

This is a repository copy of *Early response to psychological treatment for eating disorders : a systematic review and meta-analysis.*

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/173474/</u>

Version: Accepted Version

Article:

Chang, P.G.R.Y., Delgadillo, J. and Waller, G. orcid.org/0000-0001-7794-9546 (2021) Early response to psychological treatment for eating disorders : a systematic review and metaanalysis. Clinical Psychology Review, 86. 102032. ISSN 0272-7358

https://doi.org/10.1016/j.cpr.2021.102032

© 2021 Elsevier. This is an author produced version of a paper subsequently published in Clinical Psychology Review. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Early response to psychological treatment for eating disorders: A systematic review and meta-analysis

Peter G. R. Y. Chang ^a, Jaime Delgadillo ^a, and Glenn Waller ^{a,*}

^a Clinical Psychology Unit, Department of Psychology, University of Sheffield, Sheffield, UK

*Corresponding author: Glenn Waller, Clinical Psychology Unit, Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield S1 2LT, UK. E-mail: <u>g.waller@sheffield.ac.uk</u>. Telephone: +44-114-222-6568

Role of funding sources:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Contributors:

All authors contributed to the conceptualization and methodology. PGC conducted the literature search, data management, data analysis and preparation of the original draft. JD oversaw the data analysis and the meta-analytic process, and reviewed and edited drafts. GW oversaw the literature search, reviewed and edited drafts. All authors approved the final version.

Conflict of interest:

The authors declare they have no conflict of interest.

Early response to psychological treatment for eating disorders:

A systematic review and meta-analysis

Abstract

Early response is a well-established predictor of positive outcomes at the end of psychological treatments for common mental disorders. There is some prior evidence that this conclusion also applies to eating disorders, including three meta-analyses, but no moderators of that relationship have been identified. However, a number of further papers have been published since, which might influence the size of the effect of early response or the potential role of moderating factors. This pre-registered systematic review presents a comprehensive examination of this literature. Three databases were searched (Scopus, PsycInfo, PubMed). In total, 33 eligible studies were included in a narrative synthesis, and 25 studies were included in random-effects meta-analysis. The majority (91%) of studies were rated as having low or moderate risk of bias. Approximately half of patients across clinical samples showed early response to psychological therapy, which was most often defined as reliable symptomatic improvement during the first four sessions. A significant and moderate association was found between early response and post-treatment outcomes (r = 0.41 [95% CI: 0.32-0.481], p < 100.0001). Significant evidence of heterogeneity (Q[28] = 136.42, p < .0001; $l^2 = 80.2\%$) was evident. The review was limited by the exclusion of grey literature and only 76% of studies provided sufficient statistical information for meta-analytic synthesis, although we found no significant evidence of publication bias, $\chi^2(1) = 0.001$, p = .97. Overall, evidence accumulated over twenty years establishes early response as the most robust predictor of treatment outcomes in the field of eating disorders. However, only half of patients show early change in this way. Further research is needed to determine whether there are patient or clinician characteristics that predict early response to psychological treatment for eating disorders.

Key words: Eating disorders; psychological therapies; early response; outcomes; metaanalysis

Early Response to Psychological Treatment for Eating Disorders:

A Systematic Review and Meta-analysis

Eating disorders are characterised by overvaluation of shape/weight and abnormal eating behaviors, including severe restriction of food intake, frequent use of binge-eating, and/or purging behaviours (Jansen, 2016). They can cause impairments to the physical and mental health of the affected individual (American Psychological Association, 2013). The lifetime prevalence of eating disorders is roughly 5% - 0.6% for AN, 1% for BN, and 3% for BED (Treasure, Claudino & Zucker, 2010). They are most likely to develop in adolescence (Steinhausen, Gavez & Winkler Metzke, 2005), and are more prevalent among females than males (Striegel-Moore, Rosselli, Perrin, DeBar, Wilson, May & Kraemer, 2009). There are several sub-types – most prominently, anorexia nervosa, bulimia nervosa, binge-eating disorder, other specified feeding and eating disorder (OSFED) and avoidant/restrictive food intake disorder (ARFID), as well as less common diagnoses such as unspecified feeding or rating disorder, pica and rumination disorder (National Institute of Mental Health, 2016). These disorders are commonly comorbid with anxiety-based disorders, depression, and personality pathology (e.g., Jordan, Joyce, Horn, McIntosh, Luty, McKenzie, Frampton, Mulder & Bulik, 2008; Swinbourne, Hunt, Abbott, Russell, St Clare & Touyz, 2012).

If they are not treated successfully, eating disorders can be disabling and chronic mental disorders (Klump, Bulik, Kaye, Treasure & Tyson, 2009), with serious impact on the individual's quality of life and that of their carers (e.g., Le, Mihalopoulos, Engel, Touyz, González-Chica, Stocks & Hay, 2019). Treatments need to be able to produce clinically meaningful benefits in terms of eating attitudes and behaviors, biological change, and wider emotional, social and cognitive change. The current evidence base (e.g., National Institute for Health and Clinical Evidence [NICE], 2017) indicates that there are a number of effective psychological treatments for eating disorders, such as cognitive behavioral therapy, family-based treatment, and specialist supportive clinical management. Other psychological therapies also have some preliminary evidence (e.g., interpersonal psychotherapy – Hilbert, Hildebrandt, Agras, Wilfley & Wilson, 2015; dialectical behavioral therapy - Safer & Joyce,

2011). In contrast, pharmacological interventions are not recommended as first line treatments according to current clinical guidelines (NICE, 2017).

The goal of treatments for eating disorders needs to include the prevention of relapse, which is dependent on the initial achievement of remission. Therefore, it is important that treatment should address potential relapse risk factors, including residual pathological eating behaviours and attitudes, remaining underweight at the end of treatment, and pathological levels of negative body image. Treatment-dose effects are not linear in eating disorders, meaning that additional treatment sessions do not yield as much improvement as the early ones, with most symptomatic improvement occurring over the first eight sessions (e.g., Bell, Waller, Shafran & Delgadillo, 2017). Therefore, achieving stable remission and recovery depends largely on changes that occur early in treatment for eating disorders. This pattern fits with wider evidence that early response, usually defined as statistically significant symptomatic reductions during the first four sessions of therapy, is a well-established and replicated predictor of psychological treatment outcomes for depression and anxiety disorders (Beard & Delgadillo, 2019).

The importance of early response in the field of eating disorders was initially highlighted by Vall and Wade (2015), who conducted a broad review of predictors of eating disorder treatment outcomes. Linardon, Brennan and de la Piedad Garcia (2016) reached a similar overall conclusion in a meta-analysis based on similar but more targeted literature reviewed approximately a year later, though their overall effect sizes (behavioural outcomes – r = 0.397; cognitive outcomes – r = 0.288) were smaller than those of Vall and Wade (2015). However, while Vall and Wade (2015 - Table 2) identified 12 relevant studies for their meta-analysis, the broad scope of their study meant that their search strategy was not specifically devised to be sensitive and specific to early response studies (i.e., their wider aim was to identify a much wider range of predictors of outcome). Consequently, several of the 20 studies that were identified by Linardon et al. (2016 – Table 1) overlapped the period of time that Vall and Wade considered, but were not represented in the earlier review. A further meta-analysis (Nazar, Gregor, Albano, Marchica, Coco, Cardi & Treasure, 2017) has considered the role of

early change in predicting subsequent diagnostic change, but identified fewer papers (N = 14) than Linardon et al. (2016), due to the more constrained eligibility criteria for inclusion (diagnostic outcomes). Given that several years have elapsed since the previous analyses and several studies on the impact of early change in eating disorders have emerged since the Vall and Wade (2015) and Linardon et al. (2016) meta-analyses (e.g., Bell et al., 2017; Hilbert, Herpertz, Zipfel, Tuschen-Caffier, Friederich, Mayr, Crosby & de Zwaan, 2019; Matheson, Gorrell, Bohon, Agras, Le Grange & Lock, 2020), it is important to revisit this topic to determine whether the impact of early change confirms the reduction in effect sizes between the Vall and Wade (2015) and Linardon et al. (2016) studies.

While Linardon et al. (2016) did not find any evidence of moderators of the impact of early change, these new studies require reconsideration of that conclusion. Studies vary in their definitions of the time frame of early change, with some defining it as within the first month of treatment, and others defining early change as early as one week or as late as 10 weeks (e.g., Hilbert et al., 2019; Lock, Couturier, Bryson & Agras, 2006; MacDonald, McFarlane, Dionne, David & Olmsted, 2017). Furthermore, studies vary in their definition of 'early change', with categorical definitions that include a fixed level of change (e.g., a reduction of binges by 65% - Masheb & Grilo, 2007), and dimensional levels of change where greater early change is associated with later outcomes. Finally, it is not clear whether the impact of early change is limited to well-controlled efficacy-based research studies, or whether it applies to effectiveness studies, carried out in routine clinical settings. Therefore, addressing the core research question here also depends on understanding potential factors that might moderate the overall effect of early change in psychotherapy for eating disorders.

The present systematic review and meta-analysis aimed to provide a comprehensive qualitative and quantitative synthesis of the contemporary literature on the early response phenomenon in the psychological treatment of eating disorders. The following research questions guided this review:

 Is early response to psychological treatment significantly associated with posttreatment outcomes?

- 2. At which session of therapy is early response usually defined?
- 3. Does the relationship between early change and treatment outcome differ in efficacy versus effectiveness studies?
- 4. Do the findings of contemporary studies differ compared to those of the earlier systematic review by Vall and Wade (2015)?

Method

Protocol registration

The protocol for this systematic review was pre-registered in the PROSPERO database (https://www.crd.york.ac.uk/prospero/display record.php?RecordID=180039).

Search strategy and study selection

The inclusion and exclusion criteria that guided this review are listed in Table 1. Searches were performed across three databases (SCOPUS, PSYCinfo and PubMed) on April 25, 2020, using variations of the following search terms:

- 1. Anorexia OR bulimia OR binge eating disorder OR eating disorder; AND
- Early OR rapid OR sudden ADJ gain* OR response OR symptom* OR improvement* OR change*; AND
- 3. Therap* OR treatment* OR intervention* OR support; AND
- 4. Outcome

The search was limited to peer-reviewed scientific journal articles published in English. No date restrictions were applied. The grey literature was not searched, in keeping with the pre-registration plans on PROSPERO, to ensure that the research reported used met the criterion of being successfully peer-reviewed. The specific search strategies used for each database are included in Supplementary Material A. Reverse citations and reference lists of eligible studies were hand-searched to identify further potentially eligible studies. Note that the plural term 'eating disorders' was not used, though none of the searches (under other diagnostic terms, for reverse citations, or of reference lists of eligible papers) identified any new papers that used that term. Figure 1 shows a PRISMA diagram, summarising the study selection process. Study selection and extraction were performed by the first author, and queries about

suitability were resolved in consultation with the other co-authors. Details of the 10 excluded studies are provided in Supplementary Material B, along with reasons for exclusion.

	Inclusion Criteria	Exclusion Criteria
Population	 Participants who have an eating disorder diagnosis and have received psychological treatment for their eating disorder. Participants must be aged 12 or older. 	 Participants who have not received psychological treatment for their condition. Participants under the age of 12.
Intervention	 Any psychological intervention used to treat eating disorders, in any modality (individual, group, online etc.) 	 Studies that include eating disorder treatments that do not involve a psychological component.
Comparator	 Between-group comparisons of rapid vs. non-rapid responders. Studies that examine early response as a predictor of outcome in eating disorder treatments. Early response was defined and coded either dimensionally (e.g., level of change over a specified number of early sessions) or categorically (e.g., reliable or clinically significant change over those early sessions) 	 Studies that do not examine early response as a predictor of treatment outcome.
Outcome	• The statistical significance and magnitude of the association between early response to eating disorder treatment and outcomes.	 Studies where early response is not measured. Studies where post-treatment outcomes of eating disorder treatment are not measured.
Setting	 Any settings which psychological interventions are usually delivered to treat eating disorders. 	
Study Design	 Randomised control trials and observational studies. Studies published in peer-reviewed scientific journals. 	 Grey literature (e.g. dissertations), studies not published in peer-reviewed scientific journals, quasi- experimental designs. Studies not published in English.

Table 1: Study Inclusion and Exclusion Criteria

Figure 1: PRISMA Flow Diagram Demonstrating the Study Selection.

Risk of Bias Assessments

Two authors independently assessed the risk of bias (RoB) for each study. The Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB 2) (Cochrane Methods,

2020) was used to assess risk of bias in randomised control trials, and Critical Appraisal Skills (CASP) checklist was used for cohort studies (CASP, 2017). RoB ratings were highly consistent and did not require mediation by a third reviewer (kappa = 0.82). Summary tables for risk of bias ratings can be found in Supplementary Materials C and D.

Data Analysis

In addition to a narrative synthesis of all studies included in the review, a randomeffects meta-analysis was conducted using the statistical package Meta-Analysis via Shiny (MAVIS; Hamilton, 2011). Studies that examined early response as a predictor of psychotherapy treatment outcomes that provided sufficient statistical information to calculate a single *r* correlation coefficient were included in the meta-analysis. In studies that provided an effect size (Cohen's *d*), this statistic was converted to an *r* value using an effect size converter (DeCoster, 2012; Lenhard & Lenhard, 2016) to ensure the same test statistic was used across all studies. Studies that did not include post-treatment outcome data, studies that did not provide sufficient statistical data and whose corresponding authors did not respond to data requests were excluded from the meta-analysis. Overall, twenty-six studies were included in the meta-analysis.

The primary meta-analysis examined within-group effects of early response by calculating a pooled correlation co-efficient for all studies. Heterogeneity was examined using Cochrane's Q and I² statistics (Higgins, Thompson, Deeks & Altman, 2003). Publication bias was examined using a weight function model (Vevea & Hedges, 1995) and funnel plots (Egger & Smith, 1997).

There were several sources of heterogeneity in the design of the studies, including the eating disorder being studied, the symptom measures used, the time-point at which early response was defined, the use of categorical (e.g., a fixed percentage reduction in outcome measures) vs. dimensional (level of change in the target outcome measure) definitions of early response, and the time-point at which outcomes were assessed (e.g., end-of-treatment, 6-month follow up). In studies with multiple similar outcome measures (e.g., different sub-scales of the EDE-Q), a pooled correlation co-efficient was calculated.

In studies that investigated multiple distinctive outcomes (e.g., EDE-Q and BMI) in the same sample, the outcome measure that explained the most variance within the cohort was used. Consistent with prior research (e.g., Beard & Delgadillo, 2019), the measurement point closest to Session 4 was used in studies that examined early response at multiple time points, with outcomes defined at the end of treatment. Study authors were emailed to request missing data to maximise the completeness of meta-analytic review. Sources of heterogeneity, such as difference in study design, treatment modality, primary diagnosis in the sample, differences in primary outcome measure, measurement approach (categorical vs. dimensional), and risk of bias classification were examined using categorical moderator analyses.

Results

Narrative synthesis

Design and sample characteristics

Thirty-four studies met the inclusion criteria and are described in Tables 2 (characteristics) and 3 (outcomes). Of the included studies, thirteen were RCTs and twentyone were cohort studies. Studies investigated a range of eating disorders, including bulimia nervosa (n = 9), binge-eating disorder (n = 7) and anorexia nervosa (n = 5). Eleven of the 34 included studies included "mixed" samples with a range of eating disorder diagnoses. Sample sizes ranged from 42 to 241, with a total of 3,552 participants across all studies. Nearly all studies had predominantly female samples, with five having all-female samples.

Measures of early response

As shown in Table 2, a range of measures were used to quantify early response. The EDE, either in interview (EDE-I) or questionnaire format (EDE-Q), was commonly used to measure eating disorder pathology. Body Mass Index (BMI) measurements and changes in weight were also commonly used as measures of early response in studies where early response was defined by changes in weight. In studies where early response was defined by a reduction in episodes of binging and/or purging behaviours, self-report measures of binge/purge habit frequency (e.g., objective binge episode (OBE) measures), were sometimes used alongside the EDE.

Interventions

Almost all of the included studies focused solely on psychological interventions (n = 31), with CBT being the most commonly studied treatment modality (n = 18). Other treatment modalities investigated in included studies included family-based therapy (FBT), interpersonal psychotherapy (IPT), psychoeducation, dialectical behaviour therapy (DBT), behavioural weight loss (BWL), compassion-focused therapy (CFT), adolescent-focused therapy (AFT), active comparison group therapy (ACGT), individual-supported therapy, supportive psychotherapy (SPT), guided self-help and motivational interviewing (MI). Four studies used treatments that combined elements from multiple treatment modalities. Of the remaining three studies, one used a combination of CBT with either a drug or placebo (Grilo & Masheb, 2007), and the other one combined psychological interventions with a dietary intervention (Wales, Brewin, Cashmore, Haycraft, Baggott, Cooper & Arcelus, 2016).

Risk of bias assessment

Of the studies reviewed, half were found to have a "moderate" risk of bias (n = 17). Fourteen had a "low" risk of bias, and the remainder had a "high" risk of bias (n = 3). The most common reasons for a study being rated as having a risk of bias included lack of follow-up with regards to missing data, failure to explain participant dropouts, failure to control for baseline characteristics or confounding variables, and use of self-report measures for treatment outcomes.

Is early response to treatment significantly associated with outcome?

Based on available data across included studies, over half (54.4%) of study participants were classed as early responders. The majority of these studies (n = 31) found significant differences in end-of-treatment outcome between early and non-early responders, with early responders more likely to remit from their disorder. Early response was associated with positive treatment outcomes across a range of eating disorder types (anorexia nervosa, bulimia nervosa, binge eating disorder), and in studies that included mixed samples (participants with different ED diagnoses). Early response was also associated with positive treatment outcomes across different outcome measures (EDE-Q, EDE-I, objective binge

episodes and weight-based measures). Two studies compared rates of early response across psychotherapy modalities (Hilbert et al., 2015; MacDonald et al., 2017). Both found greater rates of remission in CBT conditions compared to non-CBT conditions.

Of the included studies, only two did not report early response as a significant predictor of treatment outcome (Fernandez-Aranda, Alvarez-Moya, Martínez-Viana, Sanchez, Granero, Penelo, et al. 2009; Raykos, McEvoy, Erceg-Hurn, Byrne, Fursland & Nathan, 2014). Fernandez-Aranda et al. primarily focused on predictors of early response in bulimia nervosa, and found that presence of binge-purge habits at treatment session 4 was a significant predictor of poor early response. However, this study did not identify any significant predictors of end-of-treatment outcome. Rakyos et al. examined the role of early therapeutic alliance on treatment outcome for CBT in bulimia nervosa and found no significant effects of early therapeutic alliance on treatment outcome.

Some of the reviewed studies did not specifically test early response–outcome associations. Instead, they focused on when the largest changes occurred, or at which session early changes predicted end-of-treatment outcome (Doyle, Le Grange, Loeb, Doyle & Crosby, 2010; Le Grange et al, 2014; Le Grange, Accurso, Lock, Agras & Bryson, 2006; Marrone, Mitchell, Crosby, Wonderlich & Jollie-Trottier, 2009; Matheson et al., 2020; Zunker, Peterson, Cao, Mitchell, Wonderlich, Crow & Crosby, 2010).

Furthermore, some of the reviewed studies used multiple definitions of early response and compared rates of remission at end-of-treatment across definitions (Hilbert et al., 2019; MacDonald et al., 2015). Hilbert et al. found significantly higher rates of remission from bingeeating disorder in early responders who met early response criteria at week 1 (reduction in binge-eating of 10% or greater) when compared to non-early responders, but did not find a significant difference between early and non-early responders based on early response criteria for week 4 (reduction in binge-eating of 70% or greater). MacDonald et al. used both percentage and frequency-based definitions for early response at weeks 2 and 4 of treatment for binge-purge habits in bulimia nervosa and purging disorder patients, finding significant differences in end-of-treatment binge-purge frequencies across all four definitions, with early responders having significantly fewer binge-purge episodes than non-early responders. However, the only definition that remained significant at follow-up assessment was 'three or fewer binge-purge episodes in the first four weeks of treatment'.

At which session is early response usually defined?

As shown in Table 3, there was variety in the time at which early response was measured. Twenty-two of the thirty-four studies (65%) conceptualised early response by quantifying early change between intake assessment and the fourth week of treatment. Other studies conceptualised this as early as the first week of treatment, or as late as the tenth. Twelve studies provided categorical definitions of early response (e.g. a reduction of 70% in the target symptom from baseline to the week of early response), or a pre-defined, quantitative reduction in eating-disorder related behaviours (e.g., three or fewer binge-eating episodes over the first four weeks of treatment). Remaining studies investigated early response as a dimensional measure, examining the effects of early change magnitude on early response (i.e. do higher levels of early change predict better treatment outcome?). With regards to the relationship between early response and outcomes, a range of data analysis methods were used, including Receiver Operating Characteristic Curves (ROC), multiple regression, logistic regression, general linear models (GLMs), mixed-model analyses and multi-level modelling (MLM).

Table 2. Key characteristics of included studies.

FIRST	STUDY	STUDY SETTING	ED	Ν	ANALYSED	INTERVENTION	OUTCOME	INTERVENTION	ANALYSIS	AGE
AUTHOR	DESIGN		SUBTYPE(S)		N	CONDITION	MEASURE	DURATION		
& YEAR										
Agras et	Cohort	Patients receiving	Bulimia	194	188	CBT	EDE Interview	18 sessions over 16	Chi-square –	Mean age
al. (2000)	study	treatments at one of	Nervosa (BN)				(EDE-I)	weeks	comparing dropouts	= 28.1 (all
		three treatment sites							vs completers.	female
										ppts)
Bell et al.	Cohort	Participant data taken	BN, Binge-	164	164	Various	BMI, EDE-Q	Up to 18 months	Effect sizes for	Mean:
(2017)	study	from an eating disorder	eating disorder			psychotherapy			clinical outcomes,	30.13
	(secondary	treatment centre (UK)	(BED),			models			MANOVA for	
	data		Anorexia						treatment outcomes,	
	analysis)		Nervosa (AN)						partial correlations	
Doyle et	Cohort	Participants had	AN	65	65	FBT	Ideal Body	20 sessions	Receiver Operator	Mean age:
al. (2010)	Study	previously been					Weight (IBW)		Characteristics	14.9 (SD =
		hospitalised for weight							(ROC) – Area Under	2.1)
		restoration							Curve (AUC)	
Fairburn	Cohort	Data taken from two	BN	220	220	CBT/IPT	EDE. Purging	19 sessions over 20	Pearson's	Mean age=
(2004)	Study	treatment sites					frequency	weeks	correlation (r)	28.1
							measured by			(all female)
							computerised			
							questionnaire			
Fernandez	Cohort	Patients admitted to an	BN	241	241	Psychoeducational	Food diary –	6 sessions	Logistic regression	Range: 17-
-Aranda et	Study	ED unit at a University				therapy	assessed		(abstinence from	57
al. (2009)		Hospital (Spain)					binge/purge		binge/purge),	
							habits		multiple regression	
									(% reduction in	
									binge/purge)	

Grilo &	RCT	Yale Medical School	BED	50	50	Drug + CBTgsh vs	EDE-I	12 weeks	Intent-to-treat	Range: 35-
Masheb		(USA)				placebo + CBTgsh	(remission),		analysis (ITT)	60
(2007)							weight loss			
Hartmann	Cohort	Department of	AN	227	85	Psychodynamic,	BMI, EDI	Treatment lasts until	Regression, AUC	17+
et al.	Study	Psychosomatic				but treatment		patients reach target		
(2007)		Medicine &				incorporates		weight – they then		
		Psychotherapy,				cognitive-		stay for 6-8 more		
		Freiburg (Germany)				behavioural		weeks. Minumum 6		
						elements		weeks of treatment.		
Hilbert et	RCT	Participants recruited	BED	205	205	IPT vs CBTgsh vs	EDE-I	BWL: 16 weekly	Binge: Kruskal-	18+
al. (2015)		from two treatment sites				BWL	(psychopatholog	sessions	Wallis H. Chi-square	
		(Rutgers/Washington,					y), self-reported	CBTgsh: 10 sessions:	& Cohen's delta	
		USA)					OBE (binge	4 weekly sessions, 2	used at followup.	
							habits)	2-weekly sessions, 4		
								4-weekly sessions	EDE: mixed linear	
								IPT: 19 sessions: 3	model	
								sessions in 2 weeks,		
								12 weekly sessions, 4		
								2-weekly sessions		
Hilbert et	Cohort	Treatment sites in	BED	86	83	CBT	OBE/EDE-Q	18 sessions over 4	ROC (AUC)	18+
al. (2019)	study	Germany/Switzerland						months: 2/week for		
	(Secondar							month 1, 1/week for		
	y data							months 2 and 3, 1 per		
	analysis)							2 weeks for month 4		
Kelly et al.	Cohort	Participants admitted to	AN(restricting)	97	97	Compassion-	EDE-Q	12 weeks	Multi-level Modelling	Age range:
(2014)	Study	specialised day hospital	/AN(binge-			Focused Therapy				17-57
		treatment	purge)/BN/ not			(CFT)				
			specified							
			(EDNOS)							

Keshen et	Cohort	Patients attending a	AN/AN(binge-	59	49	Group-based	EDE-Q	4 days/week for up to	Hierarchical	Age range:
al. (2017)	Study	group-based EDD	purge			therapy that		32 weeks	Regression	18-53
		program (Canada)	subtype)/BN/			incorporates				
			Unspecified			aspects of CBT,				
			ED			ACT, DBT				
Le Grange	RCT	University of Chicago	BN	80	80	Family Therapy vs	EDE-I	20 sessions	ROC (AUC)	Mean age
et al.		(USA)				Individual				= 16.1, (SD
(2008)						Supportive				= 1.6)
						Therapy				
Le Grange	RCT –	Two sites (Chicago/	AN	121	121	FBT vs individual	EDE-I, expected	24h of therapy over a	ROC (AUC)	Mean
et al.	secondary	Stanford, USA)				adolescent-	body weight	12 month treatment		age:= 14.4
(2014)	data					focused therapy		period		(SD = 1.6)
	analysis					(AFT)				
Lock et al.	RCT –	Hospital	AN	86	68	Family Therapy	EDE-I	EITHER 10 sessions	ANOVA/Chi-square	Mean age:
(2006)	secondary							+ 6 months treatment,	+ effect size	15.1
	data							or 20 sessions + 12	(Cohen's d) + Area	
	analysis							months treatment	Under Curve (AUC)	
MacDonal	Cohort	Day hospital	BN/OSFED-	158	158	Day Hospital	EDE-I, EDE-Q,	35-40 hrs per week	ROC – independent	Age 17-57
d et al.	Study		PD			Program	Self-report of	for 6-8 weeks for a	t-test used to	(mean
(2015)							binge/purge	"full dose"	compare outcome.	27.1)
							patterns		Cohen's d reported	
									for both 2/4wk	
									categories	
MacDonal	RCT	Day Hospital	BN/purging	44	44	CBT-RR + Day	EDE-Q, binge-	4 sessions of	Intent-to-treat (ITT)	Mean: 27.3
d et al.			disorder			Hospital vs	purge	CBT/interviewing and	 effect size (V/D) 	(all female)
(2017)						Motivational	frequency,	then Day Hospital as	calculated. T-test for	
						Interviewing (MI) +	Difficulties in	normal	EoT outcomes	
						Day Hospital	Emotion			

							Regulation			
							Scale (DERS)			
MacDonal	Cohort	Day hospital	BN/purging	76	76	CBT	EDE-Q, CIA,	>6 weeks	Logistic regression	Mean age:
d &	Study		disorder				Abstinence from			29.7
Trottier							binge-purge			
(2019)							habits			
Marrone	RCT	Study conducted across	BN	116	116	CBT –	EDE-I	20 sessions over 16	ROC	18+
et al.		nine areas in North				Telemedicine vs		weeks		
(2009)		Dakota/Minnesota (US).				face-to-face				
Masheb &	RCT	Participants used	BED	75	75	CBTgsh vs	EDE-Q,	12 weeks, with 6	Mixed-model	Range –
Grilo		guided self help –				Behavioural	Objective	individual meetings	analysis (F-statistic	20-60
(2007)		guided by experienced				Weight Loss	Binging		obtained)	
		doctoral research				(BWLgsh)	Episodes			
		clinicians (Yale, USA)					(OBEs)			
Matheson	RCT	Participants enrolled In	BN	71	71	CBT vs FBT vs	EDE-I	Varied – mean no. of	ROC	Aged 12-
et al.	(secondary	a two-site treatment				SPT (supportive		sessions attended by		18
(2020)	data	study				psychotherapy)		sample was 13.6		
	analysis)									
Munsch et	RCT	Patients recruited via	BED –	80	52	CBT, Behavioural	EDE-Q, BMI,	16 treatment sessions	Linear regression	Range: 18-
al. (2012)		newspaper	overweight to			Weight-loss	self-reported			70
		advert/telephone	obese patients			Treatment (BWL)	binge eating			
		interview – randomly					episodes			
		allocated to one of two								
		treatment conditions								
Olmsted	Cohort	Patients receiving	BN	166	166	Group therapy	EDE-I	Ranged from 4-18	Kruskall-Wallis	Mean age:
et al.	Study	specialised day hospital					(binge/purge)	weeks (average of	ANOVA	25.3
(1996)		treatment						10.4 weeks)		
Pellizzer	Cohort	Participants taken from	BN/OFSED/	62	62	CBT-T	EDE-Q, CIA	10 sessions	Linear regression	Range: 18-

et al.	Study	a treatment-seeking	UFED/BED,							52
(2019)		sample	non-							
			underweight							
Raykos et	Cohort	Treated at a specialist	Any eating	105	105	CBT-E	EDE-Q	20 sessions in 20	Chi-square	16+
al. (2013)	Study	public mental health	disorder					weeks (if not	(categorical),	
		service in Australia	diagnosis					underweight), 40	ANOVA	
								sessions in 38 weeks	(dimensional)	
								(if underweight)		
Raykos et	Cohort	Treated at a specialist	BN/atypical	112	112	CBT-E	EDE-Q	20 sessions ideal –	Multiple regression	16+
al. (2014)	Study	public mental health	BN					varied in sample		
		service in Australia						(mean 22.3, SD –		
								9.9)		
Safer &	RCT	Sample taken from a	BED	101	101	DBT vs ACGT	EDE-I	20 weeks	Chi-square	18+
Joyce		previous study							(primary), Cohen's d	
(2011)									(secondary)	
Thompso	RCT	Double-blind	BN	43	43	CBT-E	EDE-I, OBE	20 sessions (8 in first	ROC	18-65
n-Brenner								4 weeks, then 12 in		(female
et al.								16 weeks)		only)
(2015)										
Turner et	Cohort	Community ED service	AN/BN/	94	94	CBT	EDE-Q	Typically 20 sessions,	Linear regression	Range: 17-
al. (2015)	Study	in the UK	EDNOS					but shortened to 10 in		55
								event of rapid		
								response, and		
								extended as far as 40		
								sessions in some		
								cases		

Turner et	Cohort	UK Treatment session	AN/BN/	179	179	CBT	PBQ-SF, HADS	Typically 20 sessions,	Linear regression	Range: 17-
al. (2016)	Study	(NHS)	EDNOS				(Hospital	but shortened to 10 in		53
							Anxiety &	event of rapid		
							Depression	response, and		
							scale)	extended as far as 40		
								sessions in some		
								cases.		
Vaz et al.	Cohort	ED treatment centres in	BNEDNOS/	42	42	Guided-Self Help	EDE-Q	8 sessions	Logistic regression	Mean = 26
(2014)	Study	Portugal	BED							
Wales et	Cohort	Patients entering	AN	102	87	Diet, Group	BMI	Varied – treatment	Logistic Regression	18+
al. (2016)	Study	specialist inpatient				therapy		lasts until patient		
		treatment				(CBT/psychoeduc		reaches BMI of		
						ation)		17.5kg/m ²		
Waller et	Cohort	Patients drawn from two	EDNOS	106	64	CBT-T	EDE-Q	10 sessions	Multiple Regression	18+
al. (2018)	Study –	NHS specialist clinics								
	Case	(UK)								
	Series									
Zunker et	RCT	Participants recruited	BED	185	179	CBT (therapist led,	EDE	20 weeks	ROC	18+
al. (2010)		from two US sites				therapist assisted,				
		(North Dakota,				self-help)				
		Minnesota)								

Table 3. Outcomes reported by studies included in the review.

First Author	RR	RR Definition – Categorical	% of Early	Between-Group	Outcomes
& Year	Session	or Dimensional?	Responders	Comparisons vs.	
				Within-Group Effects	
Agras et al.	Session 6	Dimensional – Reduction of	NA	Between-group	Percentage change in purging by session 6 only significant predictor of
(2000)	(week 4)	purging behaviours		comparisons –	outcome at end of treatment. (χ^2 =42.5, df=1, p<0.001). Those who reduced
				treatment responders	purging by less than 70% were more likely to be treatment non-responders.
				vs. non-responders	
Bell et al.	Session 8	Categorical -EDE-Q change	34.8% (EDE-	Within-group effects	Pre-post effect size (Cohen's d) of EDE-Q global score = 1.42. Rapid
(2017)		score of 1.13 or greater.	Q global)		response in EDE-Q global scores predicted end of treatment outcome (B=
					1.69, SE= .28, p<.01). RR not significant predictor in behavioural measures
					(p >.05). Effect size of BMI in AN subsample – d= .89.
Doyle et al.	Session 4	Dimensional -Weight gain	NA	Within-group effects	Strongest predictor of posttreatment remission was achievement of at least
(2010)					2.88% weight gain by Session 4 (AUC= 0.674, p= 0.024).
Fairburn	Session 6	Dimensional -Reduction of	NA	Between-group	Percentage reduction in purging frequency over the first 4 weeks of treatment
(2004)	(Week 4)	purging behaviours		comparisons: treatment	(r=38, N=201, p<0.001) significantly predicted outcome at 8-month follow-
				responders vs. non-	up.
				responders	
Fernandez-	Week 4	Dimensional -Abstinence from	NA	Within-group effects	Presence of binging/purging at session 4 predicted poor early response (B=
Aranda et		binging/purging			1.38, p= 0.044). No predictors of abstinence at the end of treatment
al. (2009)					identified.
Grilo &	Week 4	Categorical – Reduction of	42%	Between-group	Participants who showed rapid response were significantly more likely to
Masheb		binge-eating episodes by 70%		comparisons – rapid vs.	achieve remission from binge eating at end of treatment vs. non-rapid
(2007)		or greater		non-rapid responders	responders ((χ²=12.5, df=2, p<0.002).
Hartmann et	Week 4	Dimensional - Weight gain	NA	Within-group effects	Weight development between weeks 3-4 highly predictive of weight at
al. (2007)					discharge (β= .32, SE= .09, p= .001)
Hilbert et al.	Week 4	Categorical - Reduction of	73.4%	Between-group	Greater remission from binge-eating was found in rapid responders in the

(2015)		binge-eating episodes by 70%	(BWL)	comparisons – rapid vs.	CBTgsh condition (t= 42.52, p= .01), but not in IPT (t= 2.60, p= .85) or BWL
		or greater	74.2%	non-rapid responders	(t= 24.08, p= .14).
			(CBTgsh)		
			65.3% (IPT)		
Hilbert et al.	Week 1	Categorical – Reduction of	52.4% (Wk	Between-group	Week 1 rapid responders had significantly higher rates of binge remission at
(2019)	OR	binge eating of 10% or greater	1)	comparisons – rapid vs.	EoT than non-rapid responders (χ^2 (df = 1) =5.59, p = .018), but week 4 rapid
	Week 4	(Wk 1) OR reduction of binge	38.1% (Wk	non-rapid responders	responders did not (p >.05).
		eating of 70% or greater (Wk	4)		
		4)			
Kelly et al.	3 weeks	Dimensional -Reductions in	NA	Within-group effects	Early Self-Compassion Change x Time significantly predicted decreases in
(2014)		EDE-Q score			eating disorder symptoms over the course of treatment (B=20, p < .01, r=
					.15), as did Early Shame x Time, (B=16, p< .01, r=.23). Larger reductions in
					shame/increases in self-compassion predicted larger decreases in eating
					disorder symptoms.
Keshen et	6 weeks	Dimensional -Reductions in	NA	Within-group effects	Change in self-efficacy over the first six weeks of treatment inversely
al. (2017)		EDE-Q score			predicted end-of-treatment outcomes (measured by EDE-Q) (β = -0.70, t(44)
					= -5.77 , p < .001) – i.e. early increases in self-efficacy associated with better
					end-of-treatment outcome.
Le Grange	Session 6	Dimensional – reduction of	NA	Between-group	Symptom reduction (measured by EDE) at session six predicted remission at
et al. (2008)	(week 4)	binge/purge behaviours		comparisons – FBT vs.	posttreatment (AUC= .814, p< .001) regardless of treatment modality.
				IPT	
Le Grange	FBT:	Dimensional – weight gain	NA	Between-group	Weight gain of 2.65 kg by session 3 in FBT (AUC= .670, p= .043), and
et al. (2014)	Session 3			comparisons: FBT vs.	3.20kg by session 4 in AFT (AUC= .754, p=.014) were the earliest predictors
	AFT:			AFT	of remission at EoT. Early weight gain did not predict remission at follow-up
	Session 4				for either treatment.
Lock et al.	Week 9	Dimensional – increases in	NA	Within-group effects	Change in weight at week 9 (B= .53, p= .018) significantly predicted
(2006)		weight			remission at end of treatment.
MacDonald	Week 2	Categorical – four definitions	For # of	Between-group	Post-treatment (EoT) episode frequencies were significantly different

et al. (2015)	OR Week	used	episodes:	comparisons – groups	between groups using all definitions, with rapid responders having lower
	4		61.4% (Wk	separated based on RR	episode frequencies than non-rapid responders.
		1) One or fewer OR a 95.7%	2), 65.8%	definition.	
		or greater reduction of binge	(Wk 4).		Episode frequency in the first four weeks, t(87.25)= -3.51, p= .001, d= 0.61
		and/or/vomit episodes in the			Episode frequency in the first two weeks, t(67.86)= -3.58, p= .001, d= 0.61
		first two weeks.	For %		Percent reduction in the first four weeks, t(120.14)= -4.60, p < .001, d= 0.74
			reduction:		Percent reduction in the first two weeks, t(88.81)= -3.74, p < .001, d= 0.59
		2) 3 or fewer OR a 99.7% or	51.9% (Wk		
		greater reduction of binge	2), 32.3%		The only definition that significantly predicted longer-term remission (at 6 $\&$
		and/or vomit episodes in the	(Wk 4).		12-month follow-ups) was "3 or fewer episodes in the first four weeks".
		first four weeks			
MacDonald	Session 4	Categorical – 90% or greater	95.7% (CBT-	Between group	CBT-RR group demonstrated significantly higher rate of rapid response (d=
et al. (2017)		reduction in binge/vomit	RR)	comparisons – CBT-RR	.33, p= .04). No significant difference between groups in terms of EoT
		episodes from baseline	71.4% (MI)	vs MI	outcome (t
					(42)= .37, p= .72, d = .11)
MacDonald	Week 4	Dimensional – reductions in	NA	Within-group effects	Early access to emotion regulation strategies significantly predicted
& Trottier		EDE score			treatment outcome at 6-month follow up (F change(1, 47) = 10.27, p = .002,
(2019)					R ² change= .16)
Marrone et	Session 6	Dimensional – reductions in	NA	Between-group	Percentage reduction in binge-eating at weeks 2,4,6 and 8 are clinically
al. (2009)	(Week 4)	binging/purging behaviours		comparisons: face-to-	useful tools in predicting outcome at end of treatment, and at 3-month and 1-
				face vs. telemedicine	year follow-ups.
				CBT.	
Masheb &	Week 4	Categorical – 65% or greater	54.7%	Between-group	Participants who showed rapid response in OBE reduction were significantly
Grilo (2007)		reduction in binge eating by		comparisons – rapid vs.	more likely to achieve remission from binge eating ($\chi^2(1)$ = 8.55, p=.003).
		session 4		non-rapid responders	
Matheson et	By Session	Dimensional – reduction in	NA	Between-group	Reduction in purging at session 2 (AUC= .799, p<.001) and reduction in
al. (2020)	10	binging/purging		comparisons –	binge-eating at session 4 (AUC= .750, p<.01) the most significant predictors
				comparing treatment	of end-of-treatment outcome regardless of treatment modality.

				modality	
Munsch et	Week 4	Dimensional – reduction in	NA	Between-group	Rapid response significantly predicted outcome for: EDE total score (p<.05),
al. (2012)		EDE-Q score/BMI		comparisons –	EDE eating concern (p<0.001), EDE shape concern, EDE weight concern &
				comparing treatment	number of self-reported weekly binge-eating episodes (all p<.01) at six-year
				modality	follow-up.
Olmsted et	Week 4	Categorical – three or fewer	41%	Between group	Rapid responders had significantly reduced numbers of binge
al. (1996)		binge or vomit episodes in the		comparisons: rapid vs.	(F(3,162)=79.23, p<.00001) & vomit episodes (F(3,162) = 101.02, p<.00001)
		first four weeks of treatment		slow vs. partial. vs non-	at end of treatment.
				responders	
Pellizzer et	Session 4	Dimensional – Reductions in	NA	Within-group effects	Early change in body image flexibility significantly predicted change in global
al. (2019)		EDE-Q/CIA scores			eating disorder psychopathology at EoT (B=05, p < .001), as did early
					changes in compassion (B = 06 , p= $.004$).
Raykos et	3-6 weeks	Categorical – reduction in	34%	Between-group	Average time between baseline & second administration of EDE-Q was 4.6
al. (2013)		EDE-Q global score of 1.52 or		comparisons – rapid vs.	weeks. Rapid responders required significantly fewer treatment sessions ($\chi^2\text{=}$
		greater		non-rapid responders	7.54, p=0.007), and had significantly lower EDE-Q global scores (χ^2 = 16.67,
					p<0.0005) at end of treatment. Rapid responders significantly more likely to
					achieve remission at EoT (χ^2 (3, N=105)= 14.20, p=.003, effect size=0.368).
Raykos et	Session 2	Dimensional – reductions in	NA	Within-group effects	Early changes in therapeutic alliance (HAQ-II) did not significantly predict
al. (2014)		EDE-Q score.			EDE-Q score at end of treatment. (β =12, p >.05)
Safer &	Week 4	Categorical – 65% reduction in	41%	Between-group	Rapid responders significantly more likely to achieve abstinence from binge
Joyce		binge eating by session 4		comparisons – rapid vs.	eating at end of treatment than non-responders (χ^2 = 9.22, df= 1, p =.002.).
(2011)				non-rapid responders	
Thompson-	8 sessions	Dimensional – percentage	NA	Between-group	Percentage reduction in purging by session 4 significantly associated with
Brenner et	(Week 4)	reduction in purging by week 4		comparisons – remitted	remission at end of treatment (t= -2.67, p=.011). Sensitivity analysis showed
al. (2015)				vs. non-remitted	65% reduction to be optimal cutoff point.
Turner et al.	6 sessions	Dimensional – reduction in	NA	Within-group effects	Early change in dietary restraint (t= 2.61, p= .011, β = .309), eating concern
(2015)		EDE-Q			(t=2.10, p= .039, β = .297) and shape concern (t= -3.36, p= .001, β =485)
					variables on the EDE-Q significantly predicted end-of treatment EDE-Q

					scores
Turner et al.	6 sessions	Dimensional – reduction in	NA	Within-group effects	Early changes in EDE-Q restraint predicted significant reductions across
(2016)		PBQ-SF & HADS scores			personality measures (all p<.05), and there was an overall significant effect
					of EDE-Q scores on depression (F (7,75)= 4.70, P < .001) and anxiety
					(F(7,75)= 3.33, P < .005) measures.
Vaz et al.	3 sessions	Categorical – 51% reduction in	50%	Within-group effects	Early response the only significant predictor of treatment outcome at EoT
(2014)		bulimic symptoms			follow-up (B = -6.17, p = .004)
Wales et al.	6 weeks	Dimensional – increase in BMI	NA	Within-group effects	Meeting NICE weight guidelines within 6 weeks of starting treatment
(2016)					significantly predicted the likelihood of reaching a BMI of 17.5 by end of
					treatment (B= 2.895; p=.001).
Waller et al.	Session 4	Dimensional – Reductions in	NA	Within-group effects	Significant associations between early change in EDE-Q Global scores
(2018)		EDE-Q			(t=2.46; p<.02) and early change in WAI-SR total scores (t=5.23; p<.001)
					with overall change in EDE-Q Global scores at end of treatment.
Zunker et	Week 1	Categorical –	53.1% (Wk	Between-group	Week 1 early responders more likely to achieve remission (AUC= .699). No
al. (2010)	OR	Symptom reduction in binge-	1)	comparisons – rapid vs.	significant differences between rapid/non-rapid responders at Week 4.
	Week 4	eating of 15% or greater by	73.7% (Wk	non-rapid responders	
		week 1 OR	4)		
		Reduction in binge-eating of			
		70% or greater by week 4			

Meta-Analysis

Primary meta-analysis

A primary meta-analysis was conducted using *r* correlation coefficients from 26 studies (including 29 unique samples and 2,740 participants) to examine associations between early response and post-treatment outcomes. A forest plot for this meta-analysis is shown in Figure 2.

The pooled correlation coefficient was r = 0.41 [95% CI: 0.32-0.48], p < .0001, indicating a moderate but highly significant positive correlation between early response and treatment outcome. This indicates that early response is significantly correlated with better treatment outcomes.

Figure 2: Forest Plot of the Primary Meta-Analysis

Cochrane's Q test revealed significant evidence of a large degree of heterogeneity within the sample, Q(27) = 136.43, p < .0001, l² = 80.2.% [95% CI: 72.1%; 86.0%]. Inspection of the

funnel plots (Figure 3) showed some asymmetry of correlation coefficients, potentially indicating evidence of publication bias. However, the weight-function model likelihood ratio test did not approach statistical significance, $\chi^2(1) = .001$, p = .97, which does not confirm publication bias.

Fisher's z Transformed Correlation Coefficient

Figure 3: Funnel Plot of the Primary Meta-Analysis

Moderator Analyses

The pooled effect of early response was similar in RCTs and cohort studies (r = .34 vs. r = .38), and study design was not found to be a statistically significant moderator (Q(26) = 76.80, p = .53). Similarly, the effect of early response was not significantly stronger (Q(26) = 76.80, p = .17) in samples with combined treatments (psychotherapy + pharmacotherapy or dietetics) compared to purely psychological treatment (r = .51 vs. r = .36). The effect of early response was not significantly different (Q(23) = 76.80, p = .70) in participants with different diagnoses - bulimia nervosa (r = .40); anorexia nervosa (r = .36); and binge eating disorder (r = .28). Similarly, the primary treatment outcome measure was not a statistically significant moderator (Q(23) = 76.80, p

= .82) - BMI (r = .46); weight (r = .29); EDE-Q (r = .38); and EDE-I (r = .35). The difference in effect sizes was similar in samples using a categorical indicator of early response (r = .41) and those using a dimensional indicator (r = .33) (Q(26) = 76.80, p = .21). The effect of early response tended to be stronger in studies classed as at high risk of bias (r = .60) relative to those classed as moderate (r = .33) and low risk (r = .38), but the risk of bias classification was not a statistically significant moderator (Q(25) = 76.80, p = .09).

Discussion

This comprehensive review of the empirical literature in the field of eating disorders provides compelling evidence that early response to psychological treatment is significantly associated with post-treatment outcomes measured subjectively (e.g., self-reported symptoms) and objectively (e.g., body-mass index). Thirty-three papers met the criteria for inclusion, including 13 RCTs and 21 cohort studies focusing on a wide range of eating disorders. Twenty-five of those studies (with 28 treatment groups) were eligible for inclusion in a quantitative synthesis using random effects meta-analysis. The present findings converge with and extend previous findings in the field of eating disorders, providing evidence of the stability and replicability of the early response phenomenon. Such evidence, accumulated over twenty years, establishes early response as the most robust predictor of treatment outcomes in the field of eating disorders.

Summary of the evidence

The systematic review shows that the eating disorders literature has considerable divergence in the measures used and the therapies delivered (with CBT as the most commonly studied in this way). However, relatively few studies (<10%) were rated as having high risk of bias. Approximately half of patients were classified as early responders, with session 4 being the most commonly used time-point to define this. Early responders had reliably better treatment outcomes in the large majority of the studies.

It is worthy of note that the meta-analyses that have addressed this question to date (Linardon et al., 2016; Nazar et al., 2017; Vall & Wade, 2015) have used different search terms

and inclusion/exclusion criteria. As a result, they have yielded different numbers of papers for inclusion in ways that cannot be explained simply by the date of the search itself. For example, Vall and Wade (Table 2) included 12 papers that contributed to their specific meta-analysis on the impact of early change, and Linardon et al. (Table 1) included 20 such papers, though there were papers in the Linardon et al. analysis that were not included in the Vall and Wade analysis even though they would have been available. The present meta-analysis included nine papers that were published after the Linardon et al. data search, and a further six that were published prior to that date but which Linardon et al.'s inclusion criteria did not meet (though some were included in the Vall and Wade analysis). Both Linardon et al. (2016) and the present paper included more than the Nazar et al. (2017) review, due to Nazar et al. requiring a more specific indicator of outcome (diagnostic change). To summarise, the numbers of papers included in the different meta-analyses depends on both when their data searches were conducted and the specific questions being asked. However, it is important to note that the literature has progressed considerably (and at least partly as a result of) the Vall and Wade (2015) and Linardon et al. (2016) meta-analyses, with nine further eligible publications emerging since the Linardon et al. study.

It is also important to consider the assumptions made when conducting meta-analyses, to enhance comparability and replicability. Previous meta-analyses have performed separate analyses for different outcomes (e.g., Linardon et al., 2016). This approach results in metaanalyses that have relatively low statistical power due to the clustering of smaller subsets of studies, precluding the detailed subgroup analyses that we intended to perform from the outset of this project (see pre-registered intention to examine sources of heterogeneity). Pooling all or most studies together yields an overall larger sample size for meta-analysis, enabling a more robust examination of heterogeneity. One conventional option is to pool effect sizes from different measures used within each study. However, the advantages of taking a single measure with the highest effect size are that it enabled us to examine the upper-bound of the early response effect, and it enabled us to test whether this upper-bound was moderated by the specific choice of measure (as per our pre-registered examination of heterogeneity). If one were to pool within-study effect sizes, heterogeneity in outcome measures cannot be examined in the same way, simply because one is eliminating (i.e., smoothing/averaging) this specific source of heterogeneity. This rationale was previously applied in the systematic review by Beard and Delgadillo (2019), which served as a model for the methodological choices in the present review.

The meta-analysis results indicate a moderate overall effect of early response (r = 0.41), with considerable heterogeneity. This effect is a robust one, as indicated by the fact that there were no significant moderators of the effect of early response on treatment outcomes. This overall effect is smaller than the pooled effect reported by Vall and Wade (2015) for the end of treatment (r =0.51), though it is more similar to their pooled effect at follow-up (r = 0.35). It is more similar to the effects reported by Linardon et al. (2016) for end-of-treatment behavioural and cognitive outcomes (r = 0.397 and r = 0.288 respectively). Conversion of the Nazar et al. (2017) 'area under the curve' statistics indicates that their equivalent r-values also demonstrated similar moderate overall effect sizes ($r_{equivalent} = 0.21-0.46$). It is possible that the lower effect sizes since the original Vall and Wade (2015) report indicates that the impact of early change is not as positive as early summaries indicated, but it is equally possible that the original effect size was a product of Vall & Wade's inclusion criteria (which did not include papers identified in the following meta-analyses). What is more consistent across the meta-analyses is the lack of evidence that moderators play a part. This meta-analysis has replicated Linardon et al.'s failure to find any such factors that limit or enhance the impact of early change on eventual treatment outcome. Regardless of the reason for any small reduction in effect size, the value of early change remains clear, making it an important clinical target, regardless of any potential factors that have been considered to date.

Comparison with the effect of early change in other disorders

These findings support the conclusion that the impact of early response to treatment is an important predictor of outcome in eating disorders (Linardon et al., 2016; Nazar et al., 2017; Vall & Wade, 2015). However, it is noteworthy that the moderate effect shown overall is less strong than

the comparable effects shown in the treatment of depression and (even more so for) anxiety (Beard & Delgadillo, 2019), where large and very large effects were shown. However, Beard and Delgadillo (2019) did not consider the impact of date of publication in their meta-analysis. Therefore, as raised above, it is possible that the impact of early change has changed over time in eating disorders alone, or it might be a more general pattern across psychological therapies for different disorders, potentially as a function of increased methodological quality. Future research on early change in different disorders and for different therapies should consider treatment. If it is specific to eating disorders, then this might be due to improvements in the representativeness and quality of the research in that field, demonstrated by lower levels of publication bias and heterogeneity in the past five years.

Strengths and limitations of this research

This literature shows considerable variability in study design, the treatments used, the eating disorders addressed, and the measures used. As a result, the findings are characterised by a large degree of heterogeneity. The lack of clearly agreed and commonly used outcome measures in the early part of treatment and at the end of treatment is a limitation of this review. Similarly, not all of the studies accessed reported adequate data for inclusion in meta-analysis. Grey literature (e.g., posters, conference proceedings, dissertations) were excluded in order to draw conclusions from scientifically peer reviewed and therefore more rigorous and credible sources of evidence. It is not known whether accessing the grey literature would have changed the overall outcome of the review, but we did not find strong or significant evidence of publication bias in the present meta-analysis. Given that this and previous meta-analyses (Linardon et al., 2016; Vall & Wade, 2015) have identified sets of papers that do not perfectly match, we suggest that future studies should aim to use search strategies and inclusion criteria that are consistent with the existing meta-analyses, to allow fuller comparability.

The present review has several strengths, such as being pre-registered, using a range of

databases, and delineating the findings according to whether they had previously been summarised and whether they were newly reviewed. It also directly compared the outcomes of RCTs and cohort studies, allowing us to demonstrate that early treatment gains are as relevant in routine clinical practice as they are in efficacy studies, despite the likely lower levels of adherence, monitoring and close supervision in routine care.

Implications for theory, research and practice

These findings support other research in the field of therapeutic processes (e.g., Beard & Delgadillo, 2019; Linardon et al., 2016; Vall & Wade, 2015), suggesting that understanding the effectiveness of psychological therapies depends on understanding the processes that underlie early change. Despite the well-established prognostic influence of early change, the mechanisms of change that underpin early response to treatment are not well understood. Early change might be due to the effective implementation of specific change strategies (e.g., adaptive behaviour change, reappraisal), a therapeutic "remoralization" effect (as argued by Howard, Lueger, Maling, & Martinovich, 1993), or a combination thereof. More recent research in the field suggests that the early response phenomenon may - at least partly - be explained by placebo effects that are common across psychotherapeutic and wider healthcare interventions (Beard & Delgadillo, 2019).

Future research into treatment outcomes should routinely assess early outcome, using objective and subjective measures, and report on its role as a predictor of outcomes. This conclusion applies to a number of disorders, but needs to be tested in a wider range. In this review, approximately half of patients with eating disorders achieved substantial early change. That leaves the question of why the other 50% do not change early on in treatment. Further research is needed to determine whether pre-treatment patient characteristics influence early change, or whether there are clinician or service characteristics that could be addressed to enhance early response to therapy.

In clinical terms, this review and meta-analysis demonstrates that early response to treatment should be considered as a critical prognostic indicator of eating disorder treatment

outcomes, regardless of diagnosis or setting. Clinicians should be encouraged to use treatments that focus on early change (e.g., Waller, Tatham, Turner, Mountford, Bennetts, Bramwell, Dodd & Ingram, 2018; Waller, Turner, Tatham, Mountford & Wade, 2019), and to measure such symptom change around the fourth session, regardless of the planned length of treatment. Measurement of outcomes should include objective elements (e.g., bulimic behaviors; BMI), as well as more subjective aspects (e.g., EDE-Q scores). Supervision is a key element in whether clinicians focus on such early change, helping them to stay on track rather than delaying the implementation of change. However, key to promoting early change is the engagement of patients in tolerating their anxiety, particularly if they have previously had therapies that de-emphasised or explicitly avoided early change. Finally, clinicians and supervisors need to consider how to respond when patients do not show change in that early part of therapy. Not all patients with eating disorders benefit from our existing therapies, but decisions to extend therapies that are not working early on or to transfer the patient to a different therapy should be considered in light of understanding why the patient has not benefitted from the first treatment. It is known that clinician characteristics can influence whether therapy for eating disorders is extended or not (e.g., Turner, Tatham, Lant, Mountford & Waller, 2014), but patient benefit requires clinical decisions that are made on the basis of patient need rather than clinician preferences or characteristics.

Conclusion

Early symptomatic response is one of the most well-established and replicated predictors of psychological therapy outcomes, and it is the single best prognostic indicator in the specific field of eating disorders. The breadth and strength of this evidence indicates that early response should be incorporated into clinical decision-making in the treatment of eating disorders, as a way to assess progress and to guide the timely adjustment of treatment plans and duration. In particular, clinicians, supervisors and services are encouraged to focus on attaining early change, in order to attain the best possible outcome for individual patients.

References

Agras, W. S., Crow, S. J., Halmi, K. A., Mitchell, J. E., Wilson, G. T., & Kraemer, H. C. (2000).
 Outcome predictors for the cognitive behavior treatment of bulimia nervosa: Data from a multisite study. *American Journal of Psychiatry*, *157*, 1302-1308. doi:

10.1176/appi.ajp.157.8.1302

- American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th Ed.). https://doi.org/10.1176/appi.books.97808904255966
- Beard, J. I., & Delgadillo, J. (2019). Early response to psychological therapy as a predictor of depression and anxiety treatment outcomes: A systematic review and metaanalysis. *Depression and Anxiety*, *36*, 866-878. doi: 10.1002/da.22931
- Bell, C., Waller, G., Shafran, R., & Delgadillo, J. (2017). Is there an optimal length of psychological treatment for eating disorder pathology? *International Journal of Eating Disorders*, 50, 687-692. doi: 10.1002/eat.22660
- Cochrane Methods (2020). *RoB 2: A revised Cochrane risk-of-bias tool for randomized trials*. https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-toolrandomized-trials
- Critical Appraisal Skills Programme (2017). *CASP (Cohort Study) Checklist*. Available at: https://casp-uk.net/wp-content/uploads/2018/03/CASP-Cohort-Study-Checklist-2018_fillable_form.pdf.

DeCoster, J (2012). Effect Sizes Converter. Retrieved from <u>http://stat-help.com/spreadsheets.html</u>

- Doyle, P. M., Le Grange, D., Loeb, K., Doyle, A. C., & Crosby, R. D. (2010). Early response to family-based treatment for adolescent anorexia nervosa. *International Journal of Eating Disorders*, *43*, 659-662. doi: 10.1002/eat.20764
- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *British Medical Journal*, *315*, 629-634. doi:

10.1136/bmj.315.7109.629

Fairburn, C. G. (2008). Cognitive behaviour therapy and eating disorders. New York, NY; Guilford.

- Fairburn, C. G., Agras, W. S., Walsh, B. T., Wilson, G. T., & Stice, E. (2004). Prediction of outcome in bulimia nervosa by early change in treatment. *American Journal of Psychiatry*, *161*, 2322-2324. doi: 10.1176/appi.ajp.161.12.2322
- Fernandez-Aranda, F., Alvarez-Moya, E. M., Martínez-Viana, C., Sanchez, I., Granero, R.,
 Penelo, E., ... & Penas-Lledo, E. (2009). Predictors of early change in bulimia nervosa after
 a brief psychoeducational therapy. *Appetite*, *52*, 805-808. doi: 10.1016/j.appet.2009.03.013
- Grilo, C. M., & Masheb, R. M. (2007). Rapid response predicts binge eating and weight loss in binge eating disorder: findings from a controlled trial of orlistat with guided self-help cognitive behavioral therapy. *Behaviour Research and Therapy*, *45*, 2537-2550. doi: 10.1016/j.brat.2007.05.010
- Grilo, C. M., Masheb, R. M., & Wilson, G. T. (2006). Rapid response to treatment for binge eating disorder. *Journal of Consulting and Clinical Psychology*, 74, 602-613. doi: 10.1037/0022-006X.74.3.602
- Hamilton, W. (2011). *Package 'MAVIS' (v.1.1.3)*. Retrieved from http://kylehamilton.net/shiny/MAVIS/
- Hartmann, A., Wirth, C., & Zeeck, A. (2007). Prediction of failure of inpatient treatment of anorexia nervosa from early weight gain. *Psychotherapy Research*, *17*, 218-229. doi: 10.1080/10503300600702315
- Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. *British Medical Journal*, 327, 557–560. doi: 10.1136/*bmj*.327.7414.557
- Hilbert, A., Herpertz, S., Zipfel, S., Tuschen-Caffier, B., Friederich, H. C., Mayr, A, Crosby, R.D.,
 & de Zwaan, M. (2019). Early change trajectories in cognitive-behavioral therapy for bingeeating disorder. *Behavior Therapy*, *50*, 115-125. doi: 10.1016/j.beth.2018.03.013

Hilbert, A., Hildebrandt, T., Agras, W. S., Wilfley, D. E., & Wilson, G. T. (2015). Rapid response in

psychological treatments for binge eating disorder. *Journal of Consulting and Clinical Psychology*, 83, 649-654. doi: 10.1037/ccp0000018

- Howard, K. I., Lueger, R. J., Maling, M. S., & Martinovich, Z. (1993). A phase model of psychotherapy outcome: causal mediation of change. *Journal of Consulting and Clinical Psychology, 61*, 678-685. doi: 10.1037/0022-006X.61.4.678
- Jansen, A. (2016). Eating disorders need more experimental psychopathology. *Behaviour Research and Therapy*, 86, 2-10. doi: 10.1016/j.brat.2016.08.004
- Jordan, J., Joyce, P. R., Carter, F. A., Horn, J., McIntosh, V. V., Luty, S. E., McKenzie, J. M., Frampton, C. M., Mulder, R. T., & Bulik, C. M. (2008). Specific and nonspecific comorbidity in anorexia nervosa. *International Journal of Eating Disorders, 41*(1), 47-56. doi: 10.1002/eat.20463.
- Kelly, A. C., Carter, J. C., & Borairi, S. (2014). Are improvements in shame and self-compassion early in eating disorders treatment associated with better patient outcomes? *International Journal of Eating Disorders*, 47, 54-64. doi: 10.1002/eat.22196
- Keshen, A., Helson, T., Town, J., & Warren, K. (2017). Self-efficacy as a predictor of treatment outcome in an outpatient eating disorder program. *Eating Disorders*, *25*, 406-419. doi: 10.1080/10640266.2017.1324073
- Klump, K. L., Bulik, C. M., Kaye, W. H., Treasure, J., & Tyson, E. (2009). Academy for eating disorders position paper: eating disorders are serious mental illnesses. *International Journal of Eating Disorders*, *42*, 97-103. doi: 10.1002/eat.20589
- Le, L. K., Mihalopoulos, C., Engel, L., Touyz, S., González-Chica, D. A., Stocks, N., & Hay, P. (2019). Burden and health state utility values of eating disorders: results from a population-based survey. *Psychological Medicine*, *31*, 1-8. doi: 10.1017/S0033291719003064.
- Le Grange, D., Accurso, E. C., Lock, J., Agras, S., & Bryson, S. W. (2014). Early weight gain predicts outcome in two treatments for adolescent anorexia nervosa. *International Journal of Eating Disorders*, *47*, 124-129. doi: 10.1002/eat.22221.

- Le Grange, D., Doyle, P., Crosby, R. D., & Chen, E. (2008). Early response to treatment in adolescent bulimia nervosa. *International Journal of Eating Disorders*, *41*, 755-757. doi: 10.1002/eat.20566
- Lenhard, W. & Lenhard, A. (2016). Calculation of Effect Sizes. Retrieved from: https://www.psychometrica.de/effect_size.html. Dettelbach (Germany): Psychometrica. DOI: 10.13140/RG.2.2.17823.92329
- Linardon, J., Brennan, L., & De la Piedad Garcia, X. (2016). Rapid response to eating disorder treatment: A systematic review and meta-analysis. *International Journal of Eating Disorders*, *49*, 905-919. doi: 10.1002/eat.22595
- Lock, J., Couturier, J., Bryson, S., & Agras, S. (2006). Predictors of dropout and remission in family therapy for adolescent anorexia nervosa in a randomized clinical trial. *International Journal of Eating Disorders*, *39*, 639-647. doi: 10.1002/eat.20328
- MacDonald, D. E., & Trottier, K. (2019). Rapid improvements in emotion regulation predict eating disorder psychopathology and functional impairment at 6-month follow-up in individuals with bulimia nervosa and purging disorder. *International Journal of Eating Disorders*, *52*, 962-967. doi: 10.1002/eat.23117
- MacDonald, D. E., McFarlane, T. L., Dionne, M. M., David, L., & Olmsted, M. P. (2017). Rapid response to intensive treatment for bulimia nervosa and purging disorder: A randomized controlled trial of a CBT intervention to facilitate early behavior change. *Journal of Consulting and Clinical Psychology*, 85, 896-908. doi: 10.1037/ccp0000221
- MacDonald, D. E., Trottier, K., McFarlane, T., & Olmsted, M. P. (2015). Empirically defining rapid response to intensive treatment to maximize prognostic utility for bulimia nervosa and purging disorder. *Behaviour Research and Therapy*, 68, 48-53. doi: 10.1016/j.brat.2015.03.007
- Marrone, S., Mitchell, J. E., Crosby, R., Wonderlich, S., & Jollie-Trottier, T. (2009). Predictors of response to cognitive behavioral treatment for bulimia nervosa delivered via telemedicine

versus face-to-face. *International Journal of Eating Disorders*, *42*, 222-227. doi: 10.1002/eat.20603

- Masheb, R. M., & Grilo, C. M. (2007). Rapid response predicts treatment outcomes in binge eating disorder: Implications for stepped care. *Journal of Consulting and Clinical Psychology*, 75(4), 639-644. doi: 10.1037/0022-006X.75.4.639
- Matheson, B. E., Gorrell, S., Bohon, C., Agras, W. S., Le Grange, D., & Lock, J. (2020).
 Investigating early response to treatment in a multi-site study for adolescent bulimia nervosa. *Frontiers in Psychiatry*, *11*, 92. doi: 10.3389/fpsyt.2020.00092
- Munsch, S., Meyer, A. H., & Biedert, E. (2012). Efficacy and predictors of long-term treatment success for cognitive-behavioral treatment and behavioral weight-loss-treatment in overweight individuals with binge eating disorder. *Behaviour Research and Therapy*, *50*, 775-785. doi: 10.1016/j.brat.2012.08.009
- National Institute of Health and Care Excellence. (2017). Eating disorders: recognition and treatment: Guidance. (2017, May 23). Retrieved from

https://www.nice.org.uk/guidance/ng69/chapter/Recommendations

- National Institute of Mental Health. (2016, February) Eating Disorders. Retrieved from https://www.nimh.nih.gov/health/topics/eating-disorders/index.shtml
- Nazar, B. P., Gregor, L. K., Albano, G., Marchica, A., Coco, G. L., Cardi, V., & Treasure, J. (2017). Early response to treatment in eating disorders: A systematic review and a diagnostic test accuracy meta-analysis. *European Eating Disorders Review, 25*(2), 67-79. doi: 10.1002/erv.2495.
- Olmsted, M. P., Kaplan, A. S., Rockert, W., & Jacobsen, M. (1996). Rapid responders to intensive treatment of bulimia nervosa. *International Journal of Eating Disorders*, *19*, 279-285. doi: 10.1002/(SICI)1098-108X(199604)19:3<279::AID-EAT7>3.0.CO;2-J
- Pellizzer, M. L., Waller, G., & Wade, T. D. (2019). Predictors of outcome in cognitive behavioural therapy for eating disorders: an exploratory study. *Behaviour Research and Therapy*, *116*,

61-68. doi: 10.1016/j.brat.2019.02.005

- Raykos, B. C., McEvoy, P. M., Erceg-Hurn, D., Byrne, S. M., Fursland, A., & Nathan, P. (2014).
 Therapeutic alliance in enhanced cognitive behavioural therapy for bulimia nervosa:
 Probably necessary but definitely insufficient. *Behaviour Research and Therapy*, *57*, 65-71.
 doi: 10.1016/j.brat.2014.04.004
- Raykos, B. C., Watson, H. J., Fursland, A., Byrne, S. M., & Nathan, P. (2013). Prognostic value of rapid response to enhanced cognitive behavioral therapy in a routine clinic sample of eating disorder outpatients. *International Journal of Eating Disorders*, *46*, 764-770. doi: 10.1002/eat.22169
- Rosenthal, R. (1991). *Applied social research methods series, Meta-Analytic Procedures for Social Research* (6). Thousand Oaks, CA: Sage Publications Inc.
- Safer, D. L., & Joyce, E. E. (2011). Does rapid response to two group psychotherapies for binge eating disorder predict abstinence? *Behaviour Research and Therapy*, *49*, 339-345. doi: 10.1016/j.brat.2011.03.001
- Steinhausen, H. C., Gavez, S., & Winkler Metzke, C. (2005). Psychosocial correlates, outcome, and stability of abnormal adolescent eating behavior in community samples of young people. *International Journal of Eating Disorders*, 37, 119-126. doi: 10.1002/eat.20077
- Striegel-Moore, R. H., Rosselli, F., Perrin, N., DeBar, L., Wilson, G. T., May, A., & Kraemer, H. C. (2009). Gender difference in the prevalence of eating disorder symptoms. *International Journal of Eating Disorders*, *42*, 471-474. doi: 10.1002/eat.2062
- Swinbourne, J., Hunt, C., Abbott, M., Russell, J., St Clare, T., & Touyz, S. (2012). The comorbidity between eating disorders and anxiety disorders: prevalence in an eating disorder sample and anxiety disorder sample. *Australian and New Zealand Journal of Psychiatry*, *46*(2), 118-31. doi: 10.1177/0004867411432071.
- Thompson-Brenner, H., Shingleton, R. M., Sauer-Zavala, S., Richards, L. K., & Pratt, E. M. (2015). Multiple measures of rapid response as predictors of remission in cognitive

behavior therapy for bulimia nervosa. *Behaviour Research and Therapy*, *64*, 9-14. doi: 10.1016/j.brat.2014.11.004

- Treasure, J., Claudino, A. M., & Zucker, N. (2010). Eating disorders. Lancet 375, 583-593. doi: 10.1016/S0140-6736(09)61748-7
- Turner, H., Bryant-Waugh, R., & Marshall, E. (2015). The impact of early symptom change and therapeutic alliance on treatment outcome in cognitive-behavioural therapy for eating disorders. *Behaviour Research and Therapy*, 73, 165-169. doi: 10.1016/j.brat.2015.08.006
- Turner, H., Tatham, M., Lant, M., Mountford, V. A., & Waller, G. (2014). Clinicians' concerns about delivering cognitive-behavioural therapy for eating disorders. *Behaviour Research* and Therapy, 57, 38-42. doi: 10.1016/j.brat.2014.04.003
- Turner, H., Marshall, E., Wood, F., Stopa, L., & Waller, G. (2016). CBT for eating disorders: The impact of early changes in eating pathology on later changes in personality pathology, anxiety and depression. *Behaviour Research and Therapy*, 77, 1-6. doi: 10.1016/j.brat.2015.11.011
- Vall, E., & Wade, T. D. (2015). Predictors of treatment outcome in individuals with eating disorders: A systematic review and meta-analysis. *International Journal of Eating Disorders*, 48, 946-971. doi: 10.1002/eat.22411
- Vaz, A. R., Conceição, E., & Machado, P. P. (2014). Early response as a predictor of success in guided self-help treatment for bulimic disorders. *European Eating Disorders Review*, 22, 59-65. doi: 10.1002/erv.2262
- Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimating effect size in the presence of publication bias. *Psychometrika*, 60, 419–435. doi: 10.1007/BF02294384
- Wales, J., Brewin, N., Cashmore, R., Haycraft, E., Baggott, J., Cooper, A., & Arcelus, J. (2016).
 Predictors of positive treatment outcome in people with anorexia nervosa treated in a specialized inpatient unit: the role of early response to treatment. *European Eating Disorders Review*, *24*, 417-424. doi: 10.1002/erv.2443

- Waller, G., Tatham, M., Turner, H., Mountford, V. A., Bennetts, A., Bramwell, K., Dodd, J, & Ingram, L. (2018). A 10-session cognitive-behavioral therapy (CBT-T) for eating disorders: Outcomes from a case series of nonunderweight adult patients. *International Journal of Eating Disorders*, *51*, 262-269. doi: 10.1002/eat.22837
- Waller, G., Turner, H. M., Tatham, M., Mountford, V. A., & Wade, T. D. (2019). Brief cognitive behavioural therapy for non-underweight patients: CBT-T for eating disorders. Hove, UK: Routledge.
- Zunker, C., Peterson, C. B., Cao, L., Mitchell, J. E., Wonderlich, S. A., Crow, S., & Crosby, R. D. (2010). A receiver operator characteristics analysis of treatment outcome in binge eating disorder to identify patterns of rapid response. *Behaviour Research and Therapy*, *48*, 1227-1231. doi: 10.1016/j.brat.2010.08.007

Supplementary material

A: Full search strategies used on each search engine, resulting in 415 documents.

SCOPUS

SEARCH: (TITLE-ABS-KEY (anorexia OR bulimia OR "eating disorder" OR "binge eating disorder") AND TITLE-ABS-KEY ((early OR rapid OR sudden) W/1 (gain* OR response OR symptom* OR improve ment* OR change*)) AND TITLE-ABS-

KEY (treatment OR therapy OR intervention) AND TITLE-ABS-KEY (outcome))

277 results

PSYCInfo

SEARCH:

(Anorexia OR bulimia OR "binge eating disorder" OR "eating disorder")

AND (early OR rapid OR sudden) ADJ (gain* OR response OR symptom* OR improvement* OR change*)

AND (therap* OR treatment* OR intervention*)

AND (outcome)

54 results

PubMed

SEARCH:

(anorexia) OR bulimia OR "eating disorder" OR "binge eating disorder")
AND ((early OR rapid OR sudden) AND (gain* OR response OR symptom* OR improvement*OR change*))
AND ((psychological) AND (therap* OR treatment* OR intervention*)
AND outcome*
84 results

B. Potentially relevant studies that were identified by the search but that were excluded

CITATION	TITLE	DOI	REASON(S) FOR EXCLUSION
Brockmeyer et al. (2019)	Sudden gains in Cognitive Behavioural Therapy and Focal Psychodynamic Therapy for Anorexia Nervosa: Findings from the ANTOP Study	https://doi.org/10.11 59/000499118	Study fails to define early response – study focuses on sudden gains
Cartwright et al. (2017)	Sudden gains in the outpatient treatment of Anorexia Nervosa: A process-outcome study	<u>https://doi.org/10.10</u> 02/eat.22773	Study fails to define early response – study focuses on sudden gains
Cavallini & Spangler (2013)	Sudden gains in Cognitive Behavioural Therapy for Eating Disorders	https://doi.org/10.15 21/ijct.2013.6.3.292	Study fails to define early response – study focuses on sudden gains
Grilo, Masheb & Wilson (2006)	Rapid response to treatment for Binge Eating Disorder	https://doi.org/10.10 37/0022- 006X.74.3.602	Study includes participant groups receiving non- psychological interventions.
Grilo et al. (2015)	Predicting Meaningful Outcomes to Medication and Self-Help Treatments for Binge Eating Disorder in Primary Care: The Significance of Early Rapid Response	<u>https://doi.org/10.10</u> <u>37/a0038635</u>	Study includes participant groups receiving non- psychological interventions.
Kahn et al. (2019)	Early changes in depression predict outcomes of inpatient adolescent anorexia nervosa	<u>https://doi.org/10.10</u> 07/s40519-019- <u>00686-9</u>	Some study participants fail to meet age criteria
Madden et al. (2015)	Early Weight Gain in Family-Based Treatment Predicts Greater Weight Gain and Remission at the End of Treatment and Remission at 12-Month Follow-Up in Adolescent Anorexia Nervosa	<u>https://doi.org/10.10</u> <u>02/eat.22414</u>	Primary intervention used in study is not psychotherapy based.
McFarlane, Olmsted & Trottier (2008)	Timing and Prediction of Relapse in a Transdiagnostic Eating Disorder Sample	<u>https://doi.org/10.10</u> 02/eat.20550	Study definition of remission is based on subjective measure (adherence to a meal plan)
Schlupp, Meyer & Munsch (2005)	A Non-Randomized Direct Comparison of Cognitive-Behavioral Short and Long-Term Treatment for Binge Eating Disorder	<u>https://doi.org/10.11</u> 59/000319538	Study uses quasi- experimental design
Swenne, Parling & Salonen Ros (2017)	Family-based intervention in adolescent restrictive eating disorders: early treatment response and low weight suppression is associated with favourable one-year outcome	https://doi.org/10.11 86/s12888-017-1486- 9	Some study participants fail to meet age criteria

from the meta-analysis, with reasons for exclusion.

C. Risk of bias table for observational cohort studies

	Issue	Cohort	Outcome	Confounding	Follow-up	Completeness	Precision	Believability of	Applicability	Fit with	Implications	Overall
First	clearly	recruited	accurately	variables	of	of Results	of Results	results	to intended	other	of the study	rating
Author and	focused?	acceptably?	measured to		subjects				population	research		
Year			minimise bias?									
Agras et al.	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
(2000)												
Bell et al.	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
(2017)												
Doyle et al.	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Moderate	Moderate	Moderate
(2010)										risk	risk	risk
Fairburn	Low risk	Low risk	Moderate risk	Low risk	Low risk	Moderate risk	High risk	Moderate risk	Moderate	Low risk	Moderate	High risk
(2004)									risk		risk	
Fernandez-	Low risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Moderate
Aranda et												risk
al. (2009)												
Hartmann	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
et al. (2007)												
Hilbert et	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
al. (2019)												
Kelly et al.	Low risk	Low risk	Low risk	Low risk	High risk	Moderate risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Moderate
(2014)												risk
Keshen et	Low risk	Low risk	Low risk	Low risk	Moderate	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk

al. (2017)					risk							
MacDonald	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
et al. (2015)												
MacDonald	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
& Trottier												
(2019)												
Olmsted et	Low risk	Low risk	High risk	Moderate risk	Low risk	Low risk	High risk	Moderate risk	Low risk	Low risk	Moderate	High risk
al. (1996)											risk	
Pelizzer et	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
al. (2019)												
Raykos et	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Moderate
al. (2013)												risk
Raykos et	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
al. (2014)												
Turner et	Low risk	Low risk	Moderate risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Moderate
al. (2015)												risk
Turner et	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Moderate
al. (2016)												risk
Vaz et al.	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Moderate risk	Moderate	Low risk	Moderate	Moderate
(2014)									risk		risk	risk
Wales et al.	Low risk	Low risk	Low risk	Moderate risk	Moderate	Low risk	Low risk	Moderate risk	Moderate	Low risk	Low risk	Moderate
(2016)					risk				risk			risk
Waller et al.	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
(2018)												

FIRST	Bias arising	Bias due to	Bias due to	Bias due to	Bias due to	Overall Risk of
AUTHOR &	from	deviation	missing	measurement	selective	Bias
YEAR	randomisation	from	outcome data	of outcome	reporting of	
	process	intervention			outcomes	
Grilo &	Low risk	Low risk	Moderate risk	Low risk	Low risk	Low risk
Masheb (2007)						
Hilbert et al. (2015)	Low risk	Low risk	Moderate risk	Low risk	Moderate risk	Moderate risk
Le Grange et al. (2008)	Low risk	Low risk	Low risk	Moderate risk	Low risk	Moderate risk
Le Grange et al. (2014)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Lock et al. (2006)	Low risk	Low risk	Moderate risk	Low risk	Low risk	Moderate risk
MacDonald et al. (2017)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Marrone et al. (2009)	High risk	Low risk	Moderate risk	Low risk	Moderate risk	High risk
Masheb & Grilo (2007)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Matheson et al. (2020)	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	Moderate risk
Munsch et al. (2012)	Low risk	Low risk	Moderate risk	Low risk	Low risk	Moderate risk
Safer & Joyce (2011)	Moderate risk	Low risk	Low risk	Moderate risk	Low risk	Moderate risk
Thompson- Brenner et al. (2015)	Low risk	Low risk	Moderate risk	Moderate risk	Low risk	Moderate risk
Zunker et al. (2010)	Low risk	Moderate risk	Low risk	Low risk	Moderate risk	Moderate risk

D. Risk of Bias table for RCTs.