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Abstract

Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeosta-

sis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian

homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in

Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal sys-

tem through modulation of mammalian HH signaling, we created a mouse model for specific

loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in

maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function

resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally

shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification

of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key

mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of

HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated

canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic

samples revealed similar correlations between UBR5 expression, canonical HH signalling

and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the

maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the

HH signalling pathway.
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Author summary

Ubiquitin ligases modify proteins post-translationally which is essential for a variety of

cellular processes. UBR5 is an E3 ubiquitin ligase and in Drosophila is a regulator of

Hedgehog signaling. In mammals, the Hedgehog (HH) signalling pathway, among many

other roles, plays an essential role in tissue maintenance, a process called homeostasis. A

murine genetic system was developed to specifically eliminate UBR5 function from

embryonic limb tissue that subsequently forms bone and connective tissue (ligaments and

tendons). This approach revealed that UBR5 operates as a potent suppressor of excessive

growth of normal cartilage and bone and prevents formation of bone in ectopic sites in

connective tissue near the knees and ankle joints. In contrast to abnormal growth, UBR5

inhibits degradation of the articular cartilage that cushions the knee joint leading to exten-

sive exposure of underlying bone. Furthermore, Ubr5 interacts with smoothened, a com-

ponent of the HH pathway, identifying UBR5 as a regulator of mammalian HH signaling

in the postnatal musculoskeletal system. In summary, this work shows that UBR5 interacts

with the HH pathway to regulate skeletal homeostasis in and around joints of the legs and

identifies targets that may be harnessed for biomedical engineering and clinical

applications.

Introduction

Ubiquitin ligases target proteins for ubiquitination which can modulate protein function by

regulating protein degradaton, protein–protein interactions, and protein localization [1–4],

and thus, provide important post-translational mechanisms essential for a variety of cellular

processes. The Drosophila homologue of the mammalian Ubiquitin Protein Ligase E3 Compo-
nent N-Recognin 5 (UBR5), designated as hyperplastic discs (Hyd), was originally identified as a

Drosophila tumor suppressor protein [5–7] and regulator of Hedgehog (HH) signalling [6].

Physical and genetic interactions with established components of the HH signalling pathway

[7,8] strengthened Hyd’s role as a regulator of HH signalling. We previously addressed a possi-

ble conserved role for UBR5 in HH-mediated processes in mice [9]. Although no overt effects

were seen in patterning of the developing limb bud in mouse embryogenesis; here, we show

that the coordinated action of Ubr5 with HH signalling is crucial to maintain skeletal tissue

homeostasis associated with the appendicular skeleton postnatally and in adult mice.

HH signalling regulates cell processes that are critical for skeletal tissue development,

growth and homeostasis [10]. Two HH ligands, Sonic- and Indian-Hedgehog (SHH and IHH,

respectively) are widely expressed and function as extracellular signalling molecules that bind

to cells expressing HH receptors such as patched-1 (PTCH1). Binding to PTCH1 results in de-

repression of the G protein-coupled receptor, smoothened (SMO), and activation of SMO-

associated canonical and non-canonical signalling pathways [11–13]. Activation of the SMO-

associated canonical pathway results in stimulation of GLI-mediated transcription and expres-

sion of crucial target genes [7]. Activation of the recently identified SMO-associated non-

canonical pathway relies on SMO’s GPCR activity [14,15] and results in inhibitory heterotri-

meric G protein-mediated inhibition of adenylate cyclase and a concomitant reduction in

cyclic AMP (cAMP) levels [14,16,17]. Although not yet experimentally addressed, non-canoni-

cal signalling may also contribute to many of the well-described roles for canonical HH signal-

ling in normal skeletal formation, maturation and maintenance [10,18].

At birth, IHH is the ligand that drives HH signalling within the growing limbs. Expression

of Ihh is localized to a zone of postmitotic, prehypertrophic chondrocytes immediately
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adjacent to the zone of proliferating chondrocytes [18–20] and is essential for endochondral

ossification but also induces osteoblast differentiation in the perichondrium [21]. Dysregula-

tion of this signalling pathway is detrimental to musculoskeletal tissue homeostasis [22,23].

Notably, studies have shown that increased HH signalling can drive pathological ectopic carti-

lage and bone formation in soft tissues [10] through the process of heterotopic chondrogenesis

and heterotopic ossification (HO) [24]. Upregulation of HH signalling is believed to contribute

to the rare disorder, progressive osseous heteroplasia (POH), which includes in its phenotypic

spectrum soft tissue ossification. POH is caused by loss-of-function of GNAS, a G protein

alpha subunit and activator of adenylate cyclase. A murine model of POH demonstrated that

increased HH signalling as a consequence of GNAS loss-of-function in mesenchymal limb pro-

genitor cells drove heterotopic ossification [25]. Similarly, synovial chondromatosis, a disease

resulting in ossification of synovial tissue is associated with increased canonical HH signalling

[26]. However, in contrast with cartilage and bone gain, elevated HH signalling is also associ-

ated with the cartilage degradation and loss [27,28]. Hence, appropriate HH signalling is nor-

mally involved in the suppression of ectopic, and genesis and maintenance of normtopic,

cartilage and bone.

Here, we show that the loss of Ubr5 function in Ubr5mt mice resulted in diverse musculo-

skeletal defects including spontaneous, progressive and tissue-specific patterns of ectopic

chondrogenesis and ossification as well as articular cartilage degeneration and shedding. Sur-

prisingly, reducing SMO function in UBR5-deficient mice led to a dramatic reduction in the

age of onset and increased severity of the Ubr5mt phenotype. These observations challenge the

existing dogma by highlighting an important role for Smo, in the absence of UBR5, in sup-

pressing, rather than promoting, ectopic chondrogenesis, tissue calcification/ossification and

articular cartilage damage. We, therefore, reveal a previously unknown physiological role for

Ubr5 and highlight its genetic interaction with Smo in regulating cellular and tissue-homeosta-

sis. These findings may influence current therapeutic approaches modulating HH signalling

for the treatment of degenerative musculoskeletal conditions such as osteoarthritis and hetero-

topic ossification.

Results

Loss of Ubr5 function causes skeletal heterotopias at 6 months

To overcome the embryonic lethality associated with germline mutant animals [29], we com-

bined a Ubr5 conditional loss-of-function gene trap (Ubr5gt) [9] with Prx1-Cre [30] (Prx1-Cre;
Ubr5gt/gt animals henceforth, referred to as Ubr5mt) to ensure that adult tissues derived from

early limb bud mesenchyme, predominantly bone and connective tissue, were Ubr5 deficient.

Since the HH pathway affects embryonic limb patterning and bone growth, the Ubr5 deficient

fetuses (at E15.5) were initially examined and bones and joints appeared to develop normally

[9]. However, the HH pathway continues to function in postnatal bone growth and homeosta-

sis [10] and thus, at approximately 6 months of age, we noticed that mice began to display

defects in locomotion. Control animals normally remained supported by their hindlimbs

(‘sprung’), whereas, Ubr5mt animals rested their posteriors directly upon the floor (‘squat’)

(S1A–S1C Fig). Considering the tissue targeted by the conditional mutation, the observed phe-

notype indicated a potential musculoskeletal system defect which prompted the examination

of hindleg bone and joint structures.

At 6 months of age, X-ray imaging revealed that Ubr5mt animals exhibited abnormally

shaped and/or ectopic signals around knee and ankle joints (S1D–S1G Fig). 3D micro-com-

puted tomography (μCT) revealed that, whereas Prx1-Cre control joints appeared normal with

no evidence of ectopic structures (Fig 1A), the knees of all Ubr5mt mice (n = 10) exhibited
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isolated ectopic signals clearly separated from the adjacent femoral condyles and tibia (Fig 1B).

Surface rendering of the μCT scans demonstrated that the array of knee-associated sesamoid

bones (patella and fabella) and calcified menisci (Fig 1C and 1D) were abnormal. Ubr5mt

knees presented with large ectopic structures on all four faces of the knee joint, as well as

enlarged and irregularly shaped fabella and patella sesamoid bones (Fig 1E and 1F). In addi-

tion, the Ubr5mt animals exhibited multiple ectopic signals around the ankle joint (Fig 1G and

1H), with the most striking one appearing consistently on the dorsal side running parallel to

the long axis of the tibia (Fig 1H, open arrows) associated with the Achilles tendon (AT). This

Fig 1. Ubr5mt animals exhibit multiple ectopic structures around the knee and ankle joints in Ubr5 expressing

tissue. 6-month old control andUbr5mt animals were analysed by μCT. (A, B) Color-coded density maps revealed

presence of ectopic, non-uniform density structures (open arrowheads) around the tibia (closed arrowheads) and

femoral condyles (arrows). (C, D) Knee joints in ventral and (E, F) in medial (lower panels) aspect. Closed arrowheads

indicate normal structures: the patella (Pa), menisci (Mn) and fabella (Fb). Open arrowheads indicate ectopic signals

(Es) present in theUbr5mt knee joint. (G) Control ankle joints exhibit a signal extending from the ventral face of the

tibia (closed arrowhead) and a small structure presumed to be a sesamoid bone (arrow). (H) Multiple ectopic signals

were present around the Ubr5mt ankle joint (arrowheads), including a large dorsally located and well-isolated structure

in the location of the AT (open arrowhead). (I-R) 20-week-old Prx1-Cre control andUbr5mt ankle and knee joints were

stained for β-gal activity. Whole mount knee (I, K) and ankle (J, L) are shown with subsequent sagittal sections for the

knee (M) and the boxed area magnified in (N) shows the outer layer of the menisci (open arrowhead), and the adjacent

synovium (closed arrowhead) stained positive for β-gal expression. Sagittal sections for the ankle are shown in (O) and

magnified in (P) showing staining of the AT and superficial digital flexor tendon (open and closed arrowheads,

respectively). (Q, R) Expression of β-gal in the articular cartilage of the knee and the red dashed box in Q shown at

higher magnification in R.

https://doi.org/10.1371/journal.pgen.1009275.g001
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ectopic signal remained isolated from the calcaneus and tibia. Other ectopic structures

included two ectopic U-shaped signals on the ventral and lateral sides of the tibia (Fig 1H).

Following Prx1-Cremediated recombination of the Ubr5gt gene-trap construct, the reporter

gene lacZ (encodes β-galactosidase [β-gal] activity) is activated and expressed under the influ-

ence of Ubr5 gene regulators [9] acting as proxy for Ubr5 expression. β-gal activity is initially

detected in limb mesenchyme at early embryonic stages [9] and at the postnatal stages exam-

ined here, activity is restricted to limb tissue derived from this embryonic mesenchyme. Analy-

sis of lacZ expression in 20 week-old control and Ubr5mt mice indicated that Ubr5 is expressed

around the knee (Fig 1I and 1K) and ankle (Fig 1J and 1L) joints. Further analysis revealed

strong β-gal activity around the periphery of the menisci and synovium (Fig 1 M and 1N). The

ankle also revealed β-gal activity within the AT and superficial digital flexor tendon and in a

large ectopic structure within the AT midbody (Fig 1O and 1P). Thus, the tissues that exhibit

Cre-mediated expression of the lacZ gene are affected in the mutant phenotype.

Ubr5mt-associated ectopic structures exhibit chondrogenesis and

calcification

The morphology of these ectopic structures around the knee (see Fig 1D and 1F) and ankle

(see Fig 1H) joints were further investigated to determine the cellular composition and possi-

ble derivation of these ectopias. As shown by μCT, both knee (Fig 2A and 2B) and ankle (Fig

2D and 2E) ectopic structures harbored X-ray dense internal structures indicative of bone.

Accordingly, in these joints (Fig 2C and 2F) von Kossa staining, which is widely used to detect

abnormal calcium deposits, revealed staining in these ectopic structures. Von Kossa staining

in the Ubr5mt knee joints revealed positive stained structures within the synovium deep in the

patellar tendon (Fig 2C) and near the ankle joint staining within the AT (Fig 2F). In addition,

in the control AT, the expected ordered stacking of tenocytes along the anterior-posterior axis

(Fig 2G) and an absence of toluidine blue staining associated with proteoglycans (Fig 2H) was

observed. In contrast, these regions of the Ubr5mt AT were devoid of tenocytes, which were

replaced by long columns of proteoglycan-expressing hypertrophic chondrocytes (Fig 2I and

2J). Histological analysis of control knee joints revealed a synoviocyte-rich intimal layer of the

synovium (Fig 2K), whereas Ubr5mt knee joints exhibited bone- (Fig 2L) and cartilage-like (Fig

2M) ectopic structures. The observed mutant morphology was consistent with the formation

of ectopic bone around the knee and in the AT, which was further associated with the presence

of ectopic chondrocytes and the production of extracellular matrix.Thus, an abnormal pheno-

type consisting of ectopic chondrogenesis, calcification and ossification (hereafter, referred as

ECCO) of the synovium and tendons in Ubr5mt tissues was observed. We concluded that Ubr5
normally functions to prevent spontaneous ectopic formation of chondrocytes in tissues and

calcification and/or ossification in cartilage.

Loss of Ubr5 function causes articular cartilage degradation

μCT analysis of 6-month old control (Fig 3A) and Ubr5mt (Fig 3D) knee revealed the previ-

ously described overt morphological differences (see above), but further analysis at the surface

of the joints, showed a significantly increased volume of high subchondral bone density (desig-

nated by red in Fig 3B, 3C, 3E and 3F) in the mutant. The increase in volume as a percentage

of total subchondral bone (depicted in S1H–S1J Fig) is quantified in Fig 3G. In addition, histo-

logical assessment showed a dramatic loss of articular cartilage (AC) from the lateral tibial and

femoral surfaces of all Ubr5mt knee joints assessed (Fig 3H and 3I); a condition not detected in

any control mice at this stage. Further examination of the exposed subchondral bone in these

Ubr5mt mice revealed abnormal intermixed bone and cartilage within this region (Fig 3J and
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Fig 2. Ubr5mt limbs exhibit ectopic chondrogenesis, cartilage formation and calcification and ossification. (A, B,

D, E) Colour-coded X-ray density maps of volume renderedUbr5mt knee (A B) and ankle (D, E) joints. (B, E) show

cross-sections through the joint to reveal the internal structure and density. Arrowheads indicate ectopic structures

indicated in Fig 1F and 1H. Low density = blue and High density = red. Sagittal sections (C, F) from 20-week-old or

24-week-old animals are shown. (C, F) Von Kossa staining of Ubr5mt knee (C) and ankle joints (F). (C) Ubr5mt knee

PLOS GENETICS Ubr5 and skeletal tissue homeostasis
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3K). Analysis for lacZ expression revealed β-gal activity within the upper layer chondrocytes of

the femoral and tibial AC (Fig 1Q and 1R) which corresponds with a role for Ubr5 in this tis-

sue. Thus an overview of the hindlegs at 24 weeks reveals a diverse range of cartilaginous

defects which include firstly, metaplastic conversion of connective tissue associated with the

knee and ankle and secondly, severe degradation of AC causing exposure of the subchondral

bone at the joint surface.

Ubr5 deficiency results in a postnatal, progressive phenotype

To establish the approximate age at which this striking ECCO phenotype was initially detect-

able, a timed series of in vivo μCT scans on ageing, live animals was followed. Ubr5mt animals

joints revealed ectopic signals in the synovium (dashed box and arrowhead) lying within the synovium and under the

patellar tendon. (F)Ubr5mt ankle revealed ectopic signals in AT (dashed box and arrowhead) on the deep face of the

AT. (G, I) H&E and (H, J) toluidine blue staining of the midbody of Achilles tendons. The left panel of each pair shows

a low magnification image of the tendon. A higher magnification of the boxed region is shown in the right panel. (G,

H) Control tendons showed the expected columns of tenocytes and very little toluidine blue staining. (I, J) Ubr5mt

tendons harbour chondrocytes that coincide with regions of toluidine blue staining. (K) Image of control synovium

(arrowhead) located underneath the patella (Pa) and patellar tendon (PT) and adjacent to the tibial articular cartilage

(AC). (L, M) Ubr5mt synovium harbours ectopic tissue. (L) The synovium harbours a bone-like structure (arrowhead).

(M) In other regions, the synovium abutting the patella appeared thickened but not ossified showing cartilage

harbouring chondrocytes. Pt = patellar tendon; Pa = patella; Mn = meniscus.

https://doi.org/10.1371/journal.pgen.1009275.g002

Fig 3. Ubr5mt animals show subchondral bone defects and AC cellular and extracellular abnormalities. (A, D) Surface

rendered μCT-based 3D models images of knee joints of Prx1-Cre (Control) (A) andUbr5mt (D). Volume rendered 3D

models of 26-week-old tibial subchondral bone (outlined in A, D) showing (B, E) ventral, and (C, F) anterior views. High-

density volume shown in red and low-density in blue. (G) Graph of percentage of high-density signal volume as a

percentage of total subchondral bone volume. s.e.m indicated. n = three biological replicates per genotype. t-test.

p = 0.0103. H&E-based histological analysis of (H-K) 26-week-old Prx1-Cre (Control) andUbr5mt tissues. (H, I) Low

magnification view of the interface at the knee, showing control (dashed lines underscore the AC) andUbr5mt which

exhibited extended regions that lacked AC and exposed subchondral bone (dashed lines). Peripheral regions retained some

AC (white arrowheads in I). (J) 26-week-old control tibial AC was normal and (K) Ubr5mt AC revealed exposed

subchondral bone (black arrowheads) and intercalated cartilage (white arrowheads)).

https://doi.org/10.1371/journal.pgen.1009275.g003
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at 3-weeks of age revealed no marked abnormal phenotype in knee or ankle joints (S2A–S2D

Fig), suggesting that the ectopic structures did not form during fetal development but rather

formed postnatally. Between 6 and 12 weeks of age, the ectopic structures began to emerge (Fig

4A and 4B), initially on the ventral side of the tibia. Dorsally located ectopic signals associated

with the AT emerged by 16 weeks of age (Fig 4C) and all ectopic structures were enlarged by 24

weeks of age (Fig 4D). Ubr5 deficiency, therefore, led to enhanced, progressive chondrogenesis

and osteogenesis in the connective tissue of the knee and ankle of the aging Ubr5mt mouse.

These metaplastic conversions within the connective tissue supporting the knee and ankle,

however, contrasted with the changes demonstrated in the AC which manifested as a degener-

ative phenotype. To investigate the timing of AC degradation, we examined mice at 3 and 6

weeks. No gross structural disruption of the AC in the Ubr5mt animals at 3-weeks of age was

detected (Fig 4E and 4F). By 6-weeks of age, Ubr5mt articular cartilage exhibited an irregular

osteochondral interface (Fig 4G and 4I), clusters of large, hypertrophic-like chondrocytes (Fig

4H and 4J) and a reduction in the number of superficial chondrocytes (Fig 4K). Ubr5mt articu-

lar cartilage also exhibited multiple tidemarks and regions of strongly eosin positive nuclei

indicative of necrosis (Fig 4L and 4M) that were absent in controls. Thus, progressive damage

was found in the AC due to the loss of Ubr5 but in this case, early cellular and extracellular

abnormalities occurred prior to AC degradation, which included increased subchondral bone

density and exposure of subchondral bone

Despite loss of UBR5 in early limb mesenchyme, these data indicated that the ectopic struc-

tures arose postnatally and subsequently progressed with age. To directly address if postnatal

UBR5 function was required to suppress ECCO and the degradation of the AC, we utilised a

mouse line carrying a tamoxifen-inducible, conditional Cre, pCAGG-CreERT2 [30]. Control

pCAGG-CreERT2 (pCAGG-Con) or pCAGG-CreERT2;Ubr5gt/gt (pCAGG-Ubr5mt) animals

were treated with tamoxifen (administered on two consecutive days) at six weeks of age. Stain-

ing for β-gal activity, although more broadly distributed, confirmed tamoxifen-mediated

recombination of the Ubr5mt gene trap and its associated β-gal expression in tissues that

included muscles and tendons (S2E and S2F Fig), and within the midbody ectopia at the AT

(S2G Fig). μCT analysis at 8 weeks revealed that tamoxifen-treated control animals exhibited

no ectopic signals (Fig 4N), whereas pCAGG-Ubr5mt animals exhibited AT -associated ectopic

signals (Fig 4O). Scoring (Fig 4P) and heterotopic ossification (HO) volumetric analysis (Fig

4Q) confirmed that only tamoxifen-treated pCAGG-Ubr5mt animals exhibited ectopic signals.

Comparison of 12 week control to treated pCAGG-Ubr5mt (Fig 4R and 4S) knees revealed

Ubr5mt-associated apical acellular layer (Fig 4S and 4T), damage to the apical surface, multiple

tidemarks, reduced superficial zone chondrocytes (Fig 4V) and increased numbers of empty

lacunae (Fig 4U and 4W). We concluded that postnatal Ubr5 function was both necessary and

sufficient to maintain AC homeostasis and prevent ECCO.

Inhibition of Smo promotes Ubr5mt-associated ECCO and enhances

Ubr5mt-mediated AC degradation

As UBR5/HYD regulates HH signalling in Drosophila [7,8], we next used a genetic approach

to address whether aberrant HH signaling contributed to the Ubr5mt ECCO and AC pheno-

types. The Smo gene encodes a core membrane component, regulated by the HH receptor

PTCH1, that initiates the downstream signalling cascade leading to GLI-dependent transcrip-

tion (canonical signalling) or Gi protein-dependent events that are tissue specific (non-canoni-

cal signalling). We reasoned that reduction in Smo expression levels would sensitize the HH

pathway; thus, heterozygosity for a Smo loss of function allele (SmoLoF) [31] was used in a cross

to Ubr5mt to create Prx1-Cre;Ubr5gt/gt;SmoLoF/+ animals (Ubr5mt+SmoLoF).
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Fig 4. Ubr5mt mice exhibit degenerative, age related defects. (A-D) Consecutive uCT scans of liveUbr5mt animals at

the indicated ages. Ubr5mt ankles form (i) ventral ectopic signals (arrowheads) around (B) 12 weeks of age and (ii)

dorsal ectopic signals around (C) 16 weeks of age that (D) increased in size over time. Three-week-old knee joints,

stained with H&E, of Prx1-Cre (control) (E) andUbr5mt (F). Black dashed lines in (F) demarcate theUbr5mt apical

acellular region. (G-M) Six-week-old (G,H) Prx1-Cre (control) and (I,J,L) Ubr5mt proximal tibial AC were analysed.

(G) Control AC and at higher magnification (H) revealed the expected chondrocyte profile along the apical to basal

axis, namely (I) superficial chondrocytes lining the apical surface; (II) non-hypertrophic rounded/oblong nuclei

chondrocytes; (III) larger pre-hypertrophic-like chondrocytes within the central zone; and (IV) large hypertrophic

chondrocytes located near the border with the underlying subchondral bone. SB = subchondral bone. (I) Ubr5mt tibial

AC and at higher magnification (J) revealed abnormal chondrocytes and an acellular apical layer lacking superficial

chondrocytes. (K) Graph of the percentage of superficial chondrocytes in six-week-old tibial AC. N = three biological

replicates of each genotype. Mean and s.e.m indicated. Chi square test on pooled cell counts. p =<0.0001. (L) Ubr5mt
tibial AC exhibited clusters of eosin positive chondrocytes (dashed lines) and multiple tidemarks (arrows). (M) Graph

of percentage of eosinophilic chondrocytes in six-week-old AC. Chi square test on pooled cell counts. N = three

biological replicates of each genotype. p =<0.001. (N-Q) Postnatal pCAGG-Cre-mediated recombination of the Ubr5gt

construct (O), but not pCAGG-Cre expression alone (N), resulted in X-ray dense ectopic signals forming in the AT

region. (P) Counts of animals exhibiting ankle-associated ectopic signals, scored for the absence (Normal) or presence

of ectopic signals (Ectopic), n =>4 for each genotype. Fisher’s exact test, p value = 0.0048. (Q) Volumetric

measurement of ectopic signals designated HO (heterotopic ossification) volume from each animal n = 4. Unpaired t

test, p = 0.0079. Standard error indicated. Control AC (R) exhibited superficial chondrocytes (arrows). (S)

pCAGG-Ubr5mt AC exhibited an acellular apical layer (arrowheads), multiple tidemarks (arrows), and surface damage

(black arrowhead). (T) Graph of percentage of sections with acellular regions and AC damage. Mean and s.e.m

indicated. n = three biological replicates. Three slides analysed from each animal. Average plotted. Fishers exact on

pooled section counts. p = 0.0434. (U) pCAGG-Ubr5mt AC also exhibited a reduction in superficial chondrocytes and

an increase in empty apically-located lacunae (arrowheads). Graph of (V) superficial chondrocytes and (W) empty

lacunae expressed as number per mm of AC. n = three biological replicates. Analysis of two sections per animal.

Individual slide values plotted. Mean and s.d indicated. Fishers exact test on pooled counts p =<0.0001.

https://doi.org/10.1371/journal.pgen.1009275.g004
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In contrast to our expectations, μCT analysis of 12-week Ubr5mt+SmoLoF mice exhibited

significantly more severe defects than those of age-matched Ubr5mt (Fig 5A–5C) and SmoLoF/+

mice (which were indistinguishable from wildtype), with multiple, large ectopic signals appar-

ent around the knee (Fig 5A–5F) and ankle joints (Fig 5H–5N). Volumetric analysis revealed a

significant increase in the volume of Ubr5mt+SmoLoF femoral-associated ectopic bodies com-

pared to Ubr5mt alone (Fig 5G) and the ankles harboured a 20-fold increase in the volume of

ectopic signals (Fig 5O). In agreement, histological analysis of the Ubr5mt+SmoLoF joints

revealed an enhanced phenotype to that described in Ubr5mt (Figs 1 and 2). Ubr5mt+SmoLoF

synovium harboured large ectopic tissue masses (Fig 6A) with extensive vascularisation (Fig

6B) and chondrocytes lining the surface (Fig 6C) with deeper calcified cartilage and vasculari-

zation (Fig 6D). Sagittal sectioning through the ankle revealed large ectopic structures within

the superficial digital flexor tendon (Fig 6E), consisting of bone and cartilaginous tissue (Fig

6F and 6H), and at the tendon interface (Fig 6G). Large swathes of chondrocytes were present

within the superficial digital flexor and AT that coincided with an absence of tenocytes (Fig 6I

and 6J), as previously reported in the Ubr5mt (Fig 2). In addition, the AC in Ubr5mt+SmoLoF

knee joints exhibited extensive loss over both tibial and femoral surfaces at this young age (Fig

6M and 6N), while Ubr5mt knee joints exhibited only tears within the AC (Fig 6K, 6L and

quantification in 6O). Importantly, the loss of a single copy of Smo alone (Prx1-Cre;SmoLoF/+)

resulted in no structural or AC damage (Fig 6P).

Ubr5 suppresses canonical HH signalling and PKA activity

A functional link between UBR5 activity and HH signalling was further examined in 6-week

old Ubr5mt mice. At this age ectopic structures were not detectable (Fig 4), thereby increasing

the likelihood of detecting potential causative changes in expression patterns. Immunohis-

tochemistry on Ubr5mt knee intimal (Fig 7A–7F) and subintimal synovium (Fig 7G–7L)

revealed increased Gli1 expression in comparison to Prx1-Cre control animals (Fig 7B, 7E, 7H

and 7K; respectively), indicative of increased canonical HH signalling. qRT-PCR analysis also

confirmed increased expression of markers of canonical HH signalling in RNA from isolated

synovium (Gli1 and Ptc1) (Fig 7M). Additionally, intimal and sub-intimal Ubr5mt synovium

exhibited increased phosphorylated PKA substrate (PPS) staining suggesting decreased Gi pro-

teins activation, characteristic of non-canonical HH signalling (Fig 7C, 7F, 7I and 7L). Consis-

tent with the observations in the synovium, Ubr5mt AC exhibited markers of increased

canonical (Fig 8A–8D) and decreased non-canonical HH signalling (Fig 8E and 8F). Although

little change for PTCH1 was detected (Fig 8G) there was significant differences for Gli1 expres-

sion and PKA substrate staining (Fig 8H and 8I).

UBR5mt AC and damaged human AC exhibits both aberrant expression of

markers of chondrogenesis and HH signalling

As seen in murine Ubr5mt AC, osteoarthritic AC from patients also exhibits markers of

increased canonical HH signalling [32]. We next addressed (i) UBR5 expression and (ii) mark-

ers of decreased non-canonical HH signalling (PPS) in human AC. Graded samples from

(OA) patients (S3A–S3C Fig) undergoing total joint replacement were assessed for UBR5

expression (S3E, S3G and S3I Fig) and PKA activity (PPS in S3D, S3F and S3H Fig). As in the

murine model, PPS IHC staining increased (S3J Fig), and hUBR5 staining decreased (S3K Fig)

with decreasing AC health. Observations of changes in markers consistent with increased

canonical and decreased non-canonical HH signalling in Ubr5mt synovium and AC were ech-

oed in human OA samples.
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Fig 5. SmoLoF enhances the Ubr5mt ECCO phenotype. Analysis of 12-week-old knee (A-G) and ankle (H-O) joints

by μCT-based 3D models. (A-C) Ubr5mt and (D-F)Ubr5mt+SmoLoF knee joints revealed ectopic structures marked by

red dashed lines and open arrowheads. Sesamoid bones indicated by closed arrowhead. Asterisk marks an ectopic

structure displacing the patella. Images (A, B, D, E) are surface rendered 3D models, while (C, F) are optical cross

sections through the volume-rendered model revealing the internal structure and X-ray densities of the (open

arrowhead) ectopic sesamoid and (closed arrowhead) abnormal patella structures. (G) Volumetric analysis of ectopic

structures revealedUbr5mt+SmoLoF exhibited a dramatic increase in total ectopic volume overUbr5mt alone. Mean and

s.e.m indicated. n = six knees from three animals for each genotype. t-test. p = 0.0002. (H-J)Ubr5mt ankle joints

exhibited a few small ectopic signals. (K-N)Ubr5mt+SmoLoF ankles joints exhibited large (closed arrowhead) and small

(arrow) ectopic signals in addition to an abnormal and enlarged calcaneus (open arrowhead). (N) Optical cross

sections through volume-rendered model revealed the internal structure and X-ray densities of the (open arrowhead)
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calcaneus and (closed arrowhead) ectopic structure. (O) Volumetric quantification of ectopic structures in the

indicated genotypes. n = five animals per genotype. t test, p value = 0.0293. Mean and s.e.m. indicated.

https://doi.org/10.1371/journal.pgen.1009275.g005

Fig 6. SmoLoF enhances the Ubr5mt AC phenotype. (A)Ubr5mt+ SmoLoF synovium exhibited large ectopic tissue deep

to the patella and adjacent to the femur (open arrowhead). Three black dashed boxes, from left to right, are enlarged in

(B), (C) and (D), respectively. (B) Sub-intimal synovial layer abutting the ectopic tissue was highly vascularized

(arrowheads). (C) The region interfacing with the ectopic tissue harboured plump spindle-like cells and chondroid-like

cells (arrowheads). (D) The core of the ectopic tissue resembled calcified cartilage undergoing endochondral

ossification and harboured vascularized cavities (arrowheads). (E)Ubr5mt+SmoLoF ankle exhibited a large ectopic

structure (black arrowhead) and abnormal superficial digital flexor tendon (open arrowhead) and calcaneus (asterisk).

The upper and lower dashed boxed region are enlarged in (F) and (G), respectively. (F) The ectopic mass contained

bone-like (black dashed lines) and cartilaginous tissues (white dashed lines) surrounded by extensively vascularised

synovium (open arrowheads). (G) The presumed superficial digital flexor tendon attached to the ectopic bone (black

arrowhead), harboured chondrocytes and resembled cartilage (encircled by black dash line). The adjacent periosteum

of the calcaneus was highly vascularised (open arrowheads). (H) Cartilaginous thickening of the outer calcaneus. (I)

The AT was thickened. The dashed box enlarged in (J) shows columns of chondrocytes (open arrowheads). (K-N)

Analysis of 12-week-old knee joints ofUbr5mt andUbr5mt+SmoLof by H&E stained histological sections of the lateral

condyles. (K, L) Ubr5mt exhibited tears in the AC (open arrowhead) and (M, N) Ubr5mt+SmoLoF exhibited extensive

loss of AC (dashed lines) and damaged apical surfaces (arrowhead). Dashed boxes in (K) and (M) indicate the enlarged

regions in (L) and (N), respectively. (O) Percentage of sections bearing no damage (‘None’), tears (‘Tears’) or exposed

calcified cartilage (Exposed), revealed a significance difference between the genotypes. Mean and s.e.m indicated. Chi-

square test on pooled slide counts. p = 0.0027. (P’) SmoLoF AC showed no signs of AC damage.

https://doi.org/10.1371/journal.pgen.1009275.g006
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Fig 7. Ubr5mt synovium exhibits markers of increased canonical and decreased non-canonical HH signalling.

Immunohistochemical localization of markers of canonical and non-canonical HH signalling (A-L) six-week-old

sagittal sections of Prx1-Cre control (Con) andUbr5mt animals. In general, control (A-C) intimal and (G-I) subintimal

layers exhibited weaker GLI1 and PPS staining than in comparable Ubr5mt sections (D-F and J-L, respectively). (B)

GLI1 staining in the control intimal layer was located to the vasculature (closed arrowheads) and some adipocytes

(open arrowheads). (C) PPS staining was in the vasculature (closed arrowheads) and within adipocytes (open

arrowheads). (E) GLI1 and (F) PPS staining were throughout the subintimal layer. (H) GLI1 staining of control

synoviocytes within the subintimal layer (arrowhead). (I) PPS staining in sub-intimal layer synoviocytes (arrowhead).

(K) GLI1 and (L) PPS staining were strongly expressed within hyperplastic and thickened synovial sub-intimal layer.

Synoviocytes exhibited robust nuclear and cytoplasmic staining for GLI1 (K) and PPS (L). (M) qRT-PCR on synovium

RNA for expression of canonical HH pathway expression markers Ptch1 and Gli1. Graph indicates mean and s.e.m.

n = three animals. t-test. Ptch1 p = 0.0273 and Gli1 p = 0.0477.

https://doi.org/10.1371/journal.pgen.1009275.g007
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To further delineate whether mammalian Ubr5 could influence markers of canonical and

non-canonical HH signalling, murine NIH3T3 cells were engineered to either exhibit

increased (cDNA overexpression) or decreased (shRNA knock-down) Ubr5 expression. Cells

were then transfected with constructs encoding (i) Shh, (ii) constitutively active Smomutant

(Smo-M2) or (iii) Gli1. Canonical pathway activity was measured using a Gli-responsive lucif-

erase reporter assay. While perturbation of Ubr5 expression had no effect on Shh- or Smo-

M2-mediated signalling (Fig 9A and 9B), Ubr5 overexpression caused a significant reduction

(Fig 9A, P<0.001), and Ubr5 shRNA-mediated knockdown caused a significant increase (Fig

9B, P<0.05), in Gli1-mediated luciferase activity. However, Ubr5-overexpression did not per-

turb the expression level of endogenous or exogenous GLI1 protein (Fig 9C), excluding a role

for UBR5-mediated degradation. Therefore, UBR5 appeared to only suppress canonical HH

signalling associated with overexpression of GLI1.

We then addressed whether loss of Ubr5 function would also affect cAMP production as a

readout of Gi protein activity, an indirect marker of non-canonical HH signalling. Ubr5
shRNA cells showed an ~2-fold increase in maximal cAMP production in response to

Fig 8. Impaired Ubr5 function results in increased canonical and decreased non-canonical HH signalling.

Immunohistochemical analysis of six-week-old control andUbr5mt tibial AC examined for markers of canonical HH

pathway activity. Relative to (A, C) control, (B, D) Ubr5mt AC displayed increased staining intensities for PTCH1 (A,

B) and GLI1 (C, D) with GLI1 exhibiting expanded expression domains (D, double-headed arrows). (E, F) Staining for

PKA phosphorylated substrates (PPS) revealed (Q)Ubr5mt AC exhibited increased numbers of robust staining cells.

The number of expressing cells is quantified in (G-I). Quantification confirmedUbr5mt AC to harbour increased

numbers of positive cells for all antigens except PTCH1. Graphs represent the percentage of positive cells, regardless of

staining intensity, with the mean and s.e.m indicated. n = 3 biological replicates. Chi-square test on pooled cells count

data. p =<0.0008, except PTCH1 which was not significant.

https://doi.org/10.1371/journal.pgen.1009275.g008
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Fig 9. Ubr5 functions as a negative regulator of HH signalling ex vivo. Analysis of HH pathway activity in murine NIH3T3 cells in response to modulation of

Ubr5 expression. (A) Cells were transfected with empty pN21 vector (grey bars) or pN21-Ubr5 (black bars) together with plasmids encoding Shh, Smo-M2 or Gli1
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forskolin, an adenylate cyclase agonist (Fig 9D) [33]. Moreover, simultaneous addition of for-

skolin and purmorphamine, a SMO agonist, lowered maximal cAMP generation, but its effect

was suppressed by Ubr5 shRNA (Fig 9D). Together, the in vitro findings suggest that Ubr5 loss

results in reduced stimulation of Gi proteins by Smo, leading to increased cAMP/PKA activity

levels. Overall, these data supported our in vivo observations that Ubr5 normally acts to sup-

press GLI1 activity while promoting PKA activity.

Discussion

Ubr5 mutation causes musculoskeletal tissue defects

We report a role for mammalian Ubr5 in adult skeletal homeostasis that impacts upon and

genetically interacts with, components of the HH signalling pathway. These findings add to

the emerging importance of the N-end rule ligases in regulating important signaling and cellu-

lar processes in human, and animal health and disease [34,35]. Loss of the Ubr5 gene in early

limb mesenchyme resulted in postnatal defects in and around joints within the fore and hind-

limb. The mutant phenotype displayed a degree of variability between individual mice; how-

ever, the abnormalities were pervasive in the mutants and were never observed in wildtype or

control mice. The defects that were consistently observed included ectopic bone and cartilage

formation, and articular cartilage degradation. The spectrum of defects observed are summa-

rized in S4 Fig.

Our data indicates metaplastic production of chondrocytes and/or ectopic endochondral

ossification as a major component of Ubr5mt-associated ECCO. Comparison of the Ubr5mt-
associated ECCO phenotype with that of human inherited HO diseases reveals some similari-

ties and differences. Within the ECCO-prone tissues there were distinct tissue-specific

responses; for example, the knee-associated synovium underwent ectopic chondrogenesis, cal-

cification and ossification to produce bone, whereas the Achilles tendon only underwent

ectopic chondrogenesis and calcification. The abnormalities of the knee-associated synovium

which display heterotopic chondrogenesis are reminiscent of human benign bone tumours

called osteochondromas [36], whereas the heterotopic tissue calcification without ossification

seen in the AT resembles a form of calcific tendinopathy [37]. The mouse Ubr5mutation,

thus, provides a genetic model for the generation of these bone abnormalities and suggests that

the processes of chondrogenesis, tissue calcification and ossification represent discrete, albeit

interrelated, steps that when deregulated can individually, or collectively, contribute to distinct

tissue pathologies.

Our findings also demonstrated an important role for Ubr5 in regulating AC homeostasis,

where its loss led to dramatic cellular, extracellular and structural defects. The observed defects

and 8xGLI-Firefly and pTK-Renilla luciferase reporters in growth medium (DMEM with 10% FBS). After 24 h, serum was reduced to 0.5% and the Firefly/Renilla

luciferase activity was measured 48 h later. Bars represent mean +/- s.e.m. of n = 3 independent experiments. (B) A similar GLI-luciferase assay was carried out in

NIH3T3 cells stably expressingUbr5 shRNA (black bars) or scrambled shRNA (grey bars). Bars represent mean +/- s.e.m. of n = 3 independent experiments. (C)

NIH3T3 cells were co-transfected with pN21-Ubr5 (Ubr5) or empty vector (Control) and Gli1-myc or empty pcDNA3.1, followed by Western blot analysis of Gli1

expression (arrowhead) using β-actin as loading control. (D) Stable knockdown ofUbr5 impaired readouts of non-canonical HH signalling. Production of cAMP by

control scrambled shRNA (black bars) orUbr5 shRNA stable cells (grey bars) following acute treatment with the adenylate cyclase activator forskolin (For) or

forskolin plus the SMO agonist purmorphamine (For/Pur), compared to DMSO vehicle as control (-). Forskolin-stimulated cAMP production in Ubr5 shRNA cells

was significantly elevated compared to control cells (p = 0.0368; t-test). Purmorphamine suppressed forskolin-mediated cAMP production in both scramble control

(p = 0.0318; t-test) andUbr5 (p = 0.0160; t-test) shRNA cell lines. Graphs indicate mean and s.e.m.; n = 4 independent experiments. (E) Proposed model of UBR5

function in HH signalling: UBR5 negatively regulates canonical HH signalling downstream of SMO, hypothetically through facilitating the function of the HH

negative regulator Sufu, despite simultaneously inhibiting adenylate cyclase (AC). In this context, loss of Ubr5 could increase Gli1 expression by two means: 1)

impairment of Sufu negative regulation and 2) stimulation of Gli1 transcriptional activity by increasing PKA-dependent phosphorylation of BRD4. The convergence

of Ubr5 and SMO to suppress adenylate cyclase activity could explain the phenotypic enhancement observed in compound mice with loss of function of Ubr5 and

Smo. Green and red arrows indicate established modes of activation and repression, respectively.

https://doi.org/10.1371/journal.pgen.1009275.g009
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in HH signalling could have been causative in nature as HH signalling is intimately linked to

both stem cell [22] and chondrocyte biology [10]. One of the more distinctive Ubr5mt AC

defects was the tearing along the tidemark between non-calcified and calcified cartilage. This

focal failure suggested the interface was prone to transverse shear forces and ‘slipping’ of one

layer (i.e., non-calcified cartilage) relative to the other (i.e., calcified cartilage). Interestingly,

this mode of AC shedding and the associated regions of necrosis mirrored defects observed in

mammalian osteochondrosis [38,39].

Recently, increased Ubr5 expression was correlated with muscle growth, hypertrophy [40]

and recovery from injury [41] suggesting a role in muscle maintenance. These reports suggest

that Ubr5may have a broad role in the musculoskeletal system of the limbs affecting homeo-

stasis not only in the cartilaginous connective tissue but also in the associated musculature.

UBR5 influences markers of canonical and non-canonical HH signalling

Based on the current dogma, we hypothesized that the Ubr5mt-associated ECCO was caused

by increased HH signalling. In contrast, the introduction of SmoLoF heterozygosity into a

Ubr5mt background both (i) exacerbated Ubr5mt-associated defects as well as elicited novel

defects not observed by loss of Ubr5 function alone (e.g., ECCO of the calcaneal periosteum

and the superficial digital flexor tendons and increased volume and altered shape of normoto-

pic sesamoid bones). This combined ability to influence both normotopic and heterotopic

bones (S4 Fig), highlights the importance of UBR5 in normal and pathological skeletal tissue

homeostasis. Furthermore, our genetic analysis exposed a pro-homeostatic function for SMO–

and by extension HH signaling–in suppressing Ubr5mt ECCO.

In vivo and in vitro observations identified a loss of Ubr5 associated with predictors of

increased (GLI1 activity) and decreased (PKA activity) canonical HH signalling. Based on the

current dogma, it is difficult to reconcile increased GLI activity in the context of increased

PKA activity, given that PKA phosphorylates other GLI family members, GLI2 and GLI3, tar-

geting them for processing into transcriptional repressors [14,42]. However, the evolving

breadth of the HH pathway (Fig 9E) provides potential mechanistic explanations for this

apparently paradoxical observation.

Recent evidence expanded the role of PKA to promote canonical HH signalling by promot-

ing BRD4-mediated stimulation of GLIs transcriptional activity (Fig 9E) [43–45]. Interestingly,

HO-associated with increased HH signalling was suppressed by the BRD4 inhibitor JQ1 [46],

which clearly demonstrated a role for a cAMP-PKA-BRD4-GLI1 axis in skeletal tissue homeo-

stasis. A non-canonical role of SMO as a G protein-coupled receptor (14, 15) provides a mech-

anism to control PKA activity. Upon stimulation, SMO activates heterotrimeric Gi proteins,

which, upon dissociation, inhibit adenylate cyclase through the Gα subunit to reduce cAMP

production and PKA activation [15,47,48]. Therefore, SMO inhibition can lead to increased

cAMP-mediated PKA activity accounting for SMO modification of the Ubr5mt phenotype, as

impairment of either UBR5 or SMO leads to increased cAMP-mediated PKA activity–with

their combined impairment leading to either additive or synergistic effects. Interestingly, our

preliminary research (personal communication NDGR) supports a role for UBR5 in regulating

readouts of non-canonical HH signalling other than PKA (i.e.; RhoA) [16]. Although our data

reveal a genetic interaction between UBR5 and an essential component of the HH signalling

pathway, we cannot fully establish the underlying mechanism(s) driving Ubr5mt-associated

ECCO. Future work will require developing the tools to differentiate between causative indi-

vidual, or combined, contributions of aberrant canonical or non-canonical HH signalling. The

addition of SmoLoF into aUbr5mt background would have exacerbated a pre-existing imbalance

between the pathway outputs to drive ECCO.
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The importance of balanced canonical and non-canonical HH signalling was recently dem-

onstrated in osteogenesis [49]. Loss of the cilia regulatory protein IFT80 resulted in impaired

osteoblast differentiation and coincided with (i) decreased expression of canonical target genes

and (ii) increased non-canonical activity. The authors proposed that the non-canonical HH

pathway prevented, and the canonical pathway promoted, formation of osteoblasts. Due to the

emerging importance of non-canonical HH signalling [12], we also propose that the combined

effects on canonical and non-canonical HH signalling contributed to the observed loss of tis-

sue homeostasis in Ubr5mt animals. Overall, our detection of Ubr5mt-associated increased

canonical (GLI1 activity) and indications of decreased non-canonical HH signalling

(cAMP-PKA) are in general agreement with a reported pro-osteogenic environment condu-

cive to HO [49]. UBR5 may therefore join IFT80 [49] and DYRK1B [50] as differential regula-

tors of canonical and non-canonical HH signalling. Our future work will involve establishing

which of the various non-canonical, SMO’s GPCR-associated downstream effectors (e.g.,

PKA, RHOA, RAC1, PI3K etc.) [51,52] drive ECCO.

In summary, we reveal a previously unknown role for Ubr5 in influencing HH signalling,

tissue homeostasis and preventing spontaneous ECCO. A role for UBR5 in regulating HH sig-

nalling and tissue homeostasis supports the classification of human UBR5 as a Tier 1 human

cancer susceptibility gene (Sanger Cancer Gene Consensus). We believe the Ubr5mt mouse

model could assist in uncovering mechanisms that lead to disorders including characterisation

of early pathological events and elucidation of pro-homeostatic mechanisms capable of pro-

moting general bone health. In the future, manipulation of human UBR5 and SMO function

could potentially provide a means of preventing pathological, and promoting beneficial, chon-

drogenesis and ossification in both the clinic and in biomedical engineering applications.

Materials and methods

Ethics statement

Human material. Human AC was obtained from knee joint arthroplasty specimens with

ethical approval from the Lothian Research Ethics Committee. Written formal consent was

obtained.

Murine studies. All animal experiments were reviewed and approved by the University of

Edinburgh Animal Welfare and Ethics Committee and were conducted with appropriate

licensing under Animals (Scientific Procedures) Act 1986 (license number PPL 60/4424).

Prx1-Cre;Ubr5gt/gt experimental animals (referred to as Ubr5mt) and their respective litter-

mate controls were generated and all experiments were conducted in accordance with the

ARRIVE guidelines. Animals were routinely weighed and there were no significant differences

between experimental and control animals. Males animals were used for analysis unless other-

wise stated. Tamoxifen (0.1mg/kg body weight) in corn oil, or vehicle only, were administered

i.p to six-week-old animals on two consecutive days. For X-gal staining, embryos and postnatal

hind limbs were dissected, fixed in 4% formaldehyde (from paraformaldehyde [PFA]) at 4˚C,

washed and stained in X-Gal stain solution (XRB supplemented with 1mg/ml X-Gal) overnight

[20].

Histology

Hindlimbs were fixed in 4% formaldehyde (fromPFA)) for 72hrs at 4˚C before being decalci-

fied 0.5M ethylenediaminetetraacetic acid (EDTA) pH7.4 at 4˚C. Samples were embedded in

paraffin wax blocks and 5μm sagittal sections cut. For cryotome sectioning, samples were

equilibrated in a 30% sucrose/phosphate buffered saline (PBS) solution at 4˚C and then

embedded in OCT compound (Fisher Scientific, Loughborough, UK) before 10μm sagittal
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sections were cut. For human material, 8x3mm blocks of AC were cut from femoral tibial con-

dyles and fixed in neutral buffered formalin and then paraffin wax embedded. Histological

staining with Von Kossa (Abcam, Cambridge, UK), toluidine blue (Sigma) and haematoxylin

and eosin (Sigma) were carried out according to standard procedures. All histological scoring

was carried out on the lateral tibial condyle with AC damage determined by a binary scoring

system, of ‘normal’ or ‘damaged’. At least three slides separated by 25μm were analysed for

each limb. For cell and immunohistochemical scoring, cell-types or positive staining cells were

expressed as a percentage of the total chondrocyte count. The number of empty lacunae were

expressed per mm of AC analysed.

Immunohistochemistry

Primary antibodies: rabbit anti-IHH (1:200, Millipore, Billerica, US); goat anti-PTCH1 (1:50,

Santa Cruz, Dallas, US); rabbit anti-GLI1 (1:50, Cell Signalling); rabbit anti-SOX9 (1:50 Santa

Cruz); rabbit anti-RUNX2 (1:250, Sigma); PKA phosphorylated substrates (1:150, Cell Signal-

ling); rabbit anti-EDD1 (HsUBR5) (1:100, Bethyl Labs, Montgomery, US). Biotinylated sec-

ondary antibodies: goat anti-rabbit and horse anti-goat (1:200, Vector Labs).

Paraffin sections were de-waxed, blocked for endogenous peroxidase and underwent anti-

gen retrieval in 10mM sodium citrate pH6 at 80˚C for 30–60 minutes. Slides were blocked

with serum-free pan-species block (DAKO, Glostrup, Denmark), incubated with primary anti-

bodies overnight at 4˚C, and incubated with biotinylated secondary antibodies for 45mins at

room temperature. Sections underwent streptavidin-mediated signal amplification (ELITE

ABC, Vectorlabs, Burlingame, US) prior to incubation with peroxidase substrate kit DAB

(Vectorlabs).

μCT monitoring

For longitudinal studies, eight-week-old mice were anesthetized with isoflurane prior to in-

vivo μCT scanning using a Skyscan 1076 (Bruker, USA, MA) at a resolution of 18μm isotropic

voxel size. Procedures were repeated every four weeks and carried out under local ethical

approval (ERF WGH-14-74). Fixed limbs were imaged at 18μm resolution using a Skyscan

1076 (Brucker, USA, MA) at 65kV, 110uA, 0.5mm Al filter, 700ms exposure, 0.6-degree rota-

tion step, 180-degree rotation, 2 frame averaging.

μCT image processing

Raw μCT image stacks was reconstructed using GPU-based NRecon (Bruker, USA, MA) using

identical parameters within each study type (10% beam hardening and image conversion

range of 0.003–0.1125. Reconstructed image stacks were imported into CTAn (Bruker, USA,

MA) for selecting regions of interest and acquiring 2D density maps, volumetric quantification

of ectopic structures and generation of surface rendered 3D models. Surface rendered 3D were

visualized in CTVol (Bruker, USA, MA). 3D volume rendered models were generated in

CTVox using a colour-coded transfer functions to identify low, medium and high densities.

Longitudinal studies used IMARIS (Bitplane, UK) to create, view and perform volumetric

quantification of 3D models.

RNA extraction and q-RT-PCR analysis

Individual joint components were micro-dissected and stored in liquid nitrogen. RNA was

extracted using Trizol reagent (Life Technologies), according to manufacturer’s instructions.

RNA was reverse-transcribed using QuantiTect Reverse Transcription Kit (Qiagen). The
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qRT-PCR was performed using LightCycler 480 SYBR Green I Master (Roche, Germany) and

target gene expression normalized to Rpl5 and analysed using the ΔΔCT method [53].

Plasmid constructs

The Shh and SmoM2 (W593L) expression vectors were provided by P. Beachy (Stanford Uni-

versity, USA, CA). mGli1 expression and the reporter vectors 8xGBS-luc were a gift from H.

Sasaki (Osaka University, Japan). pCMV-dR8.2 dvpr (8455) and pCMV-VSV-G (8454) were

generated in the Weiner lab and obtained from Addgene (USA). pRL-TK was obtained from

Promega (USA) and pcDNA3.1+ was purchased from Invitrogen (USA). Recombinant SHH

ligand was synthesized and purified as described previously [54].

The complete Ubr5 cDNA was synthesised from murine embryonic stem cells total RNA

[9] and cloned into a modified pcDNA5/FRT vector (Life Technologies) containing an amino-

terminal 2×HA/2×Strep. NIH3T3 cells (American Type Culture Collection, USA) were seeded

at a density of 100,000/ml and transfected after 24hr with pcDNA3.1 alone, UBR5 and

pcDNA3.1, Gli1 and pcDNA3.1, or Gli1 and Ubr5 using FuGENE6 (Roche). After 48hrs, the

medium was replaced by DMEM/0.5% FCS, and cells were lysed 24 hrs later in Laemmli

buffer. Whole cell lysate was separated on a 6% SDS-PAGE and transferred onto nitrocellulose

membranes. Membranes were blocked in 5% non-fat milk, incubated with primary antibodies

overnight at 4˚C at 1:1,000 dilution for GLI1 (Cell Signalling) or 1:10,000 dilution for β-actin

(Sigma). Secondary HRP-conjugated-anti-mouse antibody was applied at a 1:2,000 dilution

for 1hr at room temperature. The membranes were developed using the Clarity western ECL

substrate (BioRad, USA, CA).

Retrovirus production and stable Ubr5 silencing

Previously validated shRNA-encoding oligos targeting murine Ubr5 and or a scrambled

sequence were cloned into pLKO.1-puro (Sigma). shUBR5 and shScrambled-pLKO.1-puro were

co-transfected with pCMV-VSV-G and pCMV-dR8.2 dvpr plasmids into HEK 293T cells using

TransIT293 reagent (Mirus Bio LLC, USA). To generate stable silenced shUBR5 cells, NIH3T3

cells were seeded at 120,000 cells/ml and infected with 0.5 ml shScramble or shUBR5 retroviral

supernatant in the presence of 8 mg/ml polybrene (Sigma). The media was changed after 24

hrs and cells were selected with 2 mg/ml puromycin 48 hrs post-infection.

Gli-luciferase assay

NIH3T3 cells were seeded, and after reaching 70% confluence transfected with pcDNA3.1,

Shh, SmoM2, or Gli1 together with Gli-luciferase and Renilla luciferase reporter plasmids with

or without pcDNA5-HA-Strep-Ubr5, using FuGENE 6 transfection reagent (Roche) according

to the manufacturer’s protocol. For Ubr5 knockdown studies, stable shScramble and shUbr5
NIH3T3 cells were transfected with pcDNA3.1, Shh, SmoM2, or Gli1, together with Gli-lucifer-

ase and Renilla luciferase reporter plasmids. In both cases, after the cells reached 100% con-

fluency, the medium was replaced with DMEM/0.5% FCS. After 24 hrs, Firefly and Renilla

luciferase activities were determined with the Dual Luciferase Reporter Assay System

(Promega).

cAMP assay

Control (scrambled) or knock down (Ubr5 shRNA) NIH3T3 cells were seeded at 130,000 cells/

ml, serum starved overnight, and stimulated with 10μM forskolin (FORSK) for 5min. Cells

were pre-incubated with 5μM purmorphamine for 10min before addition of FORSK. Cells
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were processed according to Parameter cAMP Enzyme Immune Assay (R&D Systems)

instructions.

Statistical analysis

Data analysis and statistics was performed using PRISM software (GraphPad, La Jolla, US).

Count data was analysed using a contingency table and either two-sided Chi square or Fisher’s

exact tests according to count size. Continuous data was analysed using unpaired, two-tailed

Students t-tests. The level of significance for all tests was set at p =<0.05.

Supporting information

S1 Fig. Ubr5mt mice exhibit gait abnormalities and ectopic X-ray-dense signals and analysis

of subchondral bone. 24-week-old control or Ubr5mt mice were assessed for (A-C) behavioral

analysis. (A,B) Mice were videoed while walking along a boxed runway and their static posi-

tioning recorded as either ‘sprung’ (with their posterior not in contact with the floor), or

‘squat’ (with their posterior resting on the floor). (C) Graph showing counts of animal behav-

ior. n = six of each gender for controls and eight of each gender for the Ubr5mt genotype. Fish-

er’s exact test, p value =<0.0001. (D) Control ankles and (E) Ubr5mt ankles which exhibited

ventrally- and dorsally located isolated signals. Dashed box region enlarged in indicated panel.

(F) Control knee joints exhibited the fabella, a dorsally-located sesamoid bone (open arrow-

head). (G)Ubr5mt knee joints exhibited a misshapen fabella (open arrowhead), with the dashed

boxed region being enlarged in the indicated panel to the right). n = eight males and eight

females. (H-I) show the volume rendered 3D models of 26-week-old tibial subchondral bone.

Total subchondral bone volume used in the analysis is shown in grey (H) and the high-density

signal in red (I) and the two merged (K).

(TIF)

S2 Fig. Ectopic structures are not detected in three-week-old control or Ubr5mt ankle or

knee joints and require postnatal expression of Ubr5. (A-D) Different views of surface ren-

dered 3D models of three-week-old control and Ubr5mt (A,B, respectively) knee and (C,D,

respectively) ankle joints. (A-D) From left to right panels: ventral, dorsal, medial and lateral

views. Both control and Ubr5mt joints exhibit either a normal array of sesamoid bones, devel-

oping epiphysis and calcifying menisci. (E-G) Analysis of 18-week-old tamoxifen-treated

pCAGG-Cre control and pCAGG-Ubr5mt ankle joints. (E,F) Whole mount β-Gal staining of

(E) control and (F) pCAGG-Ubr5mt ankle joints reveals β-gal expression in muscles and asso-

ciate tendons. Sagittal section of ankle joint (G) showing an ectopic structure associated with

the AT midbody (closed arrowhead) stained positive for Ubr5/UBR5 expression.

(TIF)

S3 Fig. UBR5 and PPS levels correlate with human AC damage. (A-C) Examples of human

OA patient material stained with (A) haematoxylin and eosin (H&E), (B) toluidine blue or (C)

safranin O revealed intra- and inter-sample variation in AC defects. Coloured boxes indicate

regions of the varying OA severity (please see figure key). (A-C) Colour-coded, magnified

dashed boxes in upper panels are shown in more detail in the colour-coded lower panels (thick

outlines). Moderate-scored regions (orange) exhibited extensive surface fibrillation and

reduced toluidine blue and safranin O staining in comparison to low-scored regions (green).

Severe-scored regions (red) exhibited loss of safranin O staining and apical-basal clefts in the

AC surface. (C) The dashed black lines indicate the apical edge of the AC. (D-K) Human AC

samples graded as low, mild or moderately damaged were analysed for (D,F,H) PKA activity

(PPS) and (E,G,I) UBR5 expression. Graphs of percentage of (J) PPS and (K) UBR5 positive
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cells for low and combined values for mild and moderate AC grades. Mean and s.e.m indi-

cated. n = six biological replicates. Fishers exact test on pooled cell count data. p =<0.0001 for

both.

(TIF)

S4 Fig. Spectrum of Ubr5mt and Ubr5mt+SmoLoF associated tissue-specific metaplastic

responses. Overview of the metaplastic events of various Ubr5mt tissues. Red = non-cartilagi-

nous tissues (Synovium, AT and Superficial Digital Flexor tendon); Orange = cartilaginous tis-

sues (retinaculum); Yellow = calcified cartilage; Green = normotopic bone; Blue = heterotopic

or enlarged normotopic bone. Arrows indicate the direction of metaplasia, with the arrowhead

indicating the tissue type in 24-week-old Ubr5mt and/or Ubr5mt+SmoLoF animals. Metaplastic

tissue events unique to Ubr5mt+SmoLoF are indicated by an asterisk.

(TIF)
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