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Objectives: Outpatient parenteral antimicrobial therapy (OPAT) is increasingly used to treat a variety 

of infections. However, hospital readmissions remain relatively common. We examined the external 

validity and clinical usefulness of a previously derived risk prediction model for 30 day unplanned 

hospitalization in patients receiving OPAT. 

Methods: A retrospective cohort study was conducted at two large teaching hospitals in the UK. The 

design comprised quasi-external temporal validation on patients from the same OPAT setting as the 

model development, and broader external validation on patients from a different setting. The model 

predictors were age, prior hospitalizations in the preceding 12 months, Charlson comorbidity score, 

concurrent IV antimicrobial therapy, type of infection and mode of OPAT treatment. Discriminative 

ability, calibration and clinical usefulness were assessed. 

Results: Data from 2578 OPAT patients were analysed. The rates of 30 day unplanned hospitalization 

were 11.5% (123/1073), 12.9% (140/1087) and 25.4% (106/418) in the model derivation, temporal 

validation and broader external validation cohorts, respectively. The discriminative ability of the 

prediction model was adequate on temporal validation (c-statistic 0.75; 95% CI: 0.71–0.79) and 

acceptable on broader validation (c-statistic 0.67; 95% CI: 0.61–0.73). In both external cohorts, the 

model displayed excellent calibration between observed and predicted probabilities. Decision curve 

analysis showed increased net benefit across a range of meaningful risk thresholds. 

Conclusions: A simple risk prediction model for unplanned readmission in OPAT patients 

demonstrated reproducible predictive performance, broad clinical transportability and clinical 

usefulness. This model may help improve OPAT outcomes through better identification of high-risk 

patients and provision of tailored care. 

 

Introduction 

IV antimicrobial agents are increasingly administered in outpatient settings to treat a variety of 

infections in patients who need parenteral therapy but are well enough not to require hospitalization.1,2 

The efficacy and safety of outpatient parenteral antimicrobial therapy (OPAT) have been well 

documented.3–6 Despite its benefits, OPAT is potentially associated with increased clinical risk due to 



 

the reduced level of clinical supervision and monitoring compared with inpatient care. Even with 

careful patient selection and multidisciplinary team-driven therapeutic plans, the nature of infections 

treated, the use of potentially toxic antimicrobial agents and the duration of treatment imply that 

complications, including readmissions for some patients, are inevitable. Thirty day readmission rates 

have been used in the UK and internationally as a marker of healthcare quality and OPAT outcome.7–9 

Predicting and preventing unplanned hospitalization could improve patient outcomes and reduce 

healthcare costs. We previously developed a risk prediction model for 30 day unplanned 

hospitalization in patients receiving OPAT at a large teaching hospital in Sheffield, UK.10 The model 

predictors were: age; Charlson comorbidity score; prior hospitalizations in the preceding 12 months; 

concurrent IV antimicrobial therapy; type of infection; and mode of OPAT treatment. The 

performance of clinical prediction models can vary due to changing outcome rates, shifting patient 

mix and evolving clinical practice. Before a prediction model can be used in clinical practice, it is 

essential to evaluate its ability to produce accurate predictions as well as its usefulness to support 

clinical decision-making on new subjects from the same source population (reproducibility) and in 

different clinical settings (transportability).11–13  

 

This study aimed to evaluate the external validity and clinical usefulness of a previously published 

model for predicting the risk of 30 day unplanned hospitalization in patients receiving OPAT,10 by 

selecting more recently treated subjects in the OPAT setting where the model was derived 

(reproducibility) and subjects from a different OPAT setting (transportability).  

 

Patients and methods 

Study design and setting 

We conducted a retrospective cohort study of adult patients (aged >18 years) who received OPAT at 

two large teaching hospitals in the UK (Sheffield Teaching Hospitals and Royal Derby Hospital). The 

design comprised quasi-external validation on patients (Sheffield cohort) having temporal 

characteristics different from those of the model development (temporal validation) and broader 



 

external validation on patients from a different OPAT setting (Derby cohort) with expected 

differences in case mix. 

 

The Sheffield and Derby OPAT services were formally established in 2006 and 2013, respectively. 

Both services are run by a multidisciplinary team of infection specialists, specialist nurses and clinical 

antimicrobial pharmacists. In the Sheffield OPAT centre, antimicrobials were delivered by three 

distinct pathways: daily attendance at the ‘infusion centre’; self or carer administration in the patient’s 

home; and administration by a district/community nurse in the patient’s home. However, in the Derby 

OPAT setting, antimicrobials were primarily delivered in the patient’s home by visiting nurses. Both 

OPAT centres maintain electronic databases to prospectively record patient demographics, clinical 

diagnosis, model of delivery, antimicrobial agents, treatment duration, type of vascular access, clinical 

outcome and complications. Patient selection, antimicrobial regimen and mode of OPAT delivery 

were the responsibility of the infection specialists at each centre. The clinical responsibility for 

patients receiving OPAT and their follow-up were shared between the referring clinicians and the 

OPAT infection specialists, unless otherwise agreed.  

 

The temporal and broader external validation cohorts were made up of data extracted from the OPAT 

databases and electronic health records of patients who received OPAT between January 2018 and 

January 2020. Age (years) was determined at the time of commencing OPAT. Weighted Charlson 

comorbidity score was calculated for each patient and was determined at the time OPAT was 

commenced.14 

 

 Original risk prediction model 

The original prediction model was developed using data from 1073 patients who received OPAT 

between January 2015 and January 2017 in Sheffield (derivation cohort).10 The primary outcome was 

30 day unplanned hospitalization, defined as unplanned inpatient admission to an acute care hospital 

for any reason within 30 days of discharge from the OPAT service. The model consisted of six 



 

predictors: age; Charlson comorbidity score;14 number of prior non-OPAT hospitalizations in the 

preceding 12 months; concurrent receipt of more than one IV antimicrobial agent; type of infection; 

and mode of OPAT delivery (infusion centre, community nurse or self/carer administration). The 

linear predictor (LP) for a patient was given by: LP = −3.628 + (0.016 × age in years) + (0.264 × number 

of prior hospitalizations) + (0.103 × Charlson comorbidity score)  +  (0.248, if self/carer 

administration) + (0.479, if infusion centre) + (0.635, if IV combination therapy) + (0.480, if 

endovascular infection) − (0.337, if respiratory disease) + (0.189, if urogenital infection) − (0.037, if 

bone and joint infection) − (0.776, if skin and soft tissue infection). The probability (or risk) of 30 day 

unplanned hospitalization for the same patient was given by: 1/[1 + exp(−LP)]. 

 

 

Sample size 

For external validation of prognostic models, a minimum of 100 outcome events is recommended to 

ensure adequate power to detect changes in predictive performance in external datasets.15 Given our 

previous experience with the Sheffield OPAT service (about 65 unplanned readmissions per year),10 

we reviewed 2 years’ worth of OPAT records to form the external validation cohorts in this study. 

 

Statistical analysis 

We conducted external validation in line with the methodological framework proposed by Debray et 

al.13 We report the study in accordance with the transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) recommendations.12 Because some patients 

had more than one episode of OPAT treatment during the study period, we performed individual-level 

analysis taking a simple random sample of one OPAT episode per patient.  

 

The first step in our validation approach was to assess the extent to which the external cohorts are 

useful for evaluating the model’s reproducibility or its transportability.13 The relatedness between the 

derivation cohort and the external cohorts was reviewed using two approaches. First, the distribution 



 

of context-important patient characteristics, including model predictors and outcomes, were 

compared. Second, the degree of relatedness in case mix between the development and validation 

cohorts was quantified by the c-statistic [area under the receiver operating characteristic (ROC) curve] 

of a binary logistic regression (membership) model predicting the probability that an individual 

patient is a member of the derivation cohort as opposed to the validation cohort.13 Independent 

variables in the membership model were the outcome and the six predictors of the original predictive 

model for unplanned hospitalization. Low values of the concordance c-statistic for the membership 

model (close to 0.5) indicate indistinguishable case mix between the datasets. 

 

In the second step, we examined heterogeneity in predictor–outcome associations by fitting the 

original set of predictors internally to each validation cohort and by calculating optimism-corrected 

performance measures using bootstrap resampling with 500 replications.16 Optimism-corrected 

measures were reduced by the estimated deterioration that the model is expected to have when applied 

to new individuals. We then externally assessed the performance of the originally developed model in 

each validation cohort. For the latter, a logistic regression model with the unplanned hospitalization as 

the outcome variable and the linear predictor of the original risk model as the only covariate was 

applied to each validation dataset.  

 

Model performance was evaluated in terms of discriminative ability (to differentiate patients with 

unplanned hospitalization from those without) and calibration (agreement between predicted 

probabilities and actual rates of unplanned hospitalization). Discrimination was quantified with the c-

statistic and was displayed graphically with an ROC curve. Calibration was broadly assessed by the 

Hosmer–Lemeshow goodness-of-fit test; a non-significant test indicates good calibration. The 

deviation of the intercept (calibration-in-the-large) and the slope of the calibration line (plotting 

predicted against observed event rates) from the ideal values of 1 and 0, respectively, were 

examined.17 Calibration-in-the-large represents the agreement between the overall observed and the 

overall predicted risk of hospitalization (by definition this is zero in the development sample). 

Calibration slopes >1 typically occur when predicted probabilities do not vary enough (e.g. predicted 



 

risks are systematically too low), whereas slopes <1 occur when they vary too much (e.g. low 

predictions are too low and high predictions are too high).13,17 Calibration was visually inspected 

using loess-based calibration plots.18  

 

In the third step, we used recalibration methods to improve the performance of the originally 

developed model in the validation cohorts.19 Where calibration-in-the-large was significantly different 

from zero due to different overall risks of hospitalization in the external cohorts, intercept 

recalibration was performed by fitting a new logistic regression model with an intercept only and an 

offset term for the linear predictor of the original risk model. 

 

Finally, we performed decision curve analysis to assess the clinical usefulness of the recalibrated 

model on the external cohorts.20 This analysis provides insight into the range of predicted risks 

(decision thresholds) for which the model has a greater net benefit (NB) than an ‘intervention for all’ 

strategy (assuming all patients have complications and require hospitalization) or an ‘intervention for 

none’ strategy (assuming none have complications). NB combines the benefits of true positives and 

the harms of false positives on a single scale by weighting false positives by the odds of the chosen 

risk threshold to select patients for intervention.20 

 

All patient data were anonymized prior to analysis. Data were processed and analysed using Stata/MP 

14.1 (StataCorp, College Station, TX, USA). The study was approved by the local clinical 

effectiveness unit as part of ongoing commitment to service development. 

 

 

Results 

A total of 2578 patients were identified, of which 1073 were recorded in the initial model derivation 

cohort. We recorded 418 and 1087 patients in the temporal validation cohort (Sheffield, 2018–20) and 

broader external validation cohort (Derby, 2018–20), respectively. Table 1 compares patient 



 

characteristics and outcomes between the development and validation stages. The temporal validation 

(Sheffield) cohort had similar patient characteristics and outcomes as the derivation cohort. Of note, 

more subjects in the temporal validation cohort received glycopeptides (14.8% versus 9.1%; 

P < 0.001) and concurrent oral antibiotic therapy (20.1% versus 11.4%; P < 0.001) but fewer received 

cephalosporins (66.0% versus 73.6%; P < 0.001), prior OPAT treatment (7.5% versus 16.1%; 

P < 0.001) and ‘infusion centre’ administration (66.0% versus 73.6%; P < 0.001) than the model 

development subjects. Rates of 30 day unplanned hospitalization were similar in the two cohorts 

(11.5% versus 12.9%; P = 0.314). The c-statistic for the membership model comparing the respective 

cohorts was 0.60 (95% CI: 0.57–0.62) indicating similar case mix. This implies that temporal 

validation in this study merely assesses the model’s reproducibility in the same target population 

rather than transportability in a different setting. 

 

However, the broader external validation (Derby) cohort was different to the model derivation cohort. 

Subjects in the Derby cohort were older (mean age 68 versus 56 years; P < 0.001), with more 

comorbidities (median Charlson score 2 versus 1; P < 0.001), MDR organisms (11.7% versus 8.0%; 

P = 0.026), central vascular access (88.8% versus 70.6%; P < 0.001), more severe indications for 

OPAT and with a higher rate of unplanned hospitalization (25.4% versus 11.5%; P < 0.001). The c-

statistic for the membership model was 0.95 (95% CI: 0.94–0.96) indicating highly discordant case 

mix. This implies that the broader external validation in this study reflects the transportability of the 

original risk prediction model to more severe patients selected differently to receive OPAT. 

 

The effects of the six predictors in the original risk model were consistent (in direction and 

magnitude) across the three cohorts (Table 2). Internal validation of the six-predictor model, when 

separately fitted in each validation cohort, showed adequate discriminative performance with 

optimism-corrected c-statistics at 0.70, 0.78 and 0.74 in the derivation, temporal validation and 

broader validation cohorts, respectively. The Hosmer–Lemeshow goodness-of-fit test indicated good 

broad calibration in deciles of predicted risks in all cohorts. There were no significant differences in 

the calibration intercept and calibration slope from the ideal values of 0 and 1, respectively. 



 

 

When the originally derived model was externally validated, adequate discriminative ability was 

retained in the temporal validation cohort (c-statistic 0.75; 95% CI: 0.71–0.79) and despite being 

reduced, discriminative ability was acceptable in the broader validation cohort (c-statistic 0.67; 95% 

CI: 0.61–0.73). There were no significant differences in the calibration slopes from the ideal value of 

1 in either external cohort. However, calibration-in-the-large was slightly higher than zero in temporal 

validation and too high in broader external validation (intercept 0.54; 95% CI: 0.31–0.77; Hosmer–

Lemeshow test P < 0.001). ROC curves and calibration plots are contrasted in Figure 1. Poor 

calibration-in-the-large was easily overcome by recalibrating the intercept of the model. The 

intercept-recalibrated model demonstrated excellent calibration performance in the external cohorts 

(Figure 1).  

 

Decision curve analysis showed that the recalibrated model has greater NB (i.e. clinically useful) than 

‘intervention for all’ or ‘intervention for none’ strategies in a range of meaningful predicted 

probability thresholds between approximately 15% and 50% for both external validation cohorts 

(Figure 2). 

 

 

Discussion 

This study examined the temporal and broader external validity and clinical usefulness of a previously 

published risk prediction model for 30 day unplanned hospitalization in patients receiving OPAT. The 

rates of unplanned hospitalization in the model derivation cohort, temporal validation cohort and 

broader validation cohort (11%, 13% and 25%, respectively) are comparable with other OPAT 

studies.8,9,21,22 The higher rate of unplanned hospitalization in the broader validation (Derby) cohort is 

likely due to the severity of infections treated, older age and high levels of comorbidity among the 

subjects. The discriminatory performance of the prediction model was retained and good in the 

temporal validation cohort (c-statistic 0.75), meaning that all subjects can be discriminated 



 

appropriately between the readmitted and non-readmitted group. The performance was reduced in the 

broader external dataset (c-statistic 0.67; 95% CI: 0.61–0.73), but remained potentially acceptable. In 

general, a c-statistic of 0.5 indicates no discrimination; 0.7 to 0.8 shows acceptable discrimination; 0.8 

to 0.9 shows excellent discrimination; and values ≥0.9 are considered outstanding discrimination but 

are rarely seen in practice.23 In both external validation cohorts, the calibration slopes were very close 

to the ideal value of 1, suggesting good correlation between observed and predicted risks across the 

subjects. However, calibration-in-the-large was poor in the broader validation cohort, indicating 

systematic overprediction of the risk of unplanned hospitalization in that cohort.  

 

In external validation studies, decreases in performance of prediction models are common and can be 

due to differences in case mix of patients between the development and validation cohorts, overfitting 

of the model to the data used for development, differences in the effect of the model predictors 

between the development and validation cohorts, or a combination of these factors.13,24 Prediction 

model performance can sometimes be improved by recalibration to the new setting, re-estimation of 

regression coefficients or including more predictors.19,24 We addressed the poor calibration-in-the-

large by recalibrating the intercept of the model to reflect the higher overall risks of unplanned 

hospitalization in the external cohorts (especially the broader validation cohort) compared with the 

derivation cohort.  

 

Clinical usefulness is the ability to make a better decision when using a prediction model compared 

with when not using the model.20,24 However, it is not clear how good the model’s discriminative and 

calibration performances need to be to warrant clinical use. In this study, we confirmed the clinical 

usefulness of the recalibrated model by calculating its NB. NB is a simple type of decision analysis; 

similar to the idea of net profit in business.20 We found the NB difference (true NB) of using the 

predictive model to be greater than 0 for all threshold probabilities between 0.15 and 0.50. Thus, our 

study demonstrates that the model is useful for identifying patients at high risk of unplanned hospital 

readmission upon presentation to an OPAT service. Based on our results, the model can be used to aid 

clinicians in managing patients receiving IV antimicrobial therapy in outpatient settings. Once 



 

identified as ‘high risk’, careful forward planning can help to prevent hospital readmissions and 

optimize clinical outcomes—by careful patient selection, closer monitoring and timely follow-up.25 

 

This study has limitations that should be acknowledged. Caution should be applied when using the 

model. Each OPAT centre may have a different case mix of patients, OPAT structure and mode of 

delivery from those of the centres in which our study was conducted. Therefore, each OPAT service 

should compare their case mix and structure with those of the study OPAT services before using the 

risk prediction model directly. Recalibration of the model should be considered in settings with 

broader case mix before clinical use. Our analysis was retrospective, but the data were originally 

collected prospectively, which reduces the risk of measurement bias or poor accuracy of recorded 

data. However, we cannot be entirely confident that we have not missed some patients who were 

readmitted to other hospitals. Nevertheless, most patient interactions with healthcare systems are well 

documented in their clinical records. In the model development, we did not explore factors (such as 

therapeutic drug levels, frequency of monitoring or follow-up visits) that are not readily available 

prior to OPAT but are plausible risk factors for readmission. Our aim was to develop a risk prediction 

model based on parameters available on presentation to an OPAT service. 

 

In conclusion, the prediction model is temporally and externally valid, and clinically useful for the 

prediction of 30 day unplanned hospitalization in patients receiving OPAT. It may help improve 

OPAT outcomes through better identification of high-risk patients and provision of tailored care. 

Future research should focus on recalibration and assessing the model performance in other OPAT 

centres, especially those with broader case mix from the study cohorts. 
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Table 1. Characteristics of subjects between development and validation cohorts  

 

Characteristics 
Derivation 

cohort 

(n = 1073) 

Temporal 

validation 

cohort 

(n = 1087) 

P 

valuea 

Broader 

validation 

cohort 

(n = 418) 

P 

valueb 

Male sex, n (%) 611 (56.9) 641 (59.0) 0.340 259 (62.0) 0.078 

Age, years, mean (SD) 56 (17.5) 56 (17.7) 0.795 68 (14.4) <0.001 

Age group, n (%)   0.702  <0.001 

≤30 97 (9.0) 112 (10.3)  9 (2.2)  

31–40 121 (11.3) 108 (9.9)  15 (3.6)  

41–50 177 (16.5) 164 (15.1)  22 (5.3)  

51–60 209 (19.5) 225 (20.7)  58 (13.9)  

61–70 219 (20.4) 228 (21.0)  116 (27.8)  

>70 250 (23.3) 250 (23.0)  198 (47.4)  

Comorbidities, n (%)      

Chronic pulmonary disease 197 (18.4) 111 (10.2) <0.001 94 (22.5) 0.071 

Diabetes with complications 109 (10.2) 123 (11.3) 0.385 100 (23.9) <0.001 

Peripheral vascular disease 87 (8.1) 59 (5.4) 0.014 62 (14.8) <0.001 

Diabetes without complications 107 (10.0) 97 (8.9) 0.405 62 (14.8) 0.008 

Tumour without metastasis 90 (8.4) 62 (5.7) 0.015 25 (6.0) 0.119 

Moderate or severe renal disease 82 (7.6) 134 (12.3) <0.001 80 (19.1) <0.001 

Connective tissue disease 71 (6.6) 56 (5.2) 0.149 29 (6.9) 0.824 

Myocardial infarction 79 (7.4) 68 (6.3) 0.308 45 (10.8) 0.034 

Cerebrovascular disease 49 (4.6) 64 (5.9) 0.169 31 (7.4) 0.030 

Congestive heart failure 53 (4.9) 62 (5.7) 0.429 32 (7.7) 0.044 

Peptic ulcer disease 40 (3.7) 10 (0.9) <0.001 7 (1.7) 0.047 

Moderate or severe liver disease 25 (2.3) 24 (2.2) 0.849 11 (2.6) 0.733 

Metastatic solid tumour 21 (2.0) 20 (1.8) 0.842 12 (2.9) 0.284 

Lymphoma 8 (0.7) 6 (0.6) 0.576 4 (1.0) 0.682 

Leukaemia 11 (1.0) 12 (1.1) 0.858 6 (1.4) 0.505 

Hemiplegia 6 (0.6) 8 (0.7) 0.610 1 (0.2) 0.431 

Dementia 6 (0.6) 9 (0.8) 0.455 8 (1.9) 0.022 

AIDS 2 (0.2) 0 (0.0) 0.999 0 (0.0) 0.999 

Mild liver disease 0 (0.0) 27 (2.5) 0.998 4 (1.0) 0.999 

Charlson comorbidity score, median (IQR) 1 (0–2) 0 (0–2) 0.308 2 (1–3) <0.001 

Charlson comorbidity score, n (%)   <0.001  <0.001 

0 472 (44.0) 564 (51.9)  104 (24.9)  

1 203 (18.9) 154 (14.2)  83 (19.9)  



 

 2 170 (15.8) 156 (14.4)  83 (19.9)  

 3 101 (9.4) 64 (5.9)  49 (11.7)  

 4+ 127 (11.8) 149 (13.7)  99 (23.7)  

Indication for OPAT, n (%)   0.267  0.000 

 Skin and soft tissue infection 616 (57.4) 584 (53.7)  4 (1.0)  

 Bone and joint infection 137 (12.8) 174 (16.0)  242 (57.9)  

 Urogenital infection 70 (6.5) 63 (5.8)  6 (1.4)  

 Respiratory disease 45 (4.2) 46 (4.2)  68 (16.3)  

 Endovascular infection 45 (4.2) 43 (4.0)  40 (9.6)  

 Other indication 160 (14.9) 177 (16.3)  58 (13.9)  

MDR organism, n (%) 86 (8.0) 89 (8.2) 0.883 49 (11.7) 0.026 

Mode of antimicrobial delivery, n (%)   <0.001  <0.001 

 Infusion centre 767 (71.5) 673 (61.9)  3 (0.7)  

 Community nursec  201 (18.7) 289 (26.6)  412 (98.6)  

 Self/carer administration 105 (9.8) 125 (11.5)  3 (0.7)  

Type of vascular access, n (%)   0.267  <0.001 

 Central line 758 (70.6) 744 (68.4)  371 (88.8)  

 Peripheral access 315 (29.4) 343 (31.6)  47 (11.2)  

Antimicrobial agent, n (%)d      

 Penicillin 93 (8.7) 99 (9.1) 0.719 121 (28.9) <0.001 

 Cephalosporin 790 (73.6) 717 (66.0) <0.001 111 (26.6) <0.001 

 Carbapenem 104 (9.7) 121 (11.1) 0.274 59 (14.1) 0.015 

 Glycopeptide 98 (9.1) 161 (14.8) <0.001 134 (32.1) <0.001 

 Other 51 (4.8) 68 (6.3) 0.127 15 (3.6) 0.328 

Concurrent IV OPAT, n (%) 81 (7.5) 81 (7.5) 0.932 21 (5.0) 0.085 

Oral antibiotic included, n (%) 122 (11.4) 218 (20.1) <0.001 111 (26.6) <0.001 

Duration of OPAT, days, median (IQR) 7 (4–19) 7 (3–21) 0.776 18 (8–32) <0.001 

Number of prior hospitalizations, median (IQR)e 0 (0–1) 0 (0–1) 0.096 1 (0–2) 0.011 

Prior OPAT stay in past 12 months, n (%) 173 (16.1) 81 (7.5) <0.001 42 (10.0) 0.003 

Outcomes      

30 day hospitalization, n (%) 145 (13.5) 159 (14.6) 0.457 117 (28.0) <0.001 

30 day unplanned hospitalization, n (%) 123 (11.5) 140 (12.9) 0.314 106 (25.4) <0.001 

Reason for 30 day unplanned admission, n (%)   0.261  0.042 

Worsening of infection/no improvement 52 (42.3) 64 (45.7)  35 (33.0)  

Non-OPAT related  50 (40.7) 40 (28.6)  36 (34.0)  

New infection 8 (6.5) 14 (10.0)  18 (17.0)  

Adverse drug reaction 7 (5.7) 14 (10.0)  12 (11.3)  

IV line-related complications 3 (2.4) 6 (4.3)  5 (4.7)  



 

Clostridioides difficile-associated 

diarrhoea 2 (1.6) 2 (1.4)  0 (0.0)  

Unknown 1 (0.8) 0 (0.0)  0 (0.0)  

 

aP value refers to the comparison between the Sheffield derivation cohort and the Sheffield validation 

cohort. 

bP value refers to the comparison between the Sheffield derivation cohort and the Derby validation 

cohort. 

cCommunity nurse refers to administration of antimicrobial therapy in a patient’s home by a nurse. 

dSome patients received more than one antimicrobial agent. Thus, total number of antimicrobial 

agents is greater than total number of patients. 

eIn 12 months preceding current OPAT episode. 

 



 

Table 2. Multivariable logistic regression analysis for the risk of 30 day unplanned hospitalization in patients receiving OPAT 

 

Predictors  

Model derivation cohort (Sheffield) 

(n = 1073) 

Temporal validation cohort (Sheffield) 

(n = 1087) 

Broader validation cohort (Derby) 

(n = 418) 

aOR 95% CI P value aOR 95% CI P value aOR 95% CI P value 

Age, per 10 years 1.18  1.04–1.34 0.012 0.98 0.86–1.12 0.808 1.00 0.83–1.21 0.998 

Prior hospitalizations, per unit 1.30 1.17–1.45 <0.001 1.17 1.05–1.31 0.005 1.05 0.91–1.20 0.511 

Charlson comorbidity score, per unit 1.11 1.00–1.23 0.045 1.52 1.37–1.68 <0.001 1.66 1.44–1.90 <0.001 

Mode of delivery          

 Community nursea  1.00 — — 1.00 — — NA — — 

 Self/carer administration 1.28 0.62–2.64 0.500 0.96 0.50–1.85 0.911 NA — — 

 Infusion centre 1.61 0.90–2.89 0.108 1.37 0.76–2.45 0.298 NA — — 

Concurrent IV antimicrobial therapy 1.89 1.03–3.47 0.041 1.18 0.61–2.30 0.622 0.78 0.25–2.44 0.671 

Indication for OPAT          

 Endovascular infection 1.62 0.67–3.88 0.283 0.50 0.17–1.49 0.213 1.75 0.62–4.94 0.291 

 Respiratory disease 0.71  0.26–1.96 0.513 1.66 0.72–3.82 0.237 2.51 1.02–6.19 0.046 

 Urogenital infection 1.21 0.54–2.69 0.643 1.43 0.67–3.06 0.359 NA — — 

 Bone and joint infection  0.96 0.49–1.90 0.916 0.67 0.36–1.24 0.202 1.66 0.77–3.61 0.196 

 Skin and soft tissue infection 0.46 0.25–0.86 0.015 0.39 0.20–0.76 0.006 3.39 0.29–39.46 0.330 

 Other indication 1.00 — — 1.00 — — 1.00 — — 

Performance on bootstrap internal validation (500 replications) 

 Discrimination, c-statistic 0.70 0.65–0.74 —  0.78 0.74–0.82 — 0.74 0.69–0.80 —  

 HL goodness-of-fit statistic (df) 4.20 (8) — 0.838 3.17 (8) — 0.923 10.11 (8) — 0.257 

 Average predicted (observed) risk, % 12.0 (11.5) — — — 13.3 (12.9) — 26.2 (25.4) — — 

 Calibration slope 0.87 0.68–1.06 — 0.93 0.78–1.07 — 0.91  0.68–1.15 — 

 Calibration-in-the-large 0.00 −0.20, 0.21 — 0.00 −0.21, 0.22 — 0.00 −0.26, 0.27 — 

Performance of original model on external validation 

 Discrimination, c-statistic — — — 0.75 0.71–0.79 — 0.67 0.61–0.73 — 

 HL goodness-of-fit statistic (df) — — — 10.79 (8) — 0.214 26.61 (8) — <0.001 

 Average predicted (observed) risk, % — — — 11.4 (12.9) — — 17.1 (25.4) — — 



 

 Calibration slope — — — 1.05 0.84–1.26 — 1.01 0.65–1.37 — 

 Calibration-in-the-large — — — 0.16 −0.03 to 0.35 — 0.54 0.31–0.77 — 

Performance of recalibrated original model on external validation  

 Discrimination, c-statistic — — — 0.75 0.71–0.79 — 0.67 0.61–0.73 — 

 HL goodness-of-fit statistic (df) — — — 7.07 (8) — 0.529 3.80 (8) — 0.875 

 Average predicted (observed) risk, % — — — 12.9 (12.9) — — 26.2 (26.2) — — 

 Calibration slope — — — 1.05 0.84–1.26 — 1.01 0.65–1.37 — 

 Calibration-in-the-large — — — 0.00 −0.19–0.19 — 0.00 −0.23–0.23 — 

 

aOR, adjusted OR; df, degrees of freedom; HL, Hosmer–Lemeshow. NA indicates that in the broader validation (Derby) cohort, mode of delivery and 

urogenital infection could not be included as predictors because of complete separation (very few or no subjects with urogenital infection, self/carer 

administration or treated via infusion centre, none of whom required hospitalization). 

aCommunity nurse refers to administration of antimicrobial therapy in a patient’s home by a nurse. 



 

Figure 1. ROC curves and calibration plots of the multivariable prediction model for 30 day 

unplanned hospitalization when applied to external validation cohorts. On the ROC curves, the 

diagonal line indicates complete absence of discriminative ability. On the calibration plots, the 

smoothed line shows the agreement between predicted and observed probabilities of 30 day unplanned 

hospitalization. The dashed diagonal line indicates perfect calibration. The circled points represent 

observed proportions of unplanned hospitalization in decile groups of predicted risks, with vertical 

lines representing 95% CIs. The spike plot on the x-axis summarizes the density of patients in the 

range of predicted risks of unplanned hospitalization. 



 

 



 

Figure 2. NB curves of the multivariable prediction model for 30 day unplanned hospitalization in 

patients receiving OPAT when applied to external validation cohorts. Solid blue line represents the 

NB when using the risk prediction model; dashed line represents the NB when all patients are 

administered therapy as inpatients (‘intervention for all’); dotted horizontal line represents the NB 

with current practice for selecting patients for OPAT (‘intervention for none’). 

 

 


