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Abstract 

Topological insulators (TIs) with unique band structures have wide application 

prospects in the fields of ultra-fast optical and spintronic devices. The dynamics of hot 

carriers plays a key role in these TI based devices. In this work, using time and angle 

resolved photoemission spectroscopy (TR-ARPES) technique, the relaxation process 

of the hot carriers in Cr doped Bi2Se3 has been systematically studied, where the 

ferromagnetic TI is one of the key building blocks for the next generation spintronics. 

It is found that the electronic temperature (Te) and chemical potential (μ) decrease faster 

with the increase of the Cr doping concentration. Similarly, the lifetime (τ) of the 

excited electrons also decreases with more Cr doped into TIs. The results suggest a new 

mechanism of the impurity bands assisted carrier relaxation, where the impurity bands 

within the bulk band gap introduced by Cr doping provide significant recombination 

channels for the excited electrons. This work directly illustrates the dynamic process of 

the carriers in Cr doped Bi2Se3, which is expected to promote the applications of (Bi1-

xCrx)2Se3 in ultrafast optical and spintronic devices. 

Keywords: TR-ARPES, Cr doped Bi2Se3, hot carriers, ultrafast optical and spintronic 

devices. 
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TIs are a class of quantum materials featuring with a bandgap in its bulk and 

unique Dirac-like metallic states on the surface, which have abroad application 

prospects in the fields of ultrafast optical and spintronic devices1-3. The performance of 

these devices depends on the dynamics of the hot carriers in TIs, which can be observed 

directly by TR-ARPES4-6. So far, a number of works have been carried on illustrating 

the recovery process of the excited electrons in TIs due to various mechanisms: such as 

the phonons assisted,7,8 the surface states assisted,9 and the electron-electron scattering 

assisted.10,11 

Recently, numerous work have reported that the doping with transition metals can 

introduce novel physical phenomena in TIs, such as quantum anomalous Hall effect 

(QAHE)12, the giant magneto-optical Kerr effect13, and chiral Majorana fermions14. In 

addition, the doping with transition metals changes the band structure of TIs by 

weakening the surface state and increasing the bulk bandgap. This suggests that it may 

also affect the carrier relaxation. However, this has not been systematically studied 

experimentally, though it is crucial to the application of TIs in the field of ultrafast 

optical and spintronic devices. 

In this work, a series of (Bi1-xCrx)2Se3 (x = 0 ~ 0.074) samples were grown by 

molecular beam epitaxy (MBE). Then, the dynamic processes of the excited electrons 

in (Bi1-xCrx)2Se3 are directly studied by the TR-ARPES. It is found that as the Cr doping 

concentration increases, the relaxation rate of Te and μ increase, and τ of the excited 

electrons decreases. This has been attributed to the mechanism of the impurity bands 
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assisted carrier relaxation. The impurity bands within the bulk band gap introduced by 

Cr provide more recombination channels for the excited electrons. This provides direct 

insight into the relaxation mechanisms of the Cr doped TIs, and therefore has profound 

implications for future works exploring the potential of these materials for ultrafast 

optical and spintronic devices. 

Results 

The Bi2Se3 and (Bi1-xCrx)2Se3 ultrathin films are grown on fluorophlogopite 

[KMg3(AlSi3O10)F3] substrates by MBE. Compared with conventional epitaxy, van der 

Waals epitaxy (VDW) growth significantly relaxes the stringent conditions of lattice 

match between the substrate and the epitaxial layer15-17. And, atomically flat 

fluorophlogopite with pseudohexagonal layered structure is suitable for VDW epitaxy 

growth of layered material due to no dangling bonds associated with the surface18,19. 

The Cr dopants are evaporated simultaneously with the Bi and Se atoms and deposited 

on fluorophlogopite at 200℃. The growth was carried out under the Se-rich 

environment with a nominal Se to Bi ratio of 20:1, which is beneficial to reduce the Se 

vacancy defects20. The Cr doping concentration (x= 0.013~0.074) is determined by the 

Cr deposition flux and the X-ray photoelectron spectroscopy (XPS). Samples were 

transferred into ARPES chamber through a high vacuum tube (<3.0×10-9 mbar) to 

ensure the clean surfaces. The band structure of the (Bi1-xCrx)2Se3 films measured by 

static ARPES (He-I, 21.2eV) at room temperature is shown in Figure 1. It is found that 

the BVB, surface state and BCB can be clearly distinguished in undoped Bi2Se3. 
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However, the surface state decreases and the bulk band gap increases with the increase 

of Cr doping concentration. When the Cr doping concentration is increased to x= 0.074, 

the surface states cannot be observed at all in the band structure. This is consistent with 

the previous results21,22. 

TR-ARPES measurements were performed using a pump-probe scheme. The laser 

pulse with 800 nm (~1.55 eV) wavelength and 1 kHz repetition is split into two beams. 

One beam is used as the pump light to stimulate the sample, and the other is used for 

high harmonic generation (HHG)23,24, and the 13th harmonic extreme ultraviolet (EUV) 

at ~20.15 eV has been chosen as the probe light25. Detailed description of the HHG 

system will be found in our previous work26. The overall energy resolution is 190 meV 

and time resolution is 60 fs. Pump light is s polarized, which was maintained at 0.21 

mJ/cm2 during the measurement. Probe pulse is p polarized, and the flux of probe pulse 

is chosen to minimize the space charge effect. All the experiments were carried out at 

room temperature. 

Figure 2(a)-(c) demonstrates the various differential band structures after pumping 

of Cr (x= 0.013) doped Bi2Se3 obtained by EUV by subtracting the un-excited band 

structure at -0.2 ps. The red and blue represents the increased or decreased electrons at 

different E-K positions. It’s found that the intensity above the Fermi level is strongest 

at 0.7 ps because of the thermalization of the electrons after inelastic scattering 

process27. Then, it starts to reduce at 1.5 ps due to the recombination of excited electrons 

and holes assisted by phonons. The band structure recovers to un-excited state at 8 ps. 



6 
 

Figure 2e-2g and Figure 2i-2k are the differential band structures of the higher doped 

samples with x= 0.056 and 0.074, respectively. The similar dynamic process of excited 

electrons could be seen in these three samples. Namely, after the pump light of 0.7 ps, 

electrons are excited above the Fermi level, then quickly fall back around the Fermi 

level, and finally return to its original state8. 

The relaxation dynamics of the hot electrons around the Fermi level after pumping 

can be quantified by the Fermi-Dirac (FD) distribution convoluted with a Gauss 

distribution, which considers the energy resolution of the TR-ARPES system: I(E, t) = 𝐴(t) ∫ [𝐹(𝜀, 𝑇𝑒(𝑡), 𝜇(𝑡))𝐷(𝜀)]𝐺(𝐸 − 𝜀, 𝜎)]𝑑𝜀 ∞−∞           (1) 

Here, I represent the energy dispersion curve (EDC) as a function of time delay, F is 

the FD distribution, Te and μ denote the electron temperature and chemical potential of 

the electrons. G is the Gauss distribution to take the overall energy resolution of the 

system (mainly depending on EUV) into account. A and D are the scale factor28 and the 

product of photoemission matrix element and the density of state, respectively29. Due 

to the complexity to determine the D30, in the fitting process, a narrow range around the 

Γ point (± 0.01 Å−1 around the center) has been used to extract the leading edge of 

the EDCs (as shown in Figure 2d, 2h and 2l). With this way, D can be treated as a 

constant. Although this simple treatment neglects the fine structure in D, it is helpful to 

compare the dynamic process of different samples quantitatively.  

    Figure 2(d) demonstrates EDCs of x= 0.013 at the different delay time. It is found 

that the EDC at 0.7 ps (black line) shifts to the higher energy compared to -0.2 ps (red 
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line), which means the Te and μ of the former are higher. This is due to the 

thermalization of electrons in CB after absorbing the energy from pumps photons. The 

EDC at 1.5ps shows intermediate features compared with above two due to the energy 

exchange between exited electrons and phonons help the relaxation of electrons. At 8 

ps after the arrival of pump photons, the excited electrons almost recombine with the 

holes and the sample recovers to the state before excited. EDCs at the same delay time 

of x=0.056 (Figure 2h) and 0.074 (Figure 2l) showed a similar recovery process. 

Moreover, Te and μ as a function of delay time with different x were extracted 

using Eq. (1) to fit the EDCs, as shown in Figure 3a and 3b. The Te of x= 0 reveal a 

quick relaxation from the peak value to around 500~590 K, and maintain around that 

temperature within the detection window (Figure 3a). The reason is that the weak 

coupling of phonons and surface electrons. It should be noted that the Δμ versus delay 

time does not satisfy exponential decay function at low Cr doping concentration, 

suggesting that the activity of phonons at the surface of pure Bi2Se3 is weak31. 

Interestingly, with the increase of x (x= 0.013~0.074), Te and Δμ recover to the state 

before pump pulse more quickly, which also demonstrate the ability of Cr doping to 

assist the relaxation of excited electrons. 

In order to reveal the τ of the excited carriers, a black box was fixed at 0.1 eV 

above the Fermi level (as shown in Figure 2a) to indicate the integral domain. The 

integral intensities as a function of pump-probe delay time for various (Bi1-xCrx)2Se3 

films are shown in Figure 3c. After pumping light, electrons are immediately excited 
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above the Fermi level, and then quickly fall back around the Fermi level32. After that, 

electrons relax to its original state facilitated by electron-phonon scattering process8. 

Thus, the excited electrons have the same recovery tendency as Te and Δμ. Meanwhile, 

the electron relaxation rate of undoped Bi2Se3 is slower than that of Cr doped Bi2Se3. 

Namely, the Cr doping reduces the τ of excited electrons. By use of single exponential 

decay function to fit the curves in Figure 3c, the τ of excited electrons can be extracted 

as a function of x, as shown in Figure 3d. It is found that τ decreases monotonically 

with the increase of doping concentrations x. 

Discussion 

Two factors have been reported to influence the τ of the excited electrons in TIs4,7. 

First, the existing of surface state, which provides additional paths (2 and 3) for the 

electrons through the coupling of TSS and BCB (Figure 4a) 4, helps the relaxation of 

excited electrons. Thus, higher Cr doped samples should have longer τ, because of the 

disappearing of the TSS33. Second, doping Cr enlarges the bulk bandgap as shown in 

Figure 3d, which are extracted by a multi-peaks Gaussian fitting around the  point in 

Figure 1. And this is consistent with our calculated band structure by VASP package 

(Supporting Information Figure S1). However, the reports demonstrate that the enlarged 

bulk band gap can only increase τ of the excited carriers22, which is again controversy 

to this work.  

To explain our results, we propose here a new mechanism of the impurity band 

assisted carrier relaxation. The band structures of (Bi1-xCrx)2Se3 have been shown in 



9 
 

Figure S1. It is found that the impurity bands (mainly composed of Cr-d states) appear 

at the bottom of BCB and the top BVB after doping Cr, as shown by the red dashed 

lines in Figure 4b and Figure S1. Moreover, as more Cr atoms are doped into the lattice, 

the density of states of impurity bands increases. Due to the existence of impurity band, 

the excited electrons in the BCB can move to the impurity band through thermal 

relaxation process. And they then can jump down to the impurity band above the top of 

the BVB (path 3) or the BVB (path 4), as shown in Figure 4b. Thus, these impurity 

bands provide additional recombination channels, which assist the relaxation of the 

exited carriers34,35. 

According to shock-read-Hall recombination theory, considering n-type 

conduction and low optical injection situation in this work, the recombination rate (RI) 
of excess carriers passing through path 2, path 3 and path 4 can be written as: RI =(𝐶2𝑁𝐼+𝐶3𝑁𝐼 + 𝐶4𝑁𝐼)𝛿𝑝, quantitatively. C2, C3 and C4 are constants representing the 

hole capture cross-section of impurity bands. δp is the number of excess holes, which 

can be treated as a constant due to the invariable pump power density. NI is the number 

of the trap center, and it can be estimated by the integral of the density of states of the 

impurity band. Meanwhile, the recombination rate of the bulk (path 1) (𝑅𝐵) can be 

expressed as: 𝑅𝐵 =  𝐶1𝑁𝐵𝛿𝑝 . C1 is a constant representing the hole capture cross-

section of CB. NB is the density of states at the bottom of the conduction band. 

Here, τ of the excited carriers is proportional to 1/R, so it can be written as: τ = 1RI+RB = 1(𝐶2+𝐶3+𝐶4)𝑁𝐼+𝐶1𝑁𝐵                   (2) 
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Because C1, C2, C4 and NB are constants,τ  can be simplified as∶  τ = 1𝐶2′𝑁𝐼+C1′  . 

As  𝐶2′  and C1′  are constants, the τ vs. impurity band density can be fitted by equation 

2 as shown in Figure 4c. Here, a background constant 0 has been added as: τ =τ0 + 1𝐶2′𝑁𝐼+C1′ . The fitting results agree well within the experimental data, suggesting 

that τ of the hot carriers shortens with the increase of the density of states of impurity 

band. Thus, the impurity bands induced by the Cr doping provide additional 

recombination paths, overcome the previous two factors, and effectively lower of the 

hot electrons. 

Conclusion 

In summary, we have systematically studied the dynamic process of photoexcited 

carriers in high quality (Bi1-xCrx)2Se3 with different Cr doping concentrations by TR-

ARPES. It is found that as the Cr doping concentration increases, the Te and μ decrease 

faster. Secondly, τ of the excited electrons decreases with the increase of Cr doping 

concentration. This has been attributed to the new relaxation mechanism that the 

impurity bands induced by doping provide additional recombination paths, and 

effectively lower of the hot electrons. This work has found that the doping can tune 

the carrier relaxation in TIs, which may promote their applications in ultrafast optical 

and spintronic devices. 

ACKNOWLEDGEMENTS 

This work is supported by the National Key Research and Development Program of 

China (No. 2016YFA0300803), the National Natural Science Foundation of China 



11 
 

(No. 61974061, 61674079, 61427812), the Natural Science Foundation of Jiangsu 

Province of China (No. BK20192006), the China Postdoctoral Science Foundation 

(No. 2019M661787). 



12 
 

Refences 

1. Steinberg, H., Gardner, D. R., Lee, Y. S. & Jarillo-Herrero, P. Surface State Transport and 

Ambipolar Electric Field Effect in Bi2Se3 Nanodevices. Nano Lett.10, 5032 (2010). 

2. Checkelsky, J. G., Hor, Y. S., Cava, R. J. & Ong, N. P. Bulk Band Gap and Surface State Conduction 

Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3. Phys. Rev. Lett.106, 

196801 (2011). 

3. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological 

insulator photocurrents with light polarization. Nat. Nano7, 96 (2011). 

4. Sobota, J. A. et al. Ultrafast Optical Excitation of a Persistent Surface-State Population in the 

Topological Insulator Bi2Se3. Phys. Rev. Lett.108, 117403 (2012). 

5. Sobota, J. A. et al. Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological 

Insulator Bi2Se3. Phys. Rev. Lett.111, 136802 (2013). 

6. Neupane, M. et al. Gigantic Surface Lifetime of an Intrinsic Topological Insulator. Phys. Rev. 

Lett.115, 116801 (2015). 

7. Wang, Y. H. et al. Measurement of Intrinsic Dirac Fermion Cooling on the Surface of the 

Topological Insulator Bi2Se3 Using Time-Resolved and Angle-Resolved Photoemission 

Spectroscopy. Phys. Rev. Lett.109, 127401 (2012). 

8. Sobota, J. A. et al. Distinguishing Bulk and Surface Electron-Phonon Coupling in the Topological 

Insulator Bi2Se3 Using Time-Resolved Photoemission Spectroscopy. Phys. Rev. Lett.113, 157401 

(2014). 

9. Freyse, F., Battiato, M., Yashina, L. V. & Sánchez-Barriga, J. Impact of ultrafast transport on the 

high-energy states of a photoexcited topological insulator. Phys. Rev. B98, 115132 (2018). 



13 
 

10. Jozwiak, C. et al. Spin-polarized surface resonances accompanying topological surface state 

formation. Nat. Commun.7, 13143 (2016). 

11. Cacho, C. et al. Momentum-resolved Spin Dynamics of Bulk and Surface Excited States in the 

Topological Insulator Bi2Se3. Phys. Rev. Lett.114, 097401 (2015). 

12. Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic 

Topological Insulator. Science340, 167-170 (2013). 

13. Tse, W. K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in 

thin-film topological insulators. Phys. Rev. Lett.105, 057401 (2010). 

14. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Chiral topological superconductor from the quantum Hall 

state. Phys. Rev. B82, 184516 (2010). 

15. H. Li et al. Controlled Synthesis of Topological Insulator Nanoplate Arrays on Mica. J. Am. Chem. 

Soc.134, 6132 (2012). 

16. Chen, K. H. M. et al. Van der Waals epitaxy of topological insulator Bi2Se3 on single layertransition 

metal dichalcogenide MoS2. Appl. Phys. Lett.111, 083106 ( 2017). 

17. Kou, X. F. et al. Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 98, 

242102 (2011). 

18. Liu, Y. et al. Epitaxial Growth of Ternary Topological Insulator Bi2Te2Se 2D Crystals on Mica. 

small13, 1603572 (2017). 

19. Zheng, W. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and 

efficient photodetectors. Nat. Commun.6, 6972 (2015). 

20. He, L., Kou, X. & Wang, K. L. Review of 3D topological insulator thin-film growth by molecular 



14 
 

beam epitaxy and potential applications. Phys. Status Solidi RRL7, 50– 63 (2013). 

21. Liu, M. et al. Crossover between Weak Antilocalization and Weak Localization in a Magnetically 

Doped Topological Insulator. Phys. Rev. Lett.108, 036805 (2012). 

22. Brahlek, M. et al. Topological-Metal to Band-Insulator Transition in (Bi1-xInx)2Se3 Thin Films. Phys. 

Rev. Lett.109, 186403 (2012). 

23. Ojeda, J. et al. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30–

110eV) radiation for ultrafast photoelectron spectroscopy of liquids. Struct. Dyn.3, 023602 (2016). 

24. Grazioli, C. et al. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied 

ultrafast science. Rev. Sci. Instrum.85, 023104 (2014). 

25. Seah, M. P. & Dench, W. Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base 

for Electron Inelastic Mean Free Paths in Solids. Surf. Interf. Anal.1, 2-11 (1979). 

26. Nie, Z. et al. Spin-ARPES EUV Beamline for Ultrafast Materials Research and Development. Appl. 

Sci.9, 370 ( 2019). 

27. Gierz, I. et al. Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme 

Time Scales. Phys. Rev. Lett.115, 086803 (2015). 

28. Fann, W. S., Storz, R., Tom, H. W. K. & Bokor, J. Direct Measurement of Nonequilibrium Electron-

Energy Distributions in Subpicosecond Laser-Heated Gold Films. Phys. Rev. Lett.68, 2834-2837 

(1992). 

29. Hüfner, S. Photoelectron spectroscopy: principles and applications. Springer Science & Business 

Media (2013). 

30. Ishida, Y. et al. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. 



15 
 

Sci. Rep.1, 64 (2011). 

31. Crepaldi, A. et al. Evidence of reduced surface electron-phonon scattering in the conduction band 

of Bi2Se3 by nonequilibrium ARPES. Phys. Rev. B88, 121404(R) (2013). 

32. Soifer, H. et al. Band-Resolved Imaging of Photocurrent in a Topological Insulator. Phys. Rev. 

Lett.122, 167401 (2019). 

33. Wang, Z. et al. Dimensional Crossover and Topological Nature of the Thin Films of a Three-

Dimensional Topological Insulator by Band Gap Engineering. Nano Lett.19, 4627-4633 (2019). 

34. Sumida, K. et al. Magnetic-impurity-induced modifications to ultrafast carrier dynamics in the 

ferromagnetic topological insulators Sb2xVxTe3. New J. Phys.21, 093006 (2019). 

35. Papalazarou, E. et al. Unraveling the Dirac fermion dynamics of the bulk-insulating topological 

system Bi2Te2Se. Phys. Rev. Mater.2, 104202 (2018). 

 

 

  



16 
 

Captions: 

Figure 1. (Color online) The band structures of a series of (Bi1-xCrx)2Se3 with x from 0 

to 0.074. The bulk bandgap increases with the increase of Cr doping concentration, and 

the surface states gradually disappear. 

Figure 2. (Color online) (a)-(c) Differential band structures of (Bi1-xCrx)2Se3 (x=0.013) 

around Γ point at t= 0.7 ps, 1.5 ps and 8 ps, respectively, which have subtracted the 

band structure of t= -0.2 ps. (e)-(g) and (i)-(k) are the differential band structures of 

(Bi1-xCrx)2Se3 with x= 0.056 and 0.074, respectively. (d), (h) and (l) are the EDCs 

integrated between ± 0.01 Å−1 around Γ point at different delay time with x= 0.013, 

0.056 and 0.074, respectively. Using a convoluted Gaussian and Fermi-Dirac 

distribution function, Te andΔμ can be extracted.  

Figure 3. (Color online) (a) The Te and (b) theΔμ as a function of the delay time with 

different x. And, the Te andΔμ recover more quickly as the increase of Cr doping 

concentration. (c) Normalized integral intensities within the black boxes in Figure 2a, 

as a function of the delay time for different samples. (d) The lifetime (τ) of the excited 

electrons and bulk bandgap as the function of Cr doped concentration (x). 

Figure 4. (Color online) Mechanism diagram of the non-equilibrium carrier 

recombination process of the (a) undoped and (b) Cr doped Bi2Se3. The results show 

that the impurity band can provide additional carrier recombination channels. Green 

lines represent the surface states. (c) The Carrier’s lifetime (τ) as a function of the 

density of states of impurity band. The results show that the τ of hot carrier reduces 

with the increase of the density of states of impurity band. 
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Figure 2 
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Figure 3 

 

In
te

ns
ity

 (
a.

u.
)

121086420
Delay time (ps)

 x=0
 x=0.013
 x=0.037
 x=0.056
 x=0.074

900

800

700

600

500

400

300

T
e (

K
)

121086420
Delay time (ps)

 x=0
 x=0.013
 x=0.037
 x=0.056
 x=0.074

0.10

0.05

0.00

-0.05




(e
V

)

121086420
Delay time (ps)

 x=0
 x=0.013
 x=0.037
 x=0.056
 x=0.074

(a) (b)

(c) (d) 2.6

2.4

2.2

2.0

1.8

1.6

1.4

L
if

et
im

e 
(p

s)

0.080.060.040.020
x

0.32

0.31

0.30

0.29

0.28

0.27

B
ulk bandgap (eV

)



20 
 

Figure 4 
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