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Abstract:  This paper presents rigorous analytical solutions for cavity contraction analysis of a 

thick-walled cylinder/sphere after an arbitrary magnitude of expansion. Closed-form solutions are 

given for the distribution of stress and displacement within the cylinder/sphere of soil that is 

subjected to constant external pressure and monotonically decreasing internal pressure. The soil is 

modelled as an elastic-perfectly plastic material obeying the Mohr-Coulomb yield criterion and a 

non-associated flow rule. Large strain effects are taken into account by adopting the logarithmic 

strain definition in the plastic deformation analysis. The new solutions are validated with published 

results at first, then parametric studies are carried out. It is shown that the reference stress state (e.g. 

in-situ, elastic, partially plastic and fully plastic) and the cavity geometry ratio may greatly affect 

the unloading behaviour, in particular, when the cavity geometry ratio is smaller than a limit value. 

Finally, three typical applications of the solutions are demonstrated, including (i) design of the 

thickness of frozen cylinder walls accounting for large deformation effects, (ii) interpretation of 

laboratory pressuremeter tests with consideration of effect of the constant stress boundary, and (iii) 

shakedown analysis of a soil cylinder/sphere considering its geometry changes upon cyclic loading 

and unloading. 

Keywords:  Cavity contraction; Boundary effect; Shakedown; Pressuremeter; Frozen earth wall 
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Introduction 1 

Cavity contraction theory is concerned with the theoretical study of changes in stresses and 2 

displacements of cylindrical and spherical cavities upon unloading. It provides a versatile and 3 

accurate tool for study of a variety of geotechnical problems. Among them are the interpretation 4 

of pressuremeter tests (Ferreira & Robertson, 1992; Houlsby et al., 1985; Houlsby & Withers, 5 

1988; Jefferies, 1988; Schnaid et al., 2000; Shuttle, 2007; Withers et al., 1989; Yu, 1996) and 6 

analysis of stability and deformation associated with underground excavation, tunneling and 7 

drilling (Brown et al., 1983; Carter, 1988; Chen et al., 2012; Jirari et al., 2020; Mair & Taylor, 8 

1993; Mo & Yu, 2017; Ogawa & Lo, 1987; Vrakas & Anagnostou, 2014; Yu & Rowe, 1999). 9 

In the modelling of pressuremeter tests during unloading, the cavity contraction analysis 10 

normally starts from a residual (elastic-plastic) stress state that was induced by previous loading 11 

(e.g. installation and expansion of pressuremeters). However, it is usually assumed that the soil 12 

is unloaded from an in-situ elastic stress state in the stability and deformation analysis of tunnels 13 

and wellbores. Hence, corresponding cavity contraction analyses involve different complexity. 14 

Both cases will be considered in this study. 15 

Cavity contraction approaches for modelling pressuremeter tests were advocated mainly 16 

because the unloading response of pressuremeters is less sensitive to the initial soil disturbance 17 

(Hughes & Robertson, 1985; Schnaid & Houlsby, 1992). Over the years, a number of solutions 18 

has been developed to derive soil properties from the unloading portion of pressuremeter curves 19 

for both sand (Houlsby et al., 1985; Schnaid et al., 2000; Withers et al., 1989; Yu, 1996) and 20 

clay (Ferreira & Robertson, 1992; Houlsby & Withers, 1988; Jefferies, 1988). For example, 21 

assuming the cavity unloading from the limit expansion state, Houlsby and Withers (1988) 22 

derived an analytical solution for both cylindrical and spherical cavities in clays obeying the 23 

Tresca failure criterion. Using a non-associated Mohr-Coulomb plasticity model, Houlsby et al. 24 

(1985) first developed an approximate small strain solution for interpreting the unloading 25 

portion of pressuremeter curves in sands, which was extended later by Withers et al. (1989) to 26 

include the case of a spherical cavity. Later on, Yu and Houlsby (1995) presented a more 27 

rigorous large-strain solution for the analysis of unloading from any elastic-plastic stress state 28 

adopting the same soil model. These unloading solutions are also of great importance for the 29 

interpretation methods that consider both the loading and unloading portions of pressuremeter 30 

tests (Jefferies, 1988; Schnaid et al., 2000). Nevertheless, almost without exception, the 31 

previous analytical solutions for elastic-plastic contraction analysis have been developed with 32 

the idealization that the surrounding soil is infinitely large. This assumption may approximately 33 

represent the field conditions of site pressuremeter tests but is not suitable for tests performed 34 

in small-sized containers due to the possible lateral boundary effects (Alsiny et al., 1992; Fahey 35 
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& Carter, 1993; Geng et al., 2012; Jewell et al., 1980; Schnaid & Houlsby, 1991). To capture 36 

the boundary effects, many analytical/semi-analytical expansion solutions for cavities within a 37 

bounded soil mass have been proposed (Cheng & Yang, 2019; Fahey, 1986; Juran & BenSaid, 38 

1987; Pournaghiazar et al., 2013; Salgado et al., 1998; Yu, 1992, 1993). However, the progress 39 

in developing counterpart contraction solutions in bounded soils lags much behind due to the 40 

presence of residual stresses that makes the mathematics of the unloading analysis more 41 

complex than that of loading. Existing elastic-plastic loading-unloading studies into this 42 

problem mainly focused on the shakedown behaviour of a thick-walled cylinder or sphere, 43 

which usually involves elastic unloading only and is lack of consideration for the deformation 44 

(Gao et al., 2015; Hill, 1950; Wen et al., 2017; Xu & Yu, 2005; Zhao & Wang, 2010). 45 

Cavity contraction analysis from an in situ stress state can be regarded as a reverse process 46 

of traditional cavity expansion analysis (Chadwick, 1959; Collins & Yu, 1996; Yu & Rowe, 47 

1999). As such, the solution methods between them are transferable. Meanwhile, the elastic 48 

initial stress state is relatively simple. Hence, many relevant analytical/semi-analytical 49 

contraction solutions have been developed in this case over the years (Brown et al., 1983; Chen 50 

& Abousleiman, 2016; Mo & Yu, 2017; Park, 2014; Sharan, 2008; Vrakas & Anagnostou, 2014; 51 

Yu & Rowe, 1999; Yu et al., 2019). Likewise, most of them concentrated on the case of a cavity 52 

embedded in an infinite soil mass, which represents a reasonable simplification for the problem 53 

of deep tunnels and un-reinforced boreholes. However, this is not suitable for the unloading 54 

analysis of thick-walled soil cylinders or shallow tunnels (Abdulhadi et al., 2011; Franza et al., 55 

2019; Grant, 1998; Mair, 1979), for example, in the stability and deformation analysis of 56 

controlled ground freezing involved tunnels and boreholes, in which the finite thickness of the 57 

frozen earth wall must be well accounted for (Andersland & Ladanyi, 2004; Sanger & Sayles, 58 

1979; Zhang et al., 2018). 59 

In this paper, we present analytical large strain solutions for contraction analysis of a thick-60 

wall cylinder/sphere of dilatant elastic-plastic soils using the Mohr-Coulomb yield criterion and 61 

a non-associated flow rule. Without loss of generality, an arbitrary residual stress state 62 

(including in-situ, elastic, partially plastic and fully plastic) induced by loading prior to the 63 

unloading is considered. The solutions at first are compared with other solutions in the special 64 

case of an infinite soil mass for validation. This is followed by parametric studies with a focus 65 

on the effects of soil thickness and loading history on cavity contraction behaviour. Finally, 66 

three typical applications of the new solutions are presented to show their usefulness, including 67 

(i) preliminary design of the thickness of frozen cylinder walls, (ii) prediction of pressuremeter 68 

curves measured in calibration chambers in sand, and (iii) determination of the optimal 69 

thickness of a hollow cylinder/sphere based on the shakedown concept considering the large 70 
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deformation effects. 71 

Problem definition and reference stress state 72 

Problem definition 73 

Initially, the inner and outer radii of the soil cylinder/sphere are 0a  and 0b , respectively, and 74 

a hydrostatic pressure p0 acts throughout the soil which is assumed to be isotropic and 75 

homogeneous. An additional radial pressure in 0p p  ( 0 ) is then applied at the inner wall of 76 

the cavity and increased gradually (i.e. loading). At the end of the loading process (i.e. 77 

in 20p p  ), the inner and outer radii of the cylinder/sphere are 20a   and 20b  , respectively. 78 

Subsequently, the radial pressure acting on the inner cavity wall reduces monotonically (i.e. 79 

unloading). During the loading and unloading processes, the internal cavity pressure is applied 80 

or removed sufficiently slowly, thus the dynamic effects are negligible, and the radial confining 81 

pressure at the outer wall of the cavity remains unchanged as 0p . The major concern of this 82 

paper is the distribution of stress and displacement in the cylinder/sphere of soil during the 83 

unloading process. 84 

The unloading analyses of cylindrical and spherical cavities are conducted simultaneously 85 

by the introduction of a parameter k which takes 1 for a cylindrical cavity and 2 for a spherical 86 

cavity. For convenience, the behaviour of the cylindrical cavity is described in terms of 87 

cylindrical polar coordinates (r, θ, z) and the behaviour of the spherical cavity is described in 88 

terms of spherical polar coordinates (r, θ, ϕ). As a long cylindrical cavity is considered, its 89 

expansion and contraction occur under plane strain conditions with respect to the z-direction of 90 

the cylindrical coordinates. 91 

Under axisymmetric/spherically-symmetric conditions, the equilibrium equation in the radial 92 

direction can be expressed as: 93 

 d
0

d

r
r

k

r r


                                   (1) 94 

where σr and σθ represent the radial and circumferential stresses, respectively. 95 

The configuration of the system at the completion of loading is used as a reference state from 96 

which the stress and displacement of the unloading process are measured. For clarity, subscripts 97 

‘0’, ‘1’ and ‘2’ are used in this paper to distinguish the in-situ (or initial) state, the loading 98 

process and the unloading process (e.g. Figure 1). The residual stresses and radial displacement 99 

during unloading are expressed as: 100 
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2 20r r r
                                        (2) 101 

2 20                                         (3) 102 

2 20 2 0=u u u r r                                   (4) 103 

where 2r
 , 2  and 

2u represent radial stress, circumferential stress, and radial displacement 104 

during unloading, and 20r
 , 20  and 

20u  represent their values at the end moment of loading 105 

(or beginning of unloading), respectively. r
 ,   and u  are changes in the radial stress, 106 

the circumferential stress and the radial displacement due to unloading, respectively; 2r  is the 107 

radial coordinate of a soil particle during unloading, and 0r  indicates its original location. 108 

Taking tensile as positive, the stress boundary conditions during unloading are defined as: 109 

2 2
2 2r r a

p


    ,   
2 2

2 0r r b
p


                     (5 a,b) 110 

The surrounding soil is modelled as a linearly elastic-perfectly plastic material obeying the 111 

Mohr-Coulomb criterion and a non-associated flow rule. The soil behaves elastically and obeys 112 

Hooke's law until the onset of yielding. Depending on the loading history, possible reference 113 

stress states within the finite soil medium at the beginning of unloading can be generally divided 114 

into three cases as shown in Figure 1, namely (I) purely elastic state (including the case of 115 

20 0p p ); (II) partially plastic state; and (III) fully plastic state. In Figure 1, c1 denotes the 116 

radius of the elastic-plastic boundary during the loading phase, c20 represents its value at the 117 

end of loading (or the beginning of unloading), and c2 denotes the outer radius of the loading-118 

induced plastic zone during unloading. Note that the axial stress σz in the cylindrical case is 119 

assumed to be the intermediate principal stress for the sake of analytical solutions, and it has 120 

been shown that the errors that may be caused in the associated stress and displacement fields 121 

by this simplification are negligible for practical purpose (Reed, 1986; Vrakas & Anagnostou, 122 

2014). 123 
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Figure1. Definition of the loading and unloading processes 

As the cavity pressure p2 reduces from p20, the surrounding soil contracts purely elastically 124 

at first (i.e. the elastic unloading phase in Figure 1). With further removal of the internal 125 

pressure, plastic yielding occurs in the reverse direction (referred to as ‘reverse yielding’) once 126 

the residual stresses satisfy the Mohr-Coulomb yielding criterion under unloading, which 127 

initiates from the inner wall of the cavity (i.e. the partially plastic unloading phase in Figure 1). 128 

The outer radius of the reverse plastic zone is denoted as d2, and its corresponding position at 129 

the fully loaded state (i.e. the reference state) is denoted as d20. Upon further unloading, the 130 

entire soil annulus or spherical shell may enter the plastic state (i.e. fully plastic unloading phase 131 

in Figure 1). In the reverse plastic zone, the circumferential stress becomes the major principle 132 

stress and the yielding function can be expressed as: 133 

2 2r
Y                                     (6) 134 

where    = 1 sin 1 sin    ;  2 cos 1 sinY c    .   is the angle of friction and c is 135 

the cohesion of soil. It has been proven that Equation (6) is satisfied throughout the whole 136 

unloading process for any soil (Vrakas & Anagnostou, 2014; Yu & Houlsby, 1995). 137 
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Reference stress state for unloading 138 

The soil model adopted in this study is the same as that was used by Yu (1992, 1993) in the 139 

loading analysis of a cylinder/sphere. At first, following Yu (1992, 1993), the distribution of 140 

stress in the soil during loading is presented to provide a reference for the analysis of the 141 

subsequent unloading process. 142 

Upon uniform and monotonic loading, the surrounding soil behaves elastically before the 143 

cavity pressure reaches the elastic limit 1elimp , and the distribution of the elastic stresses is 144 

known as: 145 

 
 

1

1 1

1 0 1 0 1

1 1

1
( )

1

k

r k

b r
p p p

b a







   


                                (7) 146 

 
 

1

1 1

1 0 1 0 1

1 1

1
( )

1

k

k

b r k
p p p

b a






      


                           (8) 147 

   
  

1

0 1 1

1elim 0 1

1 1

1 1

/ 1 1

k

k

Y p b a
p p

k b a



 





         
  

                      (9) 148 

When the cavity pressure increases to be larger than 1elimp , the distribution of stresses is 149 

defined as: 150 

   
 1

1 1 1 11
k

r Y A c r

 



                                   (10) 151 

    
 1

1 1 1 11
k

Y A c r



  


                             (11) 152 

for a1≤r1≤c1 (i.e. the loading plastic zone), and 153 

  1

1 0 1 1 1 1
k

r
p B b r                                         (12) 154 

  1

1 0 1 1 1 1
k

p B b r k                                      (13) 155 

for c1≤r1≤b1 (i.e. the loading elastic zone). In which, 156 

   
    

0

1 1

1 1

1 1

1 1 1
k

k Y p
A

k k c b

 

   

     
     

                    (14) 157 
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 
  

0

1 1

1 1

1

1 1
k

Y p
B

k b c



 

 


  
                               (15) 158 

The radius of the elastic-plastic boundary upon loading (i.e. 1c ) can be determined by: 159 

 
      

   

1
1

1 1 1

1 1

0

1 1

1 1

k
k k c b k Y p

c a
k Y p




  

 


          

     
      (16) 160 

With sufficiently large loading, the entire soil mass of a finite radial extent may become 161 

fully plastic (i.e. 1 1c b ). The distribution of stress in this phase can also be determined by 162 

Equations (5 a,b), (10) and (11) by replacing c1 with b1 therein. 163 

At the beginning of unloading, 1 20a a , 1 20b b  and 1 20p p . According to the difference 164 

in the residual stress state and the corresponding geotechnical applications, solutions for the 165 

unloading analysis from an in-situ (or elastic) stress state and a plastic reference stress state will 166 

be derived separately in the following two sections for clarity. 167 

Solutions for unloading from an in-situ/elastic stress state 168 

This section focuses on the analysis of a cavity unloading from an elastic stress state (namely, 169 

case I in Figure 1, 0 20 1elimp p p  ). In this case, the unloading from 20p  back to 0p  is a 170 

reverse process of the previous elastic loading (fully recoverable). Thus, the distribution of 171 

stress and strain during this process can be readily obtained by the corresponding loading 172 

solution (e.g. (Yu, 1992, 1993)). Hence, the following analysis is carried out with reference to 173 

an in-situ stress state for brevity. 174 

Elastic unloading analysis 175 

In the elastic unloading analysis, the small strain definition (e.g. Equations (17) and (18)) is 176 

adopted as the elastic deformation is rather small (Houlsby & Withers, 1988; Yu & Houlsby, 177 

1995). This is commonly used in quasi-static cavity expansion and contraction analyses and 178 

consistent with the counterpart expansion analysis of Yu (1992, 1993). Hence, the elastic stress-179 

strain relationships in rate forms are: 180 

 
2

2 2

2

d 1

d 1 2
r r

u kv

r M v k
  

 
      

                             (17) 181 

   2

2

1
= 1

1 2
r

u v
v kv

r M v k
   

 
    

   
                     (18) 182 
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where εr and εθ denote radial and circumferential strains, respectively. v is the Poisson’s ratio. 183 

 21 2M E v k      ; E is the elastic modulus of soil, and E=2G(1+v); G is the shear 184 

modulus of soil. 185 

Changes in the stresses and radial displacement due to purely elastic unloading from 0p  to 186 

2p  can be determined by solving the stress equilibrium equation (i.e. Equation (1)) and the 187 

strain compatibility equations (i.e. Equations (17) and (18)) with the stress boundary conditions 188 

defined in Equation (5 a,b) as: 189 

 
 

1

2 2

2 0 2 0 1

2 2

1
( )

1

k

r k

b r
p p p

b a







   


                              (19) 190 

 
 

1

2 2

2 0 2 0 1

2 2

1
( )

1

k

k

b r k
p p p

b a







   


                           (20) 191 

   
     

1 1

2 0 2 2
2 2 1 1

2 22 2 2

1
1 1

1 21 1

k k

k k k

p p r rv
u r v kv

b k v k bMr a b

 

 

                                  
 (21) 192 

Equations (19) and (20) show that σr2 increases and σθ2 decreases upon unloading. Reverse 193 

plasticity occurs once the Mohr-Coulomb yield criterion Equation (6) is satisfied. This 194 

condition is firstly satisfied at the inner wall of the cavity when the internal pressure reaches its 195 

reverse elastic limit 2elim 1p  : 196 

   
  

1

0 2 2

2elim 1 0 1

2 2

1 1

1/ 1

k

k

Y p b a
p p

k b a



 



 

         
  

               (22) 197 

Elastic-plastic unloading analysis 198 

Stress analysis 199 

As the cavity pressure p2 further reduces, a plastic unloading zone a2≤r2≤d2 forms and spreads 200 

outwards from the inner wall of the cavity. The distribution of stress in the soil can be obtained 201 

by considering the plastic zone and elastic zone (i.e. d2≤r2≤b2) separately and matching at the 202 

elastic-plastic interface r2=d2. 203 

In the elastic zone (i.e. d2≤r2≤b2), the unloading-induced changes in the principal stresses 204 

can be obtained by solving the stress equilibrium equation (i.e. Equation (1)) and the strain 205 

compatibility equations (i.e. Equations (17) and (18)) as: 206 
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  1

2 0 2 1 2 2 1
k

r
p B b r 


                               (23) 207 

  1

2 0 2 1 2 2 1
k

p B b r k 


                            (24) 208 

where the integration constant B2-1 can be determined as the yield criterion of Equation (6) is 209 

satisfied at r2=d2, namely 210 

 
  

0

2 1 1

2 2

1

1 1
k

Y p
B

k b d



 
 

 


  
                       (25) 211 

In the reverse plastic zone (a2≤r2≤d2), the principal stresses are determined by jointly solving 212 

the stress equilibrium equation and the Mohr-Coulomb yield criterion as: 213 

     1

2 2 1 2 21 +
k

r Y A d r
  

                          (26) 214 

     1

2 2 1 2 21 +
k

Y A d r


   
                        (27) 215 

where the integration constant A2-1 can be determined from the continuity condition of stress 216 

components at the outer radius of the elastic-plastic interface (i.e. r2=d2) as: 217 

   
    

0

2 1 1

2 2

1 1

1 1 1
k

k Y p
A

k k d b



  
 

      
     

            (28) 218 

Then the cavity pressure 2p   and the radius of the elastic-plastic interface d2 during 219 

unloading can be related based on Equations (5 a), (26) and (28) as: 220 

 

 
 
 

 
1 1

22 2

2 20

1 1
1

1 1

k k
Y pd dk

a k k bY p

 
 



                             
    (29) 221 

While 2p   reduces to the fully plastic limit value 2fp limp   , the entire soil medium will 222 

become plastic. Equation (29) gives: 223 

     10

2fp lim 0 2 2

1
1

1

kY p
p p b a







      
           (30) 224 

Displacement analysis 225 

In the elastic unloading zone (d2≤r2≤b2), the radial displacement at 2r   can be obtained by 226 

integrating Equations (17) and (18) with the inputs of Equations (23) and (24) as: 227 
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     

1

2 1 2 2
2 2

2

1
1

1 2 1 2

k

B r bv v v kv
u r v kv

M v k v k k r




                       

   (31) 228 

At the elastic-plastic interface and the outer wall of the cavity, we have: 229 

 20 2 2 2d d u d   ,   20 2 2 2b b u b                  (32a, b) 230 

In the displacement analysis within the plastic unloading zone (a2<r2<d2), a non-associated 231 

flow rule (i.e. ψ is not necessarily equal to  ; ψ is the dilation angle of soil) is adapted, and ψ 232 

is assumed to be constant to limit the complexity of the model so that closed-form solutions 233 

can be obtained. The non-associated flow rule is expressed as: 234 

=
p e

r r r

p e
k

  

   
  


 


                              (33) 235 

where    = 1 sin 1 sin    . Note that the dilatancy of soils is in fact not constant (e.g. 236 

tends to zero at critical state). Hence, the above assumption on the dilation angle may lead to 237 

overprediction on the volumetric deformation at large deformation. The superscripts ‘e’ and ‘p’ 238 

represent the elastic and plastic components of strain, respectively. The distribution of stress 239 

and strain in the soil at the initiation of reverse plastic yielding is known with Equations (17)-240 

(20) by putting 2 2elim 1p p  . Subject to this initial condition, the total stress-strain relation in 241 

the reverse plastic zone is obtained by integrating Equations (17), (18) and (33) as: 242 

         2 2 2 0 2 0

1
1 1

1 2 1 2
r r

k v kv
k p k v kv p

M v k v k
 

    
                 

           
243 

(34) 244 

The definition of logarithmic strain is adopted to account for the effects of large strain in the 245 

axisymmetric plastic deformation analysis (Chadwick, 1959; Yu & Houlsby, 1995), namely: 246 

 2 2 0ln d dr r r   ,   2 2 0ln r r                   (35 a,b) 247 

Substituting Equations (10), (11), (26), (27) and (35 a,b) into Eq. (34) leads to: 248 

   12 2
2 2

0 0

d
ln ln

d

k
k

k

r r
d r

r r




                           (36) 249 

where 250 

 
     01 ( 1)

ln 1 1
1 1 2

Y p kv
k v kv

M v k

  


           
    

        (37) 251 
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   
    

   
0

1

2 2

1 1 ( )
= 1 1

1 21 1 1
k

k Y p kv
k v kv

v kkM k d b

   
   

            
          

 (38) 252 

With the aid of the transformation variable   in Equation (39), 253 

   1

2 2 2( )=
k

r d r
                                 (39) 254 

the integration of Equation (36) over [r2, d2] leads to: 255 

 

 2

2

1 1

1 20 0

2 2

d

k k
d

r

d r
e

d d

 
  



  


 

 
    
     
     

                  (40) 256 

where    = 1 1k k       . 257 

Then putting r0=a0 and r2=a2, Equation (40) can be solved with the aid of series expansion 258 

of e
  (i.e. 

1
/ !n

n
e n

 


  , !n  represents the factorial of n ) as: 259 

      
1 1

1 20 0
2 2

0 2 2

1  
!

k k
n

k n

n

d a
d a

n n d d

 
  

 

 


 



                   
      (41) 260 

It is worth noting that the above displacement analysis can be significantly simplified by 261 

ignoring the contribution of elastic strain and/or using the small strain definition within the 262 

plastic zone. For example, the right-hand side of Equation (34) will become zero under the 263 

former assumption (Vrakas & Anagnostou, 2014; Yu & Houlsby, 1995; Yu & Rowe, 1999). 264 

However, to avoid possible errors that are accompanied by these simplifications (Vrakas & 265 

Anagnostou, 2014), they are not attempted in this study.  266 

Fully plastic unloading analysis 267 

When the surrounding soil enters the fully plastic unlading phase (i.e. d2=b2), it is found that 268 

the stress distribution can be obtained directly by replacing d2 with b2 from Equations (26), (27) 269 

and (28) as: 270 

   1

0 2
2

2

1

1 1

k

r

Y p bY

r





 


   

      
                   (42) 271 

   1

0 2
2

2

1

1 1

k
Y p bY

r





 


 

            
              (43) 272 

A large-strain displacement solution for a fully plastic soil cylinder/sphere can be obtained 273 
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by integrating Equation (36) over [a2, b2] as: 274 

 
 

  
2 2

1 1 1

0 02

0 2 2 2

1
!

n
k n k k

d b

n

b ab

n n a b b

    
 

   






        
                     

      (44) 275 

For a cavity unloading from an in-situ stress state (also applicable for unloading analysis 276 

from a loading-induced elastic stress state), all the necessary information for determining the 277 

complete pressure-contraction curve and stress distributions has been given. Results can be 278 

readily obtained following a similar procedure given by Yu (1992, 1993) or in a simplified way 279 

of that will be detailed in the next section. 280 

Solutions for unloading from a partially/fully plastic state 281 

This section presents solutions for the analysis of a cavity unloading from a partially or fully 282 

plastic stress state (namely cases II and III in Figure 1, 20 le limp p ). 283 

Elastic unloading analysis 284 

Initially, the unloading is purely elastic. Upon elastic unloading, changes in the stress and 285 

displacement can be determined by solving Equations (1), (17) and (18), which gives: 286 

 
 

1

2 2

2 20 1

2 2

1
( )

1

k

r k

b r
p p

b a







   


                     (45) 287 

 
 

1

2 2

2 20 1

2 2

1
( )

1

k

k

b r k
p p

b a







  


                    (46) 288 

   
     

1 1

2 20 2 2
2 1 1

2 22 2 2

1
1 1

1 21 1

k k

k k k

p p r rv
u r v kv

b k v k bMr a b

 

 

                                   
(47) 289 

Reverse plasticity occurs once the Mohr-Coulomb yield criterion Equation (6) is satisfied. 290 

This condition is firstly satisfied at the inner wall when the cavity pressure reaches its elastic 291 

limit 2elim 2p  . Combining Equation (6), (10), (11), (45) and (46), it gives: 292 

  
 

 
  

1
1

1 20 20 2 2

2elim 2 20 1

2 2

1 1

1/ 1

k
k

k

A c a b a
p p

k b a


 

 




 

    
  

      (48) 293 

Elastic-plastic unloading analysis 294 

As the cavity pressure p2 further reduces, a reverse plastic zone forms and spreads outwards 295 
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from the inner wall of the cavity (i.e. a2≤r2≤d2). Equations (2) and (3) define that the current 296 

stress state in the soil depends on both the residual stresses due to previous loading and the 297 

stress changes due to unloading. Hence, for a cavity unloading from a partially plastic state (i.e. 298 

case II in Figure 1), the solution needs to be discussed according to the relative size of the 299 

loading-induced plastic zone and the reverse plastic zone as illustrated in Figure 2. The elastic-300 

plastic unloading behaviour of a cavity unloading from a fully plastic state (i.e. case III in Figure 301 

1) is studied simultaneously as follows. 302 

c2d2 b2
a2

r2

o

(a)

 
c2 d2 b2

a2

r2

o

(b)

 

(a) Phase with 2 2 2d c b   (b) Phase with 2 2 2c d b   

Figure2. Distribution of stress states 

Unloading Phase with 2 2 2d c b   303 

(1) Stress analysis 304 

The unloading-induced changes of the principal stresses in the elastic unloading zone (i.e. 305 

d2≤r2≤b2, Figure 2a) can be determined by solving Equations (1), (17) and (18) as: 306 

  1

2 2 2 2 1
k

r
B b r 


                                (49) 307 

  1

2 2 2 2 1
k

B b r k 


                             (50) 308 

In the reverse plastic zone (a2≤r2≤d2), the principal stresses are determined by jointly solving 309 

Equations (1) and (6) as: 310 

     
2

1

2 22 21
k

r Y A d r
  

                      (51) 311 

     1

2 22 2 21
k

Y A d r


  
                    (52) 312 

The constants B2-2 and A2-2 of integration can be determined based on the continuity 313 

condition of stress components at the outer radius of the reverse plastic interface (i.e. at r2=d2) 314 

as: 315 
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  
 

  

1

1 20 20

1

2 2

2 2

1

1 1

k

k

A c d
B

k b d


 

 








  
     (while 2 2 2d c b  )           (53) 316 

   
 1

1

2 2 1 202 2 2 202 1
k

k
A B b d A c d







 
       (while 2 2 2d c b  ) (54) 317 

(2) Displacement analysis 318 

In the elastic unloading zone (d2≤r2≤b2), the radial displacement can be obtained by integrating 319 

Equations (17) and (18) with inputs of Equations (49) and (50) as: 320 

     

1

2 2
2

2

2 2 1
1

1 2 1 2

k

B r bv v v kv
u r v kv

M v k v k k r




                        

 (55) 321 

The below relationship between strain and stress is established with reference to the state at 322 

the completion of unloading, taking a procedure akin to that of obtaining Equation (34). 323 

     
1

1 1
1 2 1 2

r r

k v kv
k k v kv

M v k v k
 

     
                              

(56) 324 

According to the definition of logarithmic strains, 
r

  and   are expressed as: 325 

 2 20ln d dr r r  ,   2 20ln r r                  (57 a,b) 326 

Substituting Equations (57 a,b) into Equation (56) gives: 327 

       
 1

1

2 2 20 20 1 2 2 1 20 20ln d d
k

kk k
r r r r d r c r


   


         (58) 328 

in which 329 

     
2 2

1= 1 1
1 2 1 2

A k v kv
k v kv

M v k v k

  
          

       
      (59) 330 

     
1

1

1
= 1 1

1 2 1 2

A k v kv
k v kv

M v k v k

 


         
       

     (60) 331 

In this case, two transformation variables are introduced, namely: 332 

     1

2 1 2 2=
k

r d r
    ฀  

 1

20 1 20 20( )=
k

r c r

 



      (61 a,b) 333 

Then integrating Equation (58) over the interval [r2, d2] leads to: 334 
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2 20

2 20

( ) ( )
1 1 1 1

2 1 1 1
( ) ( )

d d =0
d d

k k

r r
d e c e

        

 
                  (62) 335 

Placing r20=a20 and r2=a2, Equation (62) can be solved with the aid of infinite series as: 336 

      
1

1 12 1
2 2

0 0

1 0
!

k n
k n

n

n n

d
d a

n n


 



 
 

 

                  (63) 337 

where 338 

 

   
  

 
  

1

20 1 20

201

1 1 1
20 1

20 20 20 20

1
ln                                           ,  if  = 

!

 , otherwise
!

k n

n k n k n k n

kc a
n

n d

c
c d c a

n n



    
 

 




 




    

 

  

      

    (64) 339 

While taking 0b    , the above solution reduces to the large-strain solution of Yu and 340 

Houlsby (1995) for the cavity contraction analysis in an infinitely large soil mass. 341 

Note that the above solution can also be applied in the analysis of a cavity unloading from 342 

a fully plastic stress state before it reaches the reverse fully plastic phase because the condition 343 

of 2 2d c  is always fulfilled in this case. However, care should be exercised in the calculation 344 

of the residual stress field in the soil as it is different between the partially plastic expansion 345 

state and the fully plastic expansion state. 346 

Unloading Phase with 2 2 2c d b   347 

(1) Stress analysis 348 

The unloading phase of 2 2 2c d b   (Figure 2b) is likely to occur in a lightly pre-loaded soil 349 

mass. In this phase, the stress solutions of Equations (49) and (50) for the elastic unloading 350 

zone (i.e. d2≤r2≤b2) and Equation (51) and (52) for the reverse plastic zone (a2≤r2≤d2) are still 351 

valid. However, the constants of integration B2-2 and A2-2 need to be replaced by B2-3 and A2-3 352 

below respectively as the stress conditions at r2=d2 changed. 353 
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  (while 2 2 2c d b  )  (65) 354 
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  (while 2 2 2c d b  ) (66) 355 

Then according to Equation (2) and (3) (i.e. 2 20r r r
      and 2 20       ), the 356 
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changes in stress due to unloading can be readily determined using Equation (10), (11), (51), 357 

(52), (65) and (66) for the zone a2≤r2≤c2 (named as loading plastic and reverse plastic zone) 358 

and Equations (12), (13), (51), (52), (65) and (66) for the zone c2≤r2≤d2 (named as loading 359 

elastic and reverse plastic zone), respectively. 360 

(2) Displacement analysis 361 

In this unloading phase, the radial displacement in the elastic zone (i.e. d2≤r2≤b2) can be 362 

calculated by Equation (55) with the value of B2-3 of Equation (65). 363 

In the reverse plastic zone a2≤r2≤d2 (Figure 2b), a large-strain displacement analysis can be 364 

carried out following the same procedure of deriving Equations (31)-(64). However, due to the 365 

difference in the residual stress field between the zone of a2≤r2≤c2 and the zone of c2≤r2≤d2, the 366 

distribution of displacement in the soil now needs to be derived by considering these two zones 367 

separately, which is continuous at the interface r2=c2. 368 

In the loading-elastic and reverse plastic zone of c2≤r2≤d2, substituting Equations (12), (13), 369 

(51), (52), (57 a,b), (65) and (66) into Equation (56) leads to: 370 

       1 1

2 2 20 20 1 2 2 2 2 20 20ln d d ln
k kk k

r r r r d r b r
                (67) 371 

where 372 

     1 0 1
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ln 1 1
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M v k v k

 


                   
  (68) 373 

     
1

2 = 1 1
1 2 1 2

B k v v
v kv

M v k v k

 
 

     
     

             (69) 374 
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2 3
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       
      (70) 375 

Then the integration of Equation (67) in the interval of [c2, d2] gives: 376 
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where 378 
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  (72) 379 

In the loading-plastic and reverse plastic zone of a2≤r2≤c2, the displacement at r2=a2 can be 380 

obtained by integrating Equation (67) in the interval of [a2, c2], which is: 381 
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    (74) 384 

Reverse fully plastic unloading analysis 385 

With sufficiently large contraction, the cylinder/sphere of soil will enter a fully plastic 386 

unloading phase. This may be reached from either a partially plastic state (i.e. case II in Figure 387 

1) or a fully plastic state (i.e. case III in Figure 1) as studied separately below. 388 

Reverse fully plastic unloading of Case II 389 

This state follows the unloading phase of 2 2 2c d b   that was studied previously. The stress 390 

solution of Equations (51) and (52) still holds in this phase, but 2 2A   and d2 therein need to be 391 

replaced by 2 4A    and b2, respectively. The new integration constant 2 4A    is determined 392 

according to the given stress boundary conditions in Equation (5 a,b) as: 393 

 2 4 0 1A p Y             (while 2 2 2c d b  )         (75) 394 

The distribution of displacement in the soil can be obtained with the same procedure of 395 

deriving Equations (67)-(74), considering the zone a2≤r2≤c2 and the zone of c2≤r2≤b2 separately. 396 

Similarly, it is found that the displacement solution can be obtained by replacing 2 4A   and d2 397 

with 2 4A   and b2, respectively, in Equation (67)-(74). 398 

Reverse fully plastic unloading of Case III 399 

This is for the fully plastic unloading analysis of the case that the soil cylinder/sphere was 400 
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previously loaded to be fully plastic ( 2 2c b ). In this case, the stress distribution in the soil can 401 

be obtained by Equation (51) and (52), replacing d2 and 2 2A   with b2 and the new constant 402 

2 5A   (i.e. Equation (76)), respectively. 403 

 2 5 2 4 0 1A A p Y              (while 2 2 2c d b  )         (76) 404 

The large-strain displacement of the surrounding soil during this fully plastic unloading 405 

phase can be described by Equations (55), (56), (59) and (60) as well while replacing d2, 1c , 406 

and 2 2A   therein with b2, b2 and 2 5A  , respectively. 407 

Solution procedure 408 

All the necessary information for determining the pressure-contraction curve and stress 409 

distributions has been given. As the pressure-expansion relationship is not expressed in terms 410 

of a single equation, it is instructive to summarize the procedure that can be used to construct 411 

the complete pressure-contraction curve as below: 412 

(1) Choose input soil parameters: E, v, c, φ, ψ; in-situ stress: p0; cavity geometry information: 413 

k, b0 and a0; and the reference state parameter: a20; 414 

(2) Calculate the derived parameters G, Y, α, β, γ, M and the reverse limit 2elim 2p  (Equation 415 

(48)); 416 

(3) Calculate the pressure-expansion curve in the loading process until the inner cavity radii 417 

reaches a20, and then record c20, b20, and p20 for elastic-plastic loading process, or b20 and p20 418 

for fully plastic loading process. The solution procedure is available in Yu (1992, 1993); 419 

(4) Calculate A1 and B1 from Equations (14) and (15), respectively, with the known value of 420 

c20 and b20. The stress field at the end of loading process (σr20 and ∆σθ20) can be obtained from 421 

Equations (10) and (11) for the plastic zone and Equations (12) and (13) for the elastic zone; 422 

(5) For elastic unloading analysis, choose a pressure p2 (p20<p2< 2elim 2p  ) and calculate ∆σr 423 

and ∆σθ from Equations (45) and (46), respectively. Then the distribution of stress can be 424 

obtained from Equations (2), (3) and (10)-(13). And the relative displacement ∆u could be 425 

calculated from Equation (47); 426 

(6) If p2< 2elim 2p  , elastic-plastic (a20<c20<b20) or fully plastic (c20=b20) unloading analysis is 427 

needed; 428 

(7) In the case of a20<c20<b20 (Case II in Figure 1): 429 
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(a) while 2 2 2d c b   , choose a value of d20 (a20<d20<c20), calculate d2 and b2 from 430 

Equation (55) with the known value of d20 and b20; then calculate a2 from Equations (63) and 431 

(64) with the known values of d2, d20, b2 and c20, and p2 from Equations (51) and (54). 432 

When d20, d2, b2 are known, B2-2 and A2-2 can be calculated from Equations (53) and (54), 433 

and then the distribution of stress can also be derived from Equations (49)-(52). 434 

(b) while 
2 2 2c d b   , choose a value of d20 (c20<d20<b20), calculate d2 and b2 from 435 

Equation (55) with the known value of d20 and b20; calculate c2 from Equations (71) and (72) 436 

with the known values of d2, d20, b2 and c20; calculate a2 from Equations (73) and (74); then 437 

calculate p2 from Equation (51) by setting r2=a2. Note that in all calculations of this phase, 438 

A2-2 and B2-2 need to be replaced by A2-3 and B2-3 (Equations (65) and (66)), respectively; 439 

With the values of A2-3, B2-3, b2 and d2, the distribution of stress components can be 440 

calculated from Equations (49)-(52) by replacing A2-2 and B2-2 with A2-3 and B2-3, respectively. 441 

(c) while d2=b2, choose a value of b2/c2 (greater than b20/c20), calculate c2 and b2 from 442 

Equations (71) and (72); calculate a2 from Equations (73) and (74) with the known values of 443 

b2 and c2; then calculate p2 from Equation (51) with r2=a2. In this phase, A2-2 in the relevant 444 

equations needs to be replaced by A2-4 (Equation (75)), and the stress components can be 445 

obtained from Equations (51) and (52). 446 

(d) For the case of c20<b20, repetition of steps of (a) and (b) for varying d20, and (c) for 447 

varying b2/c2 provides the data for a complete pressure-contraction curve. 448 

(8) In the case of c20=b20 (Case III in Figure 1): 449 

(e) while d2< c2=b2, step (a) still holds; 450 

(f) while c2= d2= b2, choose a value of b2/c2 (greater than the value of b2/c2 in the previous 451 

step), calculate b2 and a2 from Equations (63) and (64); then calculate p2 from Equation (51) 452 

with r2=a2. In this phase, A2-2 in the relevant equations needs to be replaced by A2-5 (Equation 453 

(76)). Similarly, the distribution of stress components can be obtained from Equations (51) 454 

and (52) by replacing A2-2 by A2-5. 455 

Repetition of steps of (e) for varying d20 and (f) for varying of b2/a2 provides the data for 456 

complete pressure-contraction curve. Note that, for the cases in a frictionless soil, results can 457 

be calculated with the above solutions using very small φ values. 458 
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Solution validation and result analysis 459 

Unloading curves from an in-situ stress state 460 

At first, the unloading solution from an in-situ stress state is validated by comparing with the 461 

solution of Vrakas and Anagnostou (2014) in the special case of a cavity in an infinite soil mass. 462 

Taking the material parameters: p0=22.5MPa, E=2000MPa, c=0.25MPa, φ=23o, ψ=3o and 463 

v=0.25 that were used by Vrakas and Anagnostou (2014), both the pressure-contraction curve 464 

and the distribution of stresses and the radial displacement at the moment of p2=0MPa were 465 

calculated, and they are compared with those obtained by Vrakas and Anagnostou (2014) in 466 

Figure 3. The comparisons in Figure 3 indicate that their solution can be recovered by the 467 

present solution assuming 0 0/b a   , neglecting the out-of-plane plastic flow effect which 468 

proved to be insignificant (Reed, 1986; Vrakas & Anagnostou, 2014). 469 

  

(a) pressure-contraction curve.    (b) distribution of stresses and radial displacement. 

Figure3. A cylindrical cavity unloading from an in-situ stress state (Sedrun section of the 

Gotthard Base Tunnel (Vrakas & Anagnostou, 2014)) 

  

(a) cylinders (b) spheres 

Figure4. Pressure-contraction curves with varying b0/a0 
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To indicate the effects of the cavity geometry ratio b0/a0, example cavity pressure-470 

contraction curves with different values of b0/a0 are computed using the same material 471 

parameters as above. The results in Figure 4 show that the value of b0/a0 greatly influences the 472 

cavity unloading behaviour when it is smaller than a limit value for both hollow cylinders and 473 

spheres. The value of this limit ratio varies with soil properties and is generally smaller for a 474 

hollow sphere than a cylinder. With the same level of contraction (e.g. (a20-a0)/a0), the 475 

magnitude of unloading (e.g. (p20-p0)/p0) is smaller for a thinner cylinder/sphere of soil while 476 

b0/a0 is smaller than the limit ratio. In other words, with the same magnitude of unloading, 477 

greater radial contraction may occur for a thinner hollow cylinder/sphere. Tunneling involves 478 

the removal of soil/rock masses from their initial locations, and this is analogy to the problem 479 

of cavity unloading from an in-situ stress state (Mair & Taylor, 1993; Mo & Yu, 2017; Ogawa 480 

& Lo, 1987; Vrakas & Anagnostou, 2014; Yu & Rowe, 1999). Experimental results (e.g. (Franza 481 

et al., 2019)) have shown that the ground response curves (GRCs) of shallow tunnels in sands 482 

vary with the tunnel depth ratio (e.g. soil cover depth/tunnel radius) in a very similar fashion as 483 

that is shown in Figure 4. 484 

Apart from the geometry ratio b0/a0, soil strength and stiffness parameters also affect the 485 

cavity unloading behaviour. Their influences are akin to those observed in unloading analyses 486 

of a cavity in an infinite soil mass, which can refer to the results of Yu and Rowe (1999) and 487 

Vrakas and Anagnostou (2014). 488 

Unloading curves from a partially/fully plastic state 489 

Using the same soil model, Yu and Houlsby (1995) developed an analytical large-strain solution 490 

for unloading analysis of an infinite soil mass under a loading-induced partially plastic state. 491 

The paper extended their solution to the more general case of a hollow cylinder/sphere of soil. 492 

For validation, results obtained by these two solutions are compared in Figure 5. It is shown 493 

that the present solution can exactly recover to their solution, taking 0 0/b a   . Note that the 494 

solutions of Yu (1992, 1993) were used to calculate the expansion curves and the reference 495 

stress state in the validation and following analyses. 496 
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Figure5. Comparison with results of Yu and Houlsby (1995) (E/p0=1300, v=0.3 and c=0). 

To show the effects of the reference stress state on the unloading behaviour of a finite soil 497 

mass, a selection of results of loading and unloading curves with different magnitudes of 498 

preloading and values of b0/a0 are presented in Figures 6-9. The soil parameters of φ=40o, ψ=20o, 499 

v=0.3, c=0 and E/p0=1300 were used. In Figures 6 and 7, two typical ratios of the initial outer 500 

to inner radii of a finite soil mass are considered (e.g. b0/a0=10000 or b0/a0=5), and the 501 

unloading is assumed to start after different magnitudes of expansion (i.e. a20/a0). In Figures 8 502 

and 9, loading and unloading curves with different values of b0/a0 are plotted, in which the 503 

applied cavity pressure is removed when the expansion ratio a20/a0 is equal to 3 and 1.15, 504 

respectively. In the figures, the triangle represents the point when the elastic-plastic interface 505 

reaches the outer boundary of the hollow cylinder/sphere during loading (i.e. c1=b1); the circle 506 

for each curve represents the point when plastic unloading occurs (i.e. d2=a2). 507 

  

(a) b0/a0=10000 (b) b0/a0=5 

Figure6. Unloading curves of soil cylinders from varying reference stress states 
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(a) b0/a0=10000 (b) b0/a0=5 

Figure7. Unloading curves of soil spheres from varying reference stress states 

  

(a) cylinders (b) spheres 

Figure8. Variation of loading and unloading curves with b0/a0 (a20/a0=3) 

  

(a) cylinders (b) spheres 

Figure9. Variation of loading and unloading curves with b0/a0 (a20/a0=1.15) 
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contractions in the elastic unloading phase (i.e. Equations (45)-(47)). The unloading curves in 509 

the non-dimensional plot of p2/p0 against a2/a0 are almost linear and parallel with each other in 510 

this phase. Although the slope of the unloading curve is insensitive to the initial geometry ratio 511 

b0/a0 and the previous loading history (e.g. a20/a0), these factors affect the maximum amount of 512 

the stress reduction during elastic unloading. Due to the residual stresses generated during 513 

previous loading (i.e. the so-called ‘overstrain’ effect (Hill, 1950; Zhao & Wang, 2010)), the 514 

elastic unloading process is much longer than the initial elastic loading process.  515 

The above intrinsic characteristics of the elastic unloading process have been used in various 516 

applications such as the control of unloading-reloading loops of pressuremeter tests and the 517 

shakedown analysis. As pointed out by Wroth (1982), the soil stiffness can be obtained from 518 

the unloading-reloading loop of self-boring pressuremeter tests. While conducting unloading-519 

reloading loops, it is important to ensure that the loop deformation remains in an elastic state. 520 

For a linear elastic-perfectly plastic Mohr-Coulomb material, Equations (10) and (48) can be 521 

used to determine the maximum reduction of the effective pressure allowed for elastic 522 

unloading in pressuremeter tests. In an infinite soil mass, the maximum cavity pressure 523 

reduction is a function of soil strength parameters (e.g. friction angle and cohesion) and the 524 

loading-induced stress state (e.g. p20) (Wroth, 1982; Zhao & Wang, 2010). However, it also 525 

varies with the value of b0/a0 for the unloading of a finite soil mass (e.g. Figures 6(b), 7(b), 8 526 

and 9). An example application to the shakedown analysis will be given in the next section. 527 

Once the cavity pressure reduces to be smaller than the elastic limit (i.e. Equation (48)), the 528 

unloading curve becomes highly non-linear as reverse yielding occurs in the soil. The radial 529 

convergence accelerates as the plastic region spreads out with smaller internal confining 530 

pressure. When the cavity pressure reaches a sufficiently low value, the radial convergence 531 

increases sharply until the inner cavity is filled. In general, the speed of transition from a purely 532 

elastic state to the steady or limit state during unloading is much faster than that occurred in the 533 

initial loading process, and it varies with the cavity shape (normally, it is faster for a spherical 534 

cavity than a cylindrical cavity). The minimum internal pressure that the soil can sustain mainly 535 

depends on the soil strength parameters as defined in Equation (51), for example, it is close to 536 

zero for cohesionless soils but could be negative for cohesive soils or rocks. Figures 6-9 show 537 

that this limit value of unloading pressure does not significantly vary with the value of b0/a0 538 

and the loading history. 539 

As mentioned previously, experimental studies on both self-boring and full-displacement 540 

pressuremeters (Hughes & Robertson, 1985; Schnaid & Houlsby, 1992) have shown the 541 

unloading portion of pressuremeter curves is less sensitive to initial soil disturbance than the 542 

loading portion. This is consistently observed in the results of Figures 6-9. Besides, the results 543 
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indicate that the shape of the unloading curve is also less sensitive to the geometry ratio b0/a0 544 

than the loading curve in a finite soil mass. This suggests that the use of the unloading curve of 545 

pressuremeter tests to measure the soil properties may also help to remove the boundary effects 546 

that are commonly encountered in small-sized calibration chambers. 547 

Example geotechnical applications 548 

Thickness of frozen cylinder earth walls 549 

Artificial ground freezing has been widely used to stabilize temporarily the ground in order to 550 

provide ground support and/or exclude groundwater from an excavation until the final retaining 551 

and lining structures are constructed (Andersland & Ladanyi, 2004; Sanger & Sayles, 1979; 552 

Viggiani & Casini, 2015; Zhang et al., 2018). From a structural point of view, determination of 553 

the geometry and the thickness of a frozen wall is one of the main concerns for practitioners. 554 

Because of the relatively high compressive and low tensile strengths of frozen soil, curved arch 555 

walls, particularly circular walls, are often selected with priority. The unloading model of a 556 

cylinder unloading from an in-situ stress state that was studied previously has been commonly 557 

used to determine the thickness of a circular frozen wall (Andersland & Ladanyi, 2004; Klein 558 

& Gerthold, 1979; Sanger & Sayles, 1979). For example, assuming 
2 2

2 0r r b
p


    and 559 

2 2
2 0r r a




  (i.e. no internal support), Sanger and Sayles (1979) proposed Equation (77) to 560 

estimate the minimum thickness of a cylinder wall. Klein and Gerthold (1979) extended this 561 

solution to the case where the internal pressure acting on the wall equals 2p   (i.e. 562 

2 2
2 2r r a

p


  ), thereby Equation (78) was given. These solutions were obtained by solving 563 

the equilibrium equation (1) and the Mohr-Coulomb yield function (6). Therefore, they can be 564 

recovered by Equation (26) or (30) considering the boundary conditions they adopted. 565 

  1 0
0 0

cot

cot

p c
b a

c

 


 
                               (77) 566 

  1 0
0 0

2

cot

cot

p c
b a

p c

 


 



                              (78) 567 

In both Equations (77) and (78), a hidden assumption is that the cylinder wall of frozen soil 568 

becomes unstable once it becomes fully plastic. This is a typical large deformation problem, 569 

and displacements of the cavity during elastic-plastic contractions can be calculated by using 570 

Equations (30), (32a, b) and (44). Adopting the criterion of Sanger and Sayles (1979) (i.e. 571 

2fp lim 0p    in Equation (30)), new results are calculated considering the large deformation 572 
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effects with typical soil properties of v=0.3, E/p0=100 and ψ=min(0, φ-20). The new results are 573 

compared with the published results of Sanger and Sayles (1979) in Figure 10. It is shown that 574 

Equation (77) tends to give conservative predictions of the minimum thickness of a cylinder 575 

wall due to the lack of accounting for its radial convergence, whose effects become more 576 

significant at larger values of the in-situ earth pressure and the friction angle of soil. 577 

 

Figure10. Comparison of design charts for circular frozen walls 

In addition to the requirement of stability, frozen earth walls may also be designed under 578 

displacement control on the basis of required excavation limits and the available space on site 579 

(Andersland & Ladanyi, 2004). For example, taking 2% cavity strain (i.e. a2/a0=0.98) as the 580 

maximum allowable radial convergence of a cylinder wall, the minimum internal pressure 581 

required can be obtained by the cylindrical unloading solution from an in-situ state. Example 582 

results are presented in Figure 11 with varying strength and stiffness parameters of frozen soils. 583 

It is shown that the self-stability of a cylinder wall, in general, increases with the thickness ratio, 584 

the frictional strength and stiffness of the soil, thus less internal support is required accordingly. 585 

Adopting different control standards, the application of the large strain in-situ unloading 586 

solution to the preliminary structural design of frozen cylinder walls is illustrated in Figures 10 587 

and 11. It needs to be pointed out that the boundary conditions at the outer wall of the cylinder 588 

were simplified as a constant radial pressure whose value equals the in-situ stress. In fact, 589 

however, the outside confining pressure may reduce with contractions of the cylinder. Thus, 590 

this method still tends to be conservative as well. Additionally, it should bear in mind that the 591 

above analyses focused on the short-term unloading behaviour. For the long-term stability and 592 

deformation analysis, the time-dependent behaviour of frozen soils (e.g. creep strength) needs 593 

to be taken into account (Andersland & Ladanyi, 2004; Sanger & Sayles, 1979). 594 
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(a) variation with angle of friction (E/p0=100) (b) variation with stiffness (φ=30°) 

Figure11. Internal cavity pressure at a radial displacement of 2% (v=0.3 and c/p0=0.3) 

Prediction of pressuremeter curves 595 

Based on the analogy between pressuremeter tests and a long cylindrical cavity upon loading 596 

and unloading, cavity expansion and contraction solutions have been used in the interpretation 597 

of pressuremeter tests with considerable success (Clarke, 1995; Mair & Wood, 1987; Wroth, 598 

1984; Yu, 2000). As summarized by Schnaid et al. (2000), the methods of interpreting 599 

pressuremeter tests can be broadly categorised into two groups: in the first group each 600 

parameter of soil is assessed independently from one portion of the pressuremeter curve; in the 601 

second the whole pressuremeter curve (both loading and unloading portions) is taken into 602 

account. Using the closed-form expansion and contraction solutions of Yu and Houlsby 603 

(1991,1995), Schnaid et al. (2000) analysed many site pressuremeter tests, from which a set of 604 

fundamental parameters of soil can be derived. In modelling site pressuremeter tests, it is 605 

reasonable to assume the surrounding soil to be horizontally infinite. However, this might be 606 

questionable for the modelling of laboratory pressuremeter tests in small-sized calibration 607 

chambers as highlighted previously (Alsiny et al., 1992; Fahey, 1986; Jewell et al., 1980; Juran 608 

& BenSaid, 1987; Schnaid & Houlsby, 1991). 609 

To account for the possible boundary effects during cavity expansion, Yu (1992, 1993) 610 

extended the solution of Yu and Houlsby (1991) to the case in a finite soil mass. Likewise, an 611 

extension of the solution of Yu and Houlsby (1995) was obtained in this paper for the analysis 612 

of a cavity in a finite soil mass. Now, using the loading solution of Yu (1992) and the present 613 

unloading solution in combination, the method proposed by Schnaid et al. (2000) can be 614 

extended for the interpretation of pressuremeter tests performed in calibration chambers of a 615 

constant lateral stress boundary (i.e. the BC1-type boundary (Ghionna & Jamiolkowski, 1991)). 616 

This is evaluated by comparing with the experimental results of pressuremeter tests obtained 617 

by Ajalloeian (1996). 618 
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A number of pressuremeter tests were performed by Ajalloeian (1996) in a calibration 619 

chamber using dry Stockton Beach sand. The ratio of the chamber diameter (1000mm) to the 620 

pressuremeter diameter D (30mm) was 33.3. As the pressuremeter is assumed to be infinitely 621 

long in the plane strain cylindrical cavity model, test data obtained with pressuremeters of the 622 

longest membrane length L available were selected in the analysis to minimize the possible end 623 

effects (Ajalloeian & Yu, 1998; Houlsby & Carter, 1993). In specific, L/D was 15 for the test in 624 

the loose sand (test ID: 15LK1P100, relative density Dr=27.5%); L/D was 20 for the tests in the 625 

medium dense (test ID: 20MK1P100, Dr=63.3%) and dense sand samples (test ID: 20DK1P100, 626 

Dr=86.8%) (see Figure 12). 627 

Based on the loading solution of Yu (1992) and the unloading solution of this study 628 

(Equations (45)-(76)), the pressuremeter tests are interpreted following the curve fitting method 629 

proposed by Schnaid et al. (2000) as follows: 630 

(a) Initial stress state. The initial mean effective stress was 100kPa and the initial stress ratio 631 

of the effective vertical stress to the effective horizontal stress was 1 in the tests (Ajalloeian, 632 

1996). The same initial stress state was used in the modelling. 633 

(b) Shear modulus. For the loading portion, the curve fitting was initiated using the tangent 634 

stiffness value of the initial portion of the loading curve (Ajalloeian, 1996); for the unloading 635 

portion, the value of the shear modulus was estimated by drawing a single line between the 636 

point that defines the end of the loading and the representative point of the theoretical plastic 637 

reverse of the experimental unloading curve (Schnaid et al., 2000). The Poisson’s ratio was 638 

assumed to be 0.3. 639 

(c) Strength parameters. The dilation angle   was calculated using the correlation of Rowe 640 

(1962) (i.e. Equation (79)). The critical state friction angle cv  of the Stockton Beach sand 641 

required in Equation (79) is 31o (Ajalloeian, 1996). The cohesion was set as zero for the dry 642 

sand. Then based on the cavity expansion and contraction solutions and the measured 643 

pressuremeter curves (both loading and unloading portions), the plane strain friction angle 
ps  644 

was back-calculated using a curve fitting technique. 645 

ps cv

ps cv

sin sin
sin

1 sin sin

 


 





                              (79) 646 

Figure 12 presents the predicted and the measured loading and unloading curves. The 647 

comparison shows that a good fit (the correlation coefficient R2>0.99 in all three cases 648 

compared) was achieved between theory and data over the whole curve of loading and 649 

unloading. In Figure 13, the back-calculated friction angles are compared with the data from 650 
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triaxial tests measured by Ajalloeian (1996). The relationship 
ps tri8 9   (Wroth, 1984) was 651 

used to convert the triaxial friction angle tri   and the plane strain friction angle 
ps   for 652 

comparison. Results obtained by Ajalloeian (1996) using other common theoretical methods 653 

(e.g. (Hughes et al., 1977; Manassero, 1989; Yu, 1994)) are also plotted in Figure 13. It is shown 654 

that the combined use of the loading solution of Yu (1992) and the present unloading solution 655 

from an elastic-plastic state as well as the curve-fitting technique of Schnaid et al. (2000) gave 656 

the best estimate of the soil strength parameters in the compared cases. The close agreement 657 

between theoretical and experimental results in Figures 12 and 13 indicates that this method is 658 

able to construct a theoretical curve that reproduces a pressuremeter test from which 659 

fundamental soil parameters can be derived reasonably well. 660 

Note that the maximum cavity strain was less than 11% and a large diameter ratio of the 661 

chamber to the pressuremeter was intentionally used in the tests of Ajalloeian (1996) to 662 

minimize the boundary effect. Therefore, the difference of the friction angle back-calculated 663 

with or without considering the size of the sand sample is not significant in these tests (Figure 664 

13). Much stronger boundary effects may appear in tests performed in smaller sand samples as 665 

shown in Figure 9 and observed by Jewell et al. (1980), Fahey (1986), Schnaid and Houlsby 666 

(1991) and Alsiny et al. (1992), among others. Under this circumstance, the advantages of the 667 

present method will be more obvious. 668 

It is necessary to bear in mind that as an elastic-perfectly plastic soil model was used, the 669 

non-linear elastic (e.g. stress and strain-dependent shear modulus) and strain 670 

hardening/softening behaviour of sand (e.g. non-constant dilatancy) cannot be realistically 671 

modelled by the present solutions (Fahey & Carter, 1993; Manassero, 1989). The constraints 672 

imposed by these simplifications may introduce some limits to the quality of the comparisons 673 

but enforce the consistency among all parameters (Schnaid et al., 2000). 674 
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(c) dense sand 

Figure12. Comparisons between theoretical and experimental pressuremeter curves (test data 

from Ajalloeian (1996)). 

 

Figure13. Back-calculated and measured plane strain friction angles 

Optimal thickness of a hollow cylinder/sphere for overstrain 675 

Several stress limits are of great concern in the stress analysis and optimal design of a hollow 676 

cylinder/sphere, for example, the elastic limit, the plastic limit and the shakedown limit (Hill, 677 

1950; Xu & Yu, 2005; Zhao & Wang, 2010). In the process of loading, the elastic limit 1elimp  678 

(i.e. while c1=a1) and plastic limit 
1plimp  (i.e. while c1=b1) were given in Equations (9) and 679 

(16), respectively. In the subsequent unloading process, reverse yielding occurs at the inner wall 680 

of the cavity (i.e. d2=a2) while the cavity pressure reduces to be equal to 2elim 2p    (i.e. the 681 

unloading elastic limit defined in Equation (48)); the unloading plastic limit (i.e. while d2=b2) 682 

can be obtained from Equation (51). 683 

As defined previously, due to the additional pressure 20 0p p  , residual stresses are 684 

generated within the cylinder/sphere (i.e. overstrain effect). Subsequently, as the internal 685 

pressured is removed, the soil undergoes elastic unloading until the reverse yielding limit 686 

2elim 2p   is reached. Based on the shakedown concept, no new plastic deformation will occur in 687 
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the hollow cylinder/sphere of soil during the subsequent cyclic reloading-unloading under 688 

uniform internal pressures varying within the range of ( 2elim 2p  , 20p ) (neglecting the possible 689 

Bauschinger effects) (Hill, 1950; Zhao & Wang, 2010). Providing that the cavity pressure varies 690 

in the range of [ 0p , 20p ], the shakedown limit, within which neither fully plastic state during 691 

the initial loading nor reverse plastic state during subsequent unloading will occur in the soil, 692 

can be determined by two conditions: (i) 
20 1plimp p  , and (ii) 0 2elim 2p p   , which gives, 693 

respectively, 694 

     10
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      (81) 696 

The shakedown limit equals the minimum value of Equations (80) and (81) as it requires 697 

that the inequalities hold simultaneously (Xu & Yu, 2005). It needs to be pointed out that 698 

previous shakedown analyses of a hollow cylinder/sphere were mostly carried out in the 699 

framework of small strain theory (Hill, 1950; Zhao & Wang, 2010). However, large deformation 700 

may occur during the initial elastic-plastic loading process, which may affect the shakedown 701 

limit, particularly in soft materials like soils. For example, Yu (1992) observed that the cavity 702 

pressure reaches a peak value before the whole cylinder of soil becomes plastic due to the large 703 

strain effects, which can also be seen in Figures 8 and 9. Hence, the large strain effects on the 704 

shakedown limit are examined by calculating the optimal thickness of hollow cylinders/spheres 705 

as follows. 706 

It is known that a hollow cylinder or sphere cannot be too thin to be strengthed (Hill, 1950; 707 

Zhao & Wang, 2010). The optimal thickness of a hollow cylinder/sphere for overstrain can be 708 

determined by taking the equalities of Equation (80) and (81) simultaneously. Within the 709 

shakedown limit, the unloading process is purely elastic. Thus, the radial displacement can be 710 

determined by Equation (47), from which another relationship between the cavity pressure and 711 

the geometry ratio can be obtained as: 712 
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Equations (80)-(82) give the value of b20/a20 after the overstrain, based on which the optimal 715 

geometry ratio (i.e. b0/a0) can be readily obtained from the displacement solutions of loading 716 

(see the Appendix). 717 

At first, the optimal thickness for frictionless soil is investigated. In this special case, the 718 

condition of equality of Equations (80)-(81) can be simplified as: 719 

      1

20 20 2 2ln 2 1 1
k

b a k a b
                             (83) 720 

Equation (83) will reduce to the expression given by Zhao and Wang (2010) for Tresca 721 

materials if ideally regarding the surrounding soil as rigid or adopting the small strain 722 

definitions (i.e. a1=a2=a0 and b1=b2=b0). However, when the soil deformation during the elastic-723 

plastic loading and elastic unloading process is considered, the optimal thickness will vary with 724 

the soil stiffness index G/su (su represents the shear strength of clay, corresponding to the 725 

cohesion strength in the Mohr-Coulomb criterion). The variation of the optimal thickness for 726 

both hollow cylinders and spheres with the soil stiffness is presented in Figure 14, taking a 727 

broad range of values of G/su for clays. It is shown that the optimal thickness decreases with 728 

increases of G/su and gradually converges to the limit value calculated by Zhao and Wang (2010) 729 

for rigid clays. In other words, the geometry changes of the cylinder/sphere during loading and 730 

unloading apply insignificant influence on the optimal thickness ratio in stiff clays, whereas 731 

this effect cannot be ignored when the soil is relatively soft (e.g. G/su<200). 732 
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Figure14. Optimal thickness ratio b0/a0 of cohesive soil (p0/su=1 and v=0.5) 

For frictional soils, Zhao and Wang (2010) observed that the optimal thickness ratio is a pure 733 

function of the friction angle based on the small strain theory. However, Equations (80) and (81) 734 

show that it is also dependent on the stiffness and compressibility of materials while taking the 735 

geometry changes of the cylinder/sphere into consideration. A selection of results was 736 

computed taking the soil cohesion as 0, the Poisson’ ratio as 0.3 and the dilation angle as 0 and 737 
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is plotted in Figure 15. The example results indicate that due consideration should be given to 738 

the soil deformation in the shakedown analysis. Its influences on the optimal thickness become 739 

greater for a larger value of the friction angle φ and a smaller value of the shear modulus. Not 740 

surprisingly, results predicted by the present solution converge to those reported by Zhao and 741 

Wang (2010) when the soil is sufficiently stiff (e.g. G/p0=500 in Figure 15). 742 

  

(a) hollow cylinders (b) hollow spheres 

Figure15. Optimal thickness ratio b0/a0 at various shear moduli and friction angles 

Conclusion 743 

This paper presents analytical solutions for quasi-static contraction analysis of a thick-walled 744 

cylinder/sphere of dilatant soils. The unloading is assumed to start after an arbitrary magnitude 745 

of loading. The logarithmic strain definition is adopted in the plastic zone so that large strain 746 

effects are taken into account. A linear elastic perfectly-plastic model is used. The plasticity of 747 

the soil is described by adopting the Mohr-Coulomb yield criterion with a non-associated plastic 748 

flow rule. The solutions are able to calculate the stress and displacement distribution in the soil 749 

at any stage of the unloading process. They are validated by comparing with corresponding 750 

analytical solutions for the case of an infinite soil mass. Parametric studies showed that both 751 

the reference stress state and the cavity geometry parameters may greatly influence the cavity 752 

contraction behaviour, in particular, for thin cylinders and spheres. 753 

The new solutions are useful in modelling many geotechnical problems. Among them, three 754 

typical applications are demonstrated, including: preliminary design of the thickness of the 755 

frozen cylinder walls under either stress or displacement control, interpretation of laboratory 756 

pressuremeter tests with consideration of the finite boundary effect, and determination of the 757 

optimal thickness of cylinders/spheres based on the shakedown concept considering large 758 

deformation effects. Additionally, the closed-form solutions can also be used to verify elastic-759 

plastic numerical methods in analysing the Mohr-Coulomb materials, in particular, in a finite 760 

soil mass. 761 
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 Appendix 939 

At the moment that the elastic-plastic boundary reaches the outer radius of the cavity upon 940 

loading, the displacement at r=b20 can be calculated from the elastic displacement solution of 941 

Yu (1992, 1993) as: 942 
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The displacement of the inner wall of the cavity (i.e. r=a20) can be obtained from the large 944 

strain plastic displacement solution as below. 945 
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Notation 951 

 a0, b0 initial inner and outer radii of a cylinder/sphere 952 

 p0, p20 in-situ stress and cavity pressure at the beginning of unloading 953 

  pin internal cavity pressure 954 

 a20, b20 initial inner and outer radii of a cylinder/sphere at the beginning of 955 

unloading 956 

k k=1 for a cylinder and k=2 for a sphere 957 

r, θ, z cylindrical polar coordinates 958 

r, θ, ϕ spherical polar coordinates 959 

σr, σθ, σz radial, circumferential and axial stresses 960 

Δσr, Δσθ incremental radial and circumferential stresses due to unloading 961 

u20, u2 radial displacement at the beginning of unloading and during unloading 962 

Δu incremental radial displacement due to unloading 963 

σr2, σθ2 radial and circumferential stresses during unloading 964 

σr20, σθ20 radial and circumferential stresses at the beginning of unloading 965 

r0 initial radius of a given soil particle 966 

a2, b2 inner and outer radii of the cavity during unloading 967 

p1, p2 internal cavity pressures during loading and unloading 968 

c1, c20, c2 radii of the elastic-plastic interface caused by loading in the loading 969 

process, at the end of loading and during unloading 970 

d2, 20d  radius of the elastic-plastic interface caused by unloading and its initial 971 

value 972 

φ, c,  soil friction angle, cohesion and dilation angle 973 

α, Y functions of soil cohesion and friction angle 974 

 function of dilation angle 975 

p1elim elastic limit pressure in the loading process 976 
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a1, b1 inner and outer radii of a cavity in the loading process 977 

r1, r2 radial radii during loading and unloading 978 

σr1, σθ1 radial and circumferential stresses during loading 979 

A1, B1 constants of integration in the loading process 980 

εr, εθ radial and circumferential strains 981 

v, E, G Poisson’s ratio, elastic modulus and shear modulus 982 

M function of Poisson’s ratio and elastic modulus 983 

a2, b2 inner and outer radii of a cavity in the unloading process 984 

p2elim-1 elastic unloading limit of case I 985 

A2-1, B2-1 constants of integration in the unloading process of case I 986 

p2fp-lim fully plastic unloading limit of case I 987 

p

r
 , p

   plastic radial and circumferential strains 988 

e

r
 , e

   elastic radial and circumferential strains 989 

 η, ω, θ, γ non-dimensional coefficients of case I 990 

 n! factorial of n 991 

A2-1, B2-1, A2-2, B2-2,  992 

A2-3, B2-3, A2-4, A2-5 constants of integration in the unloading process 993 

p2elim-2 elastic unloading limit of cases II and III 994 

Δεr, Δεθ incremental radial and circumferential strains due to unloading 995 

ω1, λ1,  , ρ non-dimensional coefficients of case II 996 

1

n , 2

n , 3

n , 4

n  infinite power series 997 

  η1, ω2, λ2  non-dimensional coefficients of case III 998 

  L, D   length and diameter of pressuremeters 999 

  Dr   relative density of sand 1000 

φcv, φps, φtri critical state friction angle, plane strain friction angle and 1001 
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triaxial friction angle of sand 1002 

  R2   the correlation coefficient 1003 

  p1plim  plastic limit during loading 1004 

  su   shear strength of clay 1005 

  , ω3,    non-dimensional coefficients in Appendix 1006 


