, this concept is still relatively unex-
plored in PFC and largely restricted to first-order (Aftab
et al., 2021) and integrator dynamics (Zhang et al., 2018;
Abdullah and Rossiter, 2018b). Researchers, in this con-
text, argue that complex pre-stabilisation may also com-
plicate constraint handling (Rossiter, 2018; Richalet and
O’Donovan, 2009) which, despite being sub-optimal, is
fairly intuitive and powerful in the PFC formulation.

manipulated variable, which in the case of PFC, is pre-
defined as the linear combination of simple polynomial
basis functions (Maciejowski, 2002). The optimisation pro-
cess is further simplified by noting that constant set-point
tracking is achievable with constant control moves within
the prediction horizon (Khadir and Ringwood, 2008). Al-
though, unlike mainstream MPC, PFC’s heuristic nature
merely provides a sub-optimal solution, its simplistic de-
sign traits have attracted a wide spectrum of applications
(Richalet and O’Donovan, 2011; Richalet and O’Donovan,
2009; Richalet, 1993).

Keywords: PFC; coincidence point; feedback compensation; pre-stabilisation.

Abstract: Predictive functional control (PFC) is the simplest model-based algorithm, equipped
with the attributes of a fully fledged predictive controller but at the cost and complexity
threshold of a standard PID regulator. It has proven benefits in controlling stable SISO dynamic
systems, but similarly to its competitor PID, it loses efficacy when a challenging application is
introduced. In this paper, we present a modified PFC approach, especially tailored for open-
loop unstable processes, using pre-stabilisation to efficiently control the undesirable dynamics
at hand. This is essentially a two-stage design scheme with implications for PFC tuning and
constraint handling. The proposal, nevertheless, is straightforward and intuitive, and provides
improved closed-loop control in the presence of external perturbations against the standard
PFC, and significantly better performance overall compared to the common PID algorithm, as
demonstrated in a numerical case-study.
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Fig. 1. Proposed PPFC Control Architecture

In this paper, we extend the idea of pre-stabilisation,
presented in (Aftab et al., 2021), to higher-order un-
stable dynamics using the analytical method of internal
feedback loop design (Ogata, 1995). It has been found
that although the additional control layer burdens the
constraint management to some extent, it provides better
control of tuning parameters and an impressive overall
closed-loop performance, verified by an industrial case
study. The remainder of this paper is organised as follows:
Section 2 defines the problem and sets control objectives.
The main methodology is presented in Section 3 where
the Pre-stabilised PFC design is discussed in detail. Next,
implications of pre-stabilisation are presented in Section 4.
A simulation case study follows next in Section 5 which
presents performance comparisons with standard PFC and
PI. Finally, the paper concludes in Section 6.

2. PROBLEM STATEMENT

Consider an nth-order coprime delay-free system model

G0(z) =
b(z)

a(z)
=

b1z
−1 + b2z

−2 + · · ·+ bnz
−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
(1)

Moreover, a(z) = a−(z)a+(z) where the factor a+(z) con-
tains the pu open-loop unstable poles. The complete model
including time-delay of m samples is G(z) = z−mG0(z).
Moreover, the dynamic plant is subject to actuation limits
i.e.

umin ≤uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax (2)

where ∆ = 1 − z−1. The aim is to design a predictive
functional controller that operates on pre-stabilised model
predictions via internal feedback compensation. The Pre-
stabilised PFC (PPFC) is, therefore, expected to perform
in the presence of disturbances and modelling uncertainty
while adhering to constraints (2).

3. PRE-STABILISED PFC

The fundamental idea behind PPFC, as shown in Fig. 1,
is to first stabilise the unstable open-loop dynamics, using
a simple and well understood classical approach, and then
implement PFC in the standard way, as an outer loop,
for improving performance and constraint management.
The following two sub-sections explain the proposed design
procedure.

3.1 Design of Pre-stabilising Loop

The proposal is based on the analytical approach of feed-
back compensator design presented in (Ogata, 1995). As-

sume that a (n − 1)th-order bi-proper feedback compen-
sator C(z) = q(z)/p(z) is used to modify the open-loop
model G0(z), as shown in Fig. 1, resulting in the pre-
stabilised transfer function Gs,0(z), with a smooth and
monotonically convergent prediction behaviour. Then one
may write:

Gs,0(z) =
β(z)

α(z)
=

q(z)b(z)

p(z)a(z) + q(z)b(z)
(3)

where α(z) is the (2n − 1)th-order pre-stabilised pole
polynomial, and the underlying relationship,

p(z)a(z) + q(z)b(z) = α(z) (4)

is called the Diophantine Equation. In order to design the
C(z), one must define the desired pre-stabilised charac-
teristic polynomial α(z) and then utilise linear algebra to
obtain the coefficients of p(z) and q(z) with,

M = S
−1

D (5)

whereM = [pn−1 . . . p0 qn−1 . . . q0]
T ,D = [α2n−1 . . . α0]

T

and S is the Sylvester Matrix (Goodwin, 2001) given by:

S =



























an 0 . . . 0 bn 0 . . . 0
an−1 an . . . 0 bn−1 bn . . . 0
...

... . . .
...

...
... . . .

...
1 a1 . . . an−1 0 b1 . . . bn−1

0 1 . . . an−2 0 0 . . . bn−2

...
... . . .

...
...

... . . .
...

0 0 . . . a1 0 0 . . . b1
0 0 . . . 1 0 0 . . . 0



























(6)

Note that α(z) is factorised as:

α(z) = o(z)a−(z)α+(z) (7)

where o(z) is the (n− 1)th-order observer and α+(z) rep-
resents the pu pre-stabilised poles. We propose if a+(z) =
∏pu

i=1
(z−zp,i) with zp,i > 1, then α+(z) =

∏pu

i=1
(z−1/zp,i).

In case an integrator factor (z−1) is present, then one may
simply replace it with (z − 0.5) (Abdullah and Rossiter,
2018a). Moreover, the minimum order observer is generally
selected as o(z) = zn−1 (Ogata, 1995). This completes the
internal feedback loop design.

Remark 1. For n = 1, the compensator reduces to sim-
ple proportional gain, i.e. C(z) = K. The Pre-stabilised
PFC design for first-order unstable systems using propor-
tional compensation has been investigated more exten-
sively (Aftab et al., 2021) so will not be pursued here.

3.2 Pre-stabilised PFC Control Law

The PPFC algorithm works similarly to the original PFC
but implemented on the pre-stabilised model dynamics. At
each time step, the predicted output yk is matched to the
pre-defined target behaviour at only one coincidence point
ny steps ahead with constant control moves. The process
is repeated at the next sample and owing to the receding
horizon, an implied feedback is established that moves the
plant output closer to the target. The desired behaviour
is generally represented as a first-order pole ρ. The ideal
ny-step ahead prediction based on a first-order response is
given as:

yk+ny+m|k = r − (r − E[yk+m|k])ρ
ny (8)

where r is the set-point and E[yk+m|k] is the expected
m-sample delayed plant output (Rossiter, 2018). Further-
more, E[yk+m|k] = ŷk + dk with dk = yk − ŷk−m, where
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dk accounts for prediction bias due to modelling errors
and/or disturbances and ŷk is the model output. On the
other hand, one may obtain the output predictions from
Gs,0(z) i.e. α(z)ŷ(z) = β(z)v(z):

ŷk+ny|k = Hv
−→k +Pv

←−k−1 +Q ŷ
←−

k (9)

where H, P and Q depend on the model parameters. For
a generic N th order model:

v
−→k =









vk
vk+1

...
vk+ny−1









; v
←−k−1 =









vk−1

vk−2

...
vk−N+1









; ŷ
←−

k =









ŷk
ŷk−1

...
ŷk−N+1









The delay-free prediction model Gs,0(z) essentially pro-
vides m-step ahead estimate of the plant output, which
implies:

yk+ny+m|k = ŷk+ny|k + dk (10)

The decision variable remains constant throughout the
horizon i.e. vk+i = vk, ∀i > 0, which results in the
following PPFC control law:

vk =
r − (r − E[yk+m|k])ρ

ny − (Pv
←−k−1 +Q ŷ

←−
k + dk)

h
(11)

where h =
∑ny

j=1
Hj and Hj is the j

th element of H. Next,
we will discuss the impact of pre-stabilisation on some key
aspects of the proposed PFC approach.

4. IMPLICATIONS OF PRE-STABILISATION

Clearly pre-stabilisation has transformed the decision vari-
able from uk to vk, which has significant implications for
parameter tuning and constraint handling. Since uk drives
the physical process and the fact that internal compensa-
tion is not hard-wired, a direct relationship between both
variables must be established for control implementation.
Details follow next.

4.1 Relationship between uk and vk

If the compensator C(z) were hard-wired, we would have
got uk = C(z)[vk − yk+m], where yk+m shows the delayed
response due to uk at the current sample. Obviously yk+m

is unknown being a future value, but can be replaced with
its expected value E[yk+m|k] = ŷk + dk. Thus,

uk = C(z)[vk − (ŷk + dk)] (12)

Furthermore, a similar expression can be written for the
pre-stabilised model:

ûk = C(z)[vk − ŷk] (13)

Thus after subtracting (13) from (12), the relationship
between uk and ûk is established:

uk = ûk − C(z)dk (14)

Finding ûk is an additional step and adds slightly to the
coding complexity. Nevertheless, it is directly related to vk
as shown in the following theorem.

Theorem 1. The control variable ûk can be obtained from
decision variable vk using the following expression:

ûk =
q(z)

o(z)
.
a+(z)

α+(z)
vk (15)

Proof. Since ŷk = G0(z)ûk = Gs,0(z)vk, eliminating ŷk
results in:

b(z)

a−(z)a+(z)
ûk =

q(z)

o(z)
.

b(z)

a−(z)α+(z)
vk

which simplifies to (15). ✷

Thus one may replace ûk from (15) in (14) to directly
evaluate uk from vk and vice versa,

A(z)uk = B(z)vk + E(z)dk (16)

with the polynomials A(z), B(z) and E(z) defined as:

A(z) = o(z)α+(z)p(z) = 1 +A1z
−1 + · · ·+Alz

−l

B(z) = q(z)a+(z)p(z) = B0 +B1z
−1 + · · ·+Blz

−l

E(z) = −o(z)α+(z)q(z) = E0 + E1z
−1 + · · ·+ Elz

−l

(17)

where l = pu + 2n− 2. Finally,

uk = B0vk + fk (18)

where fk = −Au
←−k−1+Bv

←−k−1+Ed
←−k and the vectors A,

B and E contain appropriate coefficients of the respective
polynomials.

4.2 Controller Tuning

The standard procedure of PFC parameter tuning is based
on the conjecture presented in (Rossiter and Haber, 2015),
which is mainly applicable to stable dynamics with mono-
tonic steady-state convergence. The recommendation is to
select the coincidence horizon ny preferably within the
time window corresponding to 40%-80% rise in the step re-
sponse with significant gradient. As for finding ρ, one may
overlay several first-order responses on the step response
to identify which target behaviour coincides within the
mentioned ny range. Evidently this method will not work
well with an unstable process, for which a constant input
would inevitably lead to divergent output predictions. Pa-
rameter selection for such systems is far less consistent and
mostly ineffective with no concrete guidelines (Rossiter
and Haber, 2015; Rossiter, 2018). Clearly pre-stabilisation
makes intuitive sense here, since controller tuning with
the stable Gs,0(z) in this case will be far more meaningful
than the originally unstable process. See, for instance,
Fig. 3 that displays PFC parameter selection for a modified
system based on the aforementioned procedure.

4.3 Constraint Handling

The standard constraint handling mechanism generally
implements simple saturation of the decision variable,
which is fairly straightforward with a constant control for-
mulation. Nevertheless, the additional feedback loop in the
Pre-stabilised PFC re-parametrises the degree-of-freedom
such that uk no longer remains constant. One possible
solution in this case is to transfer the original constraints to
the new variable vk at every sample using a process of back
calculation (Richalet and O’Donovan, 2009). Clearly back
calculation is computationally intensive; this may work
easily with simple feedback designs, for example see (Aftab
et al., 2021; Zhang et al., 2020), but with more involved
controllers, such as the one in this study, it complicates the
validation process. A more efficient approach, however, is
to implement constraints on (18) directly, with vk updated
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Fig. 2. The Jacketed CSTR Process

only if violation occurs. Each row of the following vector
inequalities corresponds to the (k + i)th predicted input
(Rossiter, 2018):

Lumin ≤u−→k ≤ Lumax

L∆umin ≤ ∆u−→k ≤ L∆umax (19)

where i = 0, 1, . . . , nc and L = [1 1 . . . ]T . The validation
window nc (i.e. the length of above inequalities) must
extend well beyond the point of coincidence to observe
and validate long range adherence. This is crucial because
any unobserved input violation could eventually lead to
infeasibility, thus invalidating the current input computa-
tion. Ideally, nc should cover the settling period of Gs,0(z),
i.e. the time to reach and stay within 95% of the implied
steady-state, which roughly corresponds to three to five
times ny.

Remark 2. Constraint handling with Pre-stabilised PFC
is recursively feasible as long as nc is sufficiently large
(Abdullah and Rossiter, 2018a). This, however, may not
be true with open-loop unstable dynamics, for which,
in truth, rigorous generic recursive feasibility properties
require computations which might be considered beyond
the price range of PFC.

5. INDUSTRIAL CASE STUDY

This section demonstrates the efficacy of the proposed
PPFC algorithm with a case study involving temperature
control of a Jacketed CSTR. The Continuous Stirred Tank
Reactor (CSTR) is a common industrial unit that is widely
employed in different chemical manufacturing processes.
The reaction dynamics converting component A into com-
ponent B in an ideal CSTR has a non-linear first-order
behaviour. Nevertheless, many chemical reactions also re-
quire a specific temperature to be maintained within the
tank for a flawless yield. Therefore, the tank is generally
equipped with an outer jacket in which the temperature
of a flowing fluid TJ is used as the manipulated variable
to regulate the inside reaction temperature T , as shown
in Fig. 2. The overall coupled model has two-state non-
linear dynamics with potential for exotic behaviour owing
to multiple steady-states (Bequette, 2002). In this study,
the linearised model around one operating point depicts
unstable second-order dynamics given by (Rao and Chi-
dambaram, 2008):

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Step Response

Target-1

Target-2

Target-3

Samples

Fig. 3. Target responses with ρ = [0.6, 0.715, 0.8] overlay-
ing the normalised step response of Gs,0(z)

G(z) =
T (z)

TJ(z)
=

2.102z + 0.4011

z2 − 1.465z + 0.058
.z−1 (20)

subject to |TJ | ≤ 0.21◦F and |∆TJ | ≤ 0.075◦F . Note that
both T and TJ are deviation variables around the steady-
state values Tss = 101.1◦F and TJ,ss = 60◦F .

5.1 Pre-stabilisation and Offline Tuning

Next we pre-stabilise the Jacket CSTR model. Here, pu=1
with one unstable pole a+(z) = z − 1.424, one stable pole
a−(z) = z−0.041 and a delay of m = 1 minute in measure-
ment. Since n = 2, the pre-stabilised pole polynomial must
be third-order with α(z) = z(z− 0.041)(z− 1/1.424). The
first-order bi-proper compensator C(z) is then constructed

using (4)-(7) resulting in C(z) =
0.303z − 0.0123

z + 0.0852
. The

following pre-stabilised delay-free model is obtained:

Gs,0(z) =
T (z)

v(z)
=

0.637z2 + 0.096z − 0.005

z3 − 0.743z2 + 0.0288z
(21)

The next step is the controller tuning i.e. finding appropri-
ate ny and ρ. Fig. 3 shows the pre-stabilised step response
curve overlaying various first-order target responses and
suggests 2 ≤ ny ≤ 5 as the suitable coincidence horizon
window. Interestingly, the target behaviour with ρ = 0.715
almost exactly overlaps the step response, whereas those
with ρ = 0.6 or ρ = 0.8 do not match predictions
within the desirable ny range and hence would need over-
actuation or under-actuation to enforce an intercept. In
this study, we have selected ρ = 0.715 and ny = 3.

In order to assess the performance of PPFC, two more
controllers are implemented: the original PFC tuned with
the same parameters given above, and a PI controller
designed with KP = 0.02 and KI = 0.004. Note that
the PI controller operates on the pre-stabilised plant after
hardwiring the internal feedback loop with C(z). However,
doing so also introduces time-delay in the feedback design,
hence a relatively poor PI performance is anticipated.

5.2 Nominal Unconstrained Performance

The unconstrained closed-loop performance in the absence
of disturbance and modelling uncertainty is analysed first,
with the results shown in Fig. 4. The temperature step
response (top figure) achieved with PPFC and standard
PFC is smooth and monotonically convergent. Neverthe-
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Fig. 4. Unconstrained performance without external per-
turbations (nominal case)

less, the tuning parameter ρ appears to have stronger link-
age with the output after pre-stabilisation; that is, tuning
will be easier and more intuitive in practice with PPFC.
On the other hand, the response with the PI controller is
rather oscillatory in the beginning, possibly due to the
effect of time-delay in the error computation. Overall,
the PI controller seems to have the slowest performance
amongst the three choices. On the other hand, the jacket
temperature control (bottom figure) corresponds to the
associated step performance and demonstrates similar be-
haviour. Evidently, the fastest PPFC response is due to an
aggressive control action, peaking at approximately 0.1◦F ,
as opposed to the other two with slightly lower peak values.
While there is no remarkable difference in the nominal
performance, it hardly portrays the true picture and the
effect of external perturbations must also be considered for
a more complete evaluation.

5.3 Constrained Performance in a Practical Situation

In this section, the effects of external perturbations on
closed-loop performance are studied. Consider the sce-
nario when a sudden process variation increases the jacket
feed temperature by approximately 10% of the planned
value. This is simulated as a constant disturbance signal
introduced at the plant input around the 55th minute of
operation. The simulation results are depicted in Fig. 5.
Clearly, both the standard PFC and the PI controllers
respond poorly, immediately driving the system into in-
stability. Moreover, the controllers appear highly sensitive
as suggested by the aggressive input activity soon after the
introduction of disturbance. This inevitably leads to actua-
tor saturation, with possible equipment failure in practice.
The Pre-stabilised PFC, on the other hand, displays com-
mendable tracking with far superior disturbance rejection
characteristic, providing fast and smooth normalisation of

0 20 40 60 80 100
0

0.5

1

1.5

Set point
T [PPFC]
T [PFC]
T [PI]

0 20 40 60 80 100
-0.3

-0.2

-0.1

0

0.1

0.2
TJ [PPFC] TJ [PFC] TJ [PI]

Time

Fig. 5. Constrained performance in the presence of con-
stant disturbance in jacket temperature

operation. Interestingly, apart from the slight deviation
around the 60th minute, the PPFC control performance
appears very similar to the nominal behaviour displayed
in Fig. 4.

Next an unmodelled pole at z = 0.1 is added to analyse the
controllers’ robustness against modelling mismatch with
the results depicted in Fig. 6. While the transient perfor-
mance of the PPFC is slightly affected (a slow target pole
will be better in this case), the benefits of pre-stabilisation
are even more pronounced as the constrained performance
remains recursively feasible and stable throughout. In
comparison, the PI controller clearly fails to accommo-
date the modelling uncertainty with immediate output
divergence along with input and rate constraint violations.
Interestingly, the standard PFC also destabilises, although
this becomes apparent only around the 100 minute mark,
owing to the use of unreliable and numerically infeasible
divergent open-loop predictions in the decision making. In
practice, this leads to spoiled product and financial loss to
the manufacturer.

To conclude, the Pre-stabilised PFC appears to be the
most reliable choice for the temperature control of Jack-
eted CSTR process in the presence of disturbances and
modelling uncertainty.

6. CONCLUSION

This paper has presented the concept of pre-stabilised pre-
dictive functional control for unstable open-loop dynamic
systems. An analytical approach to designing the pre-
stabilising compensator is proposed, which is fairly simple
and intuitive, and works well in combination with PFC.
Specifically, it preserves the simplistic PFC parameter
tuning and adds reliability, but at the cost of slightly
more onerous constraint management. Nevertheless, the
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Fig. 6. Constrained performance in the presence of plant-
model mismatch

overall advantage of pre-stabilisation in terms of closed-
loop performance compared to a standard PFC and PI
control has been observed in simulation studies, which also
guarantees reliable operation in the presence of external
perturbations.

While this study has highlighted the key benefits of pre-
stabilisation using one application, in future, the authors
plan to extend the scope of validation across a range of
case-studies and real-time experiments. The future work
will also focus on a more rigorous analysis of loop sensitiv-
ity to gain better understanding. Furthermore, a possible
extension to accommodate a variety of challenging sce-
narios, including non-minimum phase and poorly damped
dynamics, is also under development.
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