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4 Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP,
Brazil

5 School of Geography, University of Leeds, Leeds, United Kingdom
∗ Author to whom any correspondence should be addressed.

E-mail: J.C.Baker@Leeds.ac.uk

Keywords: CMIP5, evapotranspiration, land–atmosphere coupling, hydrological feedbacks, process-based evaluation

Supplementary material for this article is available online

Abstract
Land–atmosphere interactions have an important influence on Amazon precipitation (P), but
evaluation of these processes in climate models has so far been limited. We analysed relationships
between Amazon P and evapotranspiration (ET) in the 5th Coupled Model Intercomparison
Project models to evaluate controls on surface moisture fluxes and assess the credibility of regional
P projections. We found that only 13 out of 38 models captured an energy limitation on Amazon
ET, in agreement with observations, while 20 models instead showed Amazon ET is limited by
water availability. Models that misrepresented controls on ET over the historical period projected
both large increases and decreases in Amazon P by 2100, likely amplified by unrealistic
land–atmosphere interactions. In contrast, large future changes in annual and seasonal-scale
Amazon P were suppressed in models that simulated realistic controls on ET, due to modulating
land–atmosphere interactions. By discounting projections from models that simulated unrealistic
ET controls, our analysis halved uncertainty in basin-wide future P change. The ensemble mean of
plausible models showed a robust drying signal over the eastern Amazon and in the dry season, and
P increases in the west. Finally, we showed that factors controlling Amazon ET evolve over time in
realistic models, reducing climate stability and leaving the region vulnerable to further change.

1. Introduction

The Amazon basin contains the world’s largest
tropical rainforest, which both depends on, and
substantially influences, the regional hydrological
cycle (Marengo 2006). Evapotranspiration (ET) from
forests is essential for maintaining Amazon climate,
ensuring water vapour is replenished during trans-
port across the basin by recycling precipitation (P)
back to the atmosphere (Salati et al 1979, Eltahir and
Bras 1994). Amazon forests are highly dependent on
this supply of recycled water (Spracklen et al 2012,
Staal et al 2018), and up to 70% of P in the southern
basin originates from terrestrial ET upwind (van der
Ent et al 2010). Furthermore, it has been suggested

that ET may play a role in Amazon wet season ini-
tiation (Wright et al 2017). Evidence from in situ
measurements and moisture-balance analysis indic-
ates that ET is controlled by net radiation overmost of
the basin (Da Rocha et al 2004, Fisher et al 2009, Sun
et al 2019), consistent with satellite studies showing
Amazon photosynthesis is not water-limited in areas
where annual P exceeds 2000 mm (Guan et al 2015).

Understanding how the Amazon water cycle may
change under future warming scenarios is crucial for
predicting how the forest, and its store of terrestrial
carbon,may respond. The Amazon hydrological cycle
has become increasingly seasonal since the 1990s
(Gloor et al 2013), and floods and droughts have
become more extreme (Marengo and Espinoza 2016,
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Barichivich et al 2018). Although vegetation mod-
els simulated a relatively stable carbon sink over the
Amazon since 1990 (Sitch et al 2015), strong P anom-
alies disrupt carbon sequestration (Gatti et al 2014),
and ground-based measurements suggest the rate of
forest carbon uptake is in decline (Brienen et al 2015).
Climate change is already impacting the Amazon,
therefore, determining the direction of future hydro-
logical changes is imperative.

In general, models from the 5th Coupled Model
Intercomparison Project (CMIP5) have struggled to
reproduce historical Amazon P (Yin et al 2013,
Knutson and Zeng 2018), and P projections for the
next century are highly uncertain (Christensen et al
2013). Although the ensemble mean suggests a mod-
est drying trend over the basin, discrepancies in the
direction and magnitude of future changes limit con-
fidence in projections (Boisier et al 2015, Chadwick
et al 2016). When standard model performance met-
rics are unable to narrow the uncertainty of regional P
changes, process-based model evaluationmay help to
constrain future simulations (Rowell et al 2016). Fol-
lowing such amechanistic approach, inter-model dif-
ferences in simulated Amazon P have been attributed
to factors including spatial variation in sea surface
temperature (SST) change and the land–sea temper-
ature contrast (Kent et al 2015), theCO2 physiological
effect on stomatal conductance (Skinner et al 2017),
and strength of the Atlantic meridional overturning
circulation (Chen et al 2018).

Land–atmosphere interactions are another source
of variability between CMIP models (Seneviratne
et al 2013, Mueller and Seneviratne 2014, Levine
et al 2016). Models have been shown to misrep-
resent the strength and direction of Amazon land–
atmopshere interactions (Levine et al 2016, Baker
et al 2021a), and struggled to capture controls on
Amazon photosynthetic productivity due to overes-
timation of dry-season water stress (Gentine et al
2019, Green et al 2020). However, the extent to which
land–atmosphere interactions explain differences in
Amazon P projections has not yet been explored.
Here, we used observations to assess representation
of Amazon land–atmosphere interactions in CMIP5
models. Our findings demonstrate that regulation of
ET offers an important constraint on the realism of
model behaviour. We found that the most extreme P
projections (reductions and increases) could be dis-
counted, as these were from models that simulated
incorrect controls on ET. Meanwhile, models that
captured realistic controls on moisture fluxes showed
an ability to buffer regional hydroclimatic changes
over the next century.

2. Methods

Relationships between P and ET can be used to dia-
gnose the direction and strength of land–atmosphere

interactions, indicating whether ET fluxes are regu-
lated by an atmospheric influence or a land-surface
control (figure 1(a)). In regions where ET is con-
trolled by available surface energy, reductions in
P (and thus cloudiness, supplementary figure 1
(available online at stacks.iop.org/ERL/16/074002/
mmedia)) drive an increase in incoming solar radi-
ation, causing ET to increase. In contrast, areas
where ET is water-limited show positive relationships
between P and ET, as increases in P drive increasing
soil water availability. To categorise Amazon ET as
either energy-limited or water-limited, we calculated
correlations between monthly anomalies of P and ET
from 38 CMIP5 climate models and compared them
against observations.

2.1. Data
We obtained global observations of P and ET for
an 11 year period (2003–2013). We used a merged
satellite-gauge P product (Huffman et al 2007) and
seven ET products, including three satellite-based
datasets, three datasets based on interpolated flux-
tower measurements, and a novel reanalysis, to over-
come uncertainty in ET over the Amazon (Sörensson
and Ruscica 2018, Baker et al 2021b). In addition to P
and ET, we also analysed cloud cover (CLD), surface
radiation (RDN) and soil moisture (SM) to exam-
ine model representation of physical processes along
the full hydrological pathway. Details of all observa-
tional products are provided in table 1, with addi-
tional information in the supplementary methods.

Historical simulations from 38 CMIP5 models
(supplementary tables 1 and 2) were downloaded
at monthly resolution from the Centre for Environ-
mental Data Analysis archive (http://data.ceda.acuk/
badc/cmip5/). When available, multiple realisations
were used to derive an ensemble mean, else a single
run was used. We used data over an 11 year period
(1994–2004) to align with observations. There is a
discrepancy in the time periods analysed for mod-
els and observations (2003–2013). Although land–
atmosphere interactions may be expected to evolve
over time, as the two periods are separated by less
than a decade we do not expect this to have had a
substantial impact on our findings. All model simula-
tions and observations were regridded to 1◦ × 1◦ res-
olution using an area-weighted approach to ensure an
equal number of Amazon grid cells across datasets.

2.2. Assessing model representation of
land–atmosphere interactions
Simultaneous linear P-ET correlations were used to
categorise controls on Amazon ET in observations
and models. These correlations are not expected to
capture the full complexity of land–atmosphere inter-
actions over the Amazon, but rather to provide a
broad indication of the direction of influence between
the land surface and the atmosphere. Pearson correl-
ation coefficients were computed between monthly
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Figure 1. Relationships between P and ET over the Amazon. (a) Schematic showing mechanisms of positive and negative
association between P and ET. Variable abbreviations are as follows: P= precipitation, ET= evapotranspiration, CLD= total
cloud cover, RDN= surface downwelling shortwave radiation and SM= soil moisture. Maps showing correlations calculated
between monthly anomalies of P and ET at the grid-cell level in observations (b)–(d) and CMIP5 models (e)–(g). Observed
correlations were calculated using TRMM P and ET estimates from three satellite-based products (b), three flux-tower-based
products (c), and the ERA5 reanalysis (d) for the period 2003–2013 (see table 1). CMIP5 correlations calculated over 1994–2004
were averaged over energy-limited (e), water-limited (f), and all (g) models, with stippling indicating where there is at least 66%
agreement in the direction of the correlation among models. White areas indicate where relationships were not statistically
significant. Black lines show the boundary of the Amazon basin.

Table 1. Observational datasets used in this study.

Variable Product
Original spatial
resolution (◦)

Original temporal
resolution Reference

P TRMM 3B43 0.25 Month Huffman et al (2007)
ET MODIS

MOD16A2
0.05 8 d Mu et al (2007), Mu

et al (2011)
P-LSH 0.083 Month Zhang et al (2010)
GLEAM 0.25 Month Miralles et al (2011),

Martens et al (2017)
ERA5 0.25 Month Dee et al (2011)
WECANN 1.0 Month Alemohammad et al

(2017)
FLUXCOM_RS 1.0 Month Jung et al (2019)
FLUXCOM_RS+
METEOa

1.0 Month Jung et al (2019)

CLD fraction CLARA-A1 0.25 Month Karlsson et al (2013)
Shortwave incoming
solar RDN

CLARA-A1 0.25 Month Karlsson et al (2013)

SM ERA5 0.25 Month Hersbach et al (2020)
a Note that following calculation of monthly anomalies this dataset is labelled FLUXCOM_METEO to account for the removal of the

remote-sensing-derived signal.

anomalies of P and ET globally at the grid-cell scale
for all datasets. Anomalies represent the deviation
from the climatological mean and were derived by
subtracting the long-term seasonal cycle from the
monthly data. To constrain our analysis, we down-
loaded an Amazon basin shapefile (black bound-
ary shown in figure 1) from observation service
SO HYBAM (www.ore-hybam.org) and generated a
1◦ × 1◦ mask to identify Amazon grid cells. Datasets
were only categorised if at least 25% of Amazon grid
cells showed significant P-ET correlations. A t-test
was used to identify whether the calculated coefficient
was statistically different from zero and any dataset

that did not meet this criterion was excluded from
the study (1 CMIP5 model). To avoid overstating the
significance of our results as a result of multiple-
hypothesis testing, we applied a method to control
for the false discovery rate, as suggested by Wilks
(2016). We used the Benjamini/Hochberg approach
(Benjamini and Hochberg 1995) implemented by the
‘statmodels’ Python package to adjust the p-values
used to identify the statistical significance of correla-
tions. A binary classification systemwas applied to eli-
gible datasets, whereby datasets were classed as either
water-limited or energy-limited if at least 66% of
the significant correlations were positive or negative
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respectively. A sensitivity analysis showed that chan-
ging the thresholds for categorisation had minimal
influence on the overall results, and thus thresholds
were selected to balance stringency and dataset
retention (supplementary figure 2, supplementary
table 3).

In addition to P-ET relationships, correlations
were computed between monthly anomalies of other
variables to fully assess model representation of phys-
ical processes in the Amazon hydrological cycle,
including P-CLD, P-SM, RDN-CLD, RDN-P, RDN-
ET and SM-ET relationships. We tested how P-ET,
RDN-ET and SM-ET relationships responded to spa-
tial variation in P, considering water-limited and
energy-limited models separately. Correlation coeffi-
cients for all Amazon grid cells were binned by mean
annual P, using a bin width of 50 mm. Bins with
fewer than five data points were excluded from the
analysis.

2.3. Future P projections
We assessed whether differences in model represent-
ation of Amazon ET controls influenced Amazon
P projections. For this, we used simulations from
the representative concentration pathway (RCP) 8.5
experiment, a future-change scenario with high radi-
ative forcing at the end of the century (Riahi et al
2011). Change anomalies were calculated at the
annual time scale (using data from all months, or
three-monthly periods) for 2008–2099, taking 1980–
1999 as the historical reference period. Interannual
data were smoothed with an 11 year moving aver-
age to better visualise inter-decadal trends (Boisier
et al 2015). Reported end-of-century changes repres-
ent the mean P anomaly across the 20 year period
from 2080 to 2099 (∆P).We used aMonte Carlo-type
approach to determine whether the standard devi-
ation (σ) in basin-mean ∆P across the 13 energy-
limited CMIP5 models was different to what might
be expected by chance (supplementary methods 1.4).

To test the hypothesis that the smaller future
range in P projections in energy-limited models was
influenced by climate buffering due to the negat-
ive relationship between P and ET, we examined
∆P together with changes in ET and RDN (∆ET
and ∆RDN) at the grid-cell scale by the end of the
century (2080–2099), using 1980–1999 as the his-
torical reference period. We calculated linear regres-
sion relationships between∆P and∆ET and between
∆RDN and δET, where δET represents the difference
between the actual simulated ∆ET in the grid cell,
and the∆ET predicted from∆P using the linear∆P-
∆ET relationship derived from all models, account-
ing for uncertainty along both axes (York 1966). Rela-
tionships were calculated for all, energy-limited and
water-limited models, using data from all Amazon
grid cells.

3. Results

3.1. Opposite controls on ET in different climate
models
Amazon P-ET correlations based on ET estimates
from satellites, flux-tower measurements and reana-
lysis were predominantly negative (figures 1(b)–(d),
supplementary figure 3), providing strong evidence
that Amazon ET is primarily energy-limited, in agree-
ment with earlier studies (Fisher et al 2009, Sun
et al 2019). All but one of the ET products analysed
showed good agreement in the direction of correla-
tions, particularly over the northern Amazon, though
there were some spatial differences elsewhere (sup-
plementary figure 4). Furthermore, the single satellite
ET product that showed opposing results has previ-
ously been shown to perform poorly in the Amazon
(Miralles et al 2011, Baker et al 2021b).

Strikingly, only 13 out of 38 CMIP5 models
captured an energy control on Amazon ET (here-
after energy-limitedmodels), while 20models instead
showed Amazon ET was limited by water availabil-
ity (hereafter water-limited models, supplementary
figure 3). The spatial pattern of P-ET relationships
in energy-limited models matched well with obser-
vations, particularly in the northwest Amazon where
therewas good agreement amongmodels (figure 1(e),
supplementary figure 4). In contrast, water-limited
models showed positive P-ET correlations over the
whole basin (figure 1(f)). Given that nearly half of
CMIP5 models simulated the wrong controls on
Amazon moisture fluxes, the multi-model ensemble
provides a poor representation of the observed state
(figure 1(g)). Trying to understand future changes
in Amazon hydrology through an assessment of the
ensemble mean is therefore unlikely to yield reli-
able results. The division of CMIP5 models into
two populations with opposing controls on Amazon
ET was supported by a Budyko drought-index ana-
lysis, whereby the ratio of potential ET (PET) to P
indicates an energy-limited (PET/P < 1) or water-
limited (PET/P> 1) evaporative regime (supplement-
ary methods 1.2, supplementary figure 5). Together,
these results highlight a potential source of diver-
gence in simulations of the Amazon hydrological
cycle among CMIP5 models. Finally, we repeated our
analysis using newly-available historical simulations
from 26 CMIP6 models and found consistent results
(supplementary figure 6), indicating that our findings
fromCMIP5 are generalizable to the latest generation
of climate models.

3.2. Response of ET controls to spatial and
temporal P variation
Land–atmosphere interactions in CMIP5 models can
be modulated by background P (Berg and Sheffield
2018), so we tested whether differences in P could
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Figure 2. Response of Amazon ET controls to background
P. Changes in P-ET relationships with spatial variation in
mean annual P for CMIP5 models that simulate
water-limited (red) and energy-limited (blue) Amazon ET.
Correlation coefficients between monthly anomalies of P
and ET were extracted from all Amazon grid cells
(boundary lines indicated in figure 1) for each model and
observational product and sorted into annual P bins (see
section 2). Lines indicate the mean correlation per bin and
shading represents the standard deviation from the mean.
Observed responses were determined using TRMM P and
ET from the seven datasets indicated in the legend. GLEAM
is shown in grey shading to indicate some uncertainties in
the quality of this dataset over the Amazon (Miralles et al
2011).

explain differences in ET controls between the two
model populations. Models that captured an energy
limitation on Amazon ET tended to be wetter over
the whole Amazon, and simulated mean annual P
closer to observations (supplementary figure 7). The
five wettest models were all energy-limited, suggest-
ing that simulating a sufficiently high background
Amazon P may be a first step towards capturing the
right controls on ET. However, there were exceptions
to this pattern, with some drier models still simu-
lating a radiation control on Amazon ET, and wet-
ter models where ET was found to be water-limited.
When we examined how P-ET relationships respon-
ded to spatial variation in P, we found that energy
and water-limited models simulated opposite con-
trols on ET over the same range in P (figure 2).
Models in the energy-limited population showed a
relatively sharp transition from positive to negative
P-ET correlation coefficients when P reached around
1500 mm yr−1, followed by a more gradual decline in
correlation as annual P continued to rise (figure 2).
This behaviour, which is supported by the majority
of observations (figure 2), is consistent with hydrolo-
gical theory (Budyko 1974), and our current under-
standing of the controls on Amazon photosynthesis
(Guan et al 2015). In contrast, water-limited mod-
els showed positive P-ET correlations until P reached

nearly 3000 mm yr−1, suggesting they fail to accur-
ately represent the physical processes that modulate
ET over the Amazon.

Models also exhibited differences in behaviour
in response to temporal variation in P. Although
all models simulated Amazon P seasonality relat-
ively well (supplementary figure 8), energy-limited
models reproduced a strong seasonal cycle in P-ET
correlations, as shown in observations, while water-
limited models showed little variation in P-ET cor-
relations throughout the year (supplementary figure
9). Energy-limited models showed a clear pattern of
behaviour with varying water availability, simulating
negative P-ET correlations in months where mean
Amazon P exceeded 200 mm month−1 (November–
April) and positive P-ET correlations in the driest
part of the year (July–September). Meanwhile, water-
limited models simulated positive P-ET correlations
in all months, including months where simulated
Amazon P was greater than 200 mm month−1

(December–March). These results, together with
the results presented in figure 2, demonstrate that
although differences in background P may explain
some of the differences between energy and water-
limited models, there also appears to be a more fun-
damental difference in model behaviour between the
two groups in their ability to respond to changing
background conditions. Since controls on ET may
evolve with changing climate, capturing a switch in
ET controls with changing P has implications for
future projections.

3.3. Tracing relationships along the full
hydrological pathway
To better understand the physical processes causing
differences in behaviour among climate models, we
evaluated relationships along the full hydrological
pathway (figure 3). Both groups of models gener-
ally captured relationships between variables in the
two branches of figure 1(a), with the exception of
correlations between RDN and ET, and between SM
and ET. Water-limited models tended to underes-
timate and overestimate RDN-ET and SM-ET rela-
tionship strengths respectively, relative to those seen
in observations and energy-limited models (figure 3,
supplementary figures 10 and 11). We found SM-ET
correlations in the two model populations showed
divergent responses to increasing annual P that
were comparable to the responses of P-ET rela-
tionships, while RDN-ET correlations showed more
similar behaviour (figure 2, supplementary figure
12). This result suggests that models differ in their
ability to represent realistic P-ET correlations over
the Amazon due to differences in processes related
to the soil-plant-atmosphere moisture-transport
pathway, highlighting an area for future model
development.
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Figure 3. Assessing model representation of key processes in the land-atmosphere hydrological pathway. Box plots showing
significant (p < 0.05) relationships between variables in the hydrological cycle for all grid cells over the Amazon in observations
(grey), and models that simulate negative (blue) and positive (red) P-ET relationships. Variable abbreviations are as follows:
P= precipitation, ET= evapotranspiration, CLD= total cloud cover, SM= soil moisture and RDN= surface downwelling
shortwave radiation. Observed P was from TRMM and data for all other variables came from the observational products listed in
table 1. Box plots show the quartiles (box), mean (×marker) and upper and lower extremes (whiskers) of correlation coefficients
calculated at the grid cell level over the whole Amazon (boundary lines indicated in figure 1). Correlations were calculated using
11 years of monthly anomalies (observed P-CLD and RDN-CLD correlations were calculated using data from 1999 to 2009, other
observed correlations were calculated using data from 2003 to 2013, and model correlations were calculated using data from 1994
to 2004). Grey diamonds indicate outliers.

Figure 4. Amazon P projections in CMIP5 models. (a) Annual Amazon P anomalies (∆P, relative to 1980–1999) simulated by 38
CMIP5 models (thin dashed lines) under the RCP8.5 scenario. Thick lines show ensemble-mean changes for all (black),
water-limited (red) and energy-limited (blue) models. Time series were smoothed with an 11 year moving average following
(Boisier et al 2015). Box plots show the quartiles (box), mean (×marker) and upper and lower extremes (whiskers) for 20 years at
the end of the century (2080–2099). (b)–(d) Relationships between end-of-century (2080–2099) P change (∆P) and
end-of-century ET change (∆ET) for Amazon grid cells in all CMIP5 models (b), energy-limited models (c) and water-limited
models (d). (e)–(g) Relationships between the end-of-century change in surface shortwave radiation (∆RDN) and the difference
between the actual ET change and the ET change predicted for a given∆P, given the regression relationship shown in panel (b)
(∆ETactual −∆ETpredicted = δET).

3.4. Constraining future Amazon P projections
By identifying models that were able to correctly
reproduce key land–atmosphere interactions in the
historical period, we could constrain future pro-
jections of Amazon P. Models that correctly cap-
tured an energy limitation on Amazon ET showed a
highly constrained future P response when compared
to water-limited models (figure 4(a)). The standard
deviation in end-of-century∆P values was halved in

energy-limited models (σ = 4.35 vs 9.25%, repres-
enting a 53% difference), and smaller than expec-
ted by chance (estimated through repeated random
selection of 13 models from the pool of 38 mod-
els, supplementary figure 13). Removal of the water-
limited model with the most negative ∆P response
(CanEMS2), caused only a slight reduction to the
difference in spread between the two model groups
(σ = 4.35 vs 7.01%, representing a 38% difference),
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suggesting our results are relatively robust. Thewater-
limited models showed lower coherence in P trends,
tending to predict more extreme changes, both pos-
itive and negative, in Amazon P than energy-limited
models (figure 4(a)). This difference in behaviour can
be understood by considering the sign of relation-
ships between P and ET in the two model groups
(figure 1(a)).Water-limitedmodels showed a positive
correlation between monthly anomalies of P and ET,
so any increase (or decrease) in P is likely to be further
enhanced, making simulation of extreme changes
more likely. On the other hand, energy-limited mod-
els had a negative correlation between P and ET, such
that Amazon climate will tend to show a buffered
response to change. We tested whether this mechan-
ism operated on climate-change timescales through
examining climate anomalies at the end of century
(∆P, ∆ET and ∆RDN). ∆ET was strongly posit-
ively related to ∆P across all models (figures 4(b)–
(d)), showing the net response of the coupled land-
atmosphere system across energy-limited and water-
limited models is to simulate increasing ET with
increasing P under climate change (and vice versa).
However, the greater correlation (r = 0.74 vs 0.61)
and steeper slope (0.53 vs 0.47) in models where
ET is water-limited is indicative of a greater role
of ∆P in determining ∆ET in the climate change
response of these models. More significantly, the dif-
ference between the actual simulated∆ET change per
Amazon grid cell and the change predicted from grid-
cell level ∆P using the all-model regression relation-
ship (∆ETactual − ∆ETpredicted = δET) was shown
to be almost twice as strongly influenced by ∆RDN
in models that captured an energy limitation on
Amazon ET over the historical period, comparedwith
those that simulated a water limitation (slope= 0.051
vs 0.029 mm d−1/W m−2), with much greater cor-
relation between ∆RDN and δET in energy-limited
models (r = 0.46 vs 0.19; figures 4(f) and (g)). Thus,
∆RDN modulates the climate-change response in
energy-limited models such that for a given value of
∆P, energy-limited (water-limited) models will show
a smaller (larger) ∆ET response, thus dampening
(amplifying) the P anomaly.

We examined whether variation in model set-up
might contribute to the observed differences in P pro-
jections between the two model populations (sup-
plementary table 1). Dynamic vegetation (simulation
of changes in vegetation types in response to cli-
mate) was more common among water-limitedmod-
els than energy-limitedmodels (55 vs 23%, p= 0.070,
chi-squared statistic), consistent with a recent study
showing dynamic global vegetation models gener-
ally struggle to capture radiation controls on pro-
ductivity in tropical regions (O’Sullivan et al 2020).
However, inclusion of dynamic vegetation had no
clear influence on the direction or magnitude of ∆P

(supplementary figure 14), and therefore did not
contribute to the observed differences between water-
limited and energy-limited CMIP5 models. We also
compared model inclusion of the CO2 physiological
effect, where plants reduce their stomatal conduct-
ance in response to increased atmospheric CO2, but
the frequency of this feature among the two model
groups was similar (76 vs 65% of water-limited mod-
els, p= 0.21). Likewise, there was no difference in the
proportion of energy-limited andwater-limitedmod-
els that included future land-use-change forcing (76
vs 70%, p = 0.66). Only four CMIP5 models sim-
ulated a nitrogen limitation on photosynthesis and
these were all energy-limited models (supplement-
ary table 2). However, given the small number of
models including this process (albeit a third of all
energy-limited models), we hesitate to draw definite
conclusions about the role of nitrogen limitation in
influencing ET controls.

Spatial patterns in ∆P were more distinctive in
energy-limited models, which simulated annual dry-
ing of up to 26% (∆Pabsolute = –1.3 mm d−1) over
the eastern Amazon, and wetting in the west (<23%,
1.8 mm d−1, figure 5(a)), with at least 75% agree-
ment among models in the direction of change (sup-
plementary figure 15). ∆ET maps showed a similar
dipole response (supplementary figure 16). Mean-
while, P changes in water-limited models were com-
parably weaker and more uncertain (drying <13%,
wetting <16%, figure 5(b), supplementary figure 15).

Analysis of seasonal ∆P changes provided fur-
ther evidence for a difference in climate-buffering
capability betweenmodel populations.Water-limited
models, which showed higher and less realistic sea-
sonal P variability over the historical period, simu-
lated stronger increases in seasonality over the next
century than energy-limited models (figure 5(c)).
However, though smaller in magnitude, the increase
in P seasonality was actually more robust in energy-
limited models, due to the smaller spread in pro-
jections (figure 5(d)). Basin-mean P reductions in
energy-limited models were concentrated in the dry
season (July–September) and the start of the wet sea-
son (October–December), with marginal P increases
at other times of the year (supplementary figure
17). The dry season response was particularly strik-
ing, with energy-limited models unanimously show-
ing a drying by the end of the century (basin-mean
∆P ± σ = −14.3 ± 6.5 vs −14.9 ± 26.8% in
water-limited models; supplementary figure 17), and
P reductions of up to 50% over some areas of the east-
ernAmazon (supplementary figure 18).Overall, these
results show that discounting models with unrealistic
land–atmosphere interactions revealed more robust
future P changes over the Amazon than projected by
the full model ensemble, thus substantially reducing
uncertainty in future Amazon P.
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Figure 5. End-of-century P changes in CMIP5 models. Maps show annual P anomalies (∆P) in energy-limited (a) and
water-limited (b) models, calculated as the difference between the 2080–2099 mean and the 1980–1999 mean and expressed as a
percentage of historical P (1980–1999). Stippling indicates where there is at least 66% agreement in the∆P direction among
models. Black lines indicate the boundary of the Amazon basin. (c) Standard deviation (σ) of the climatological seasonal cycle in
Amazon-mean P (σPseasonal) over historical (1980–1999) and future (2080–2099) time periods in energy-limited (blue boxes) and
water-limited (red boxes) CMIP5 models. Values are expressed as a percentage of annual P. Box plots show the quartiles (box),
mean (×marker) and upper and lower extremes (whiskers). σPseasonal of historical P from CRU (black circle) and GPCC (black
triangle) are also indicated. (d) End-of-century change in σPseasonal (∆σPseasonal), calculated as future σPseasonal minus historical
σPseasonal, in the two groups of CMIP5 models. Error bars indicate the standard deviation among models in each group.

Figure 6. Evolution of Amazon P-ET correlations. Correlations between monthly anomalies of P and ET calculated over the
historical period of 1980–1999 (a) and (b) and the future period of 2080–2099 (c) and (d) in energy-limited (a) and (c) and
water-limited (b) and (d) CMIP5 models. Black lines indicate the boundary of the Amazon basin. Stippling indicates where there
is at least 66% agreement in the direction of the correlation among models. Panel (e) shows the decadal change in Amazon mean
P-ET correlation coefficient for water-limited (red) and energy-limited (blue) models. Shading represents the standard deviation
from the mean.

3.5. Evolution of land–atmosphere interactions
Energy-limited models, in which controls on ET
showed realistic sensitivity to spatial and temporal
variation in P (figure 2, supplementary figure 9),
showed a shift in land–atmosphere interactions in
response to future changes in climate (figure 6).
Amazon ET becomes increasingly water-limited by
the end of the century, which will reduce the buf-
fering capacity of the climate system. In contrast,
water-limited models showed no change in P-ET cor-
relations, consistent with their limited responsive-
ness to changing background conditions over the
historical period (figure 2, supplementary figure 9).
The dynamic behaviour displayed by energy-limited
models in response to changing water availability
illustrates why process-based model evaluation is

fundamental to assessments of model performance
and highlights the fact that, despite the stabilising
mechanism of an inverse P-ET relationship, the
Amazon hydrological cycle remains vulnerable to the
impacts of climate change.

4. Discussion

Doubts over the direction of Amazon P projections
(Christensen et al 2013, Chadwick et al 2016) have
made it difficult for policymakers to plan climate-
change mitigation and adaptation strategies. Focus-
sing on model representation of land–atmosphere
interactions, a known source of uncertainty over
South America (Levine et al 2016), we found that
models able to reproduce controls on Amazon ET
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projected a narrower range of basin-wide P changes
by 2100, due to the modulating influence of land–
atmosphere interactions on the future P response
to climate change. Our analysis halved the uncer-
tainty in end-of-century P projections, while simul-
taneously revealing a robust drying signal over the
eastern Amazon, and wetting in the west. Previous
studies have observed a dipole in CMIP5 P projec-
tions over South America (Duffy et al 2015, Skinner
et al 2017). It is understood that a reduction in ET
in the eastern Amazon causes a warming, drying and
deepening of the boundary layer, suppression of con-
vection in the east, and a greater westward trans-
fer of water vapour, which rains out over the Andes
and far-western Amazon (Langenbrunner et al 2019).
Our findings are consistent with this mechanism, and
provide additional understanding by offering more
certainty on the direction of change.

Earlier efforts using different performance met-
rics to determine if the Amazon will become wetter
or drier also found drying concentrated over the east-
ern Amazon in constrained projections (Boisier et al
2015, Chen et al 2018). Furthermore, eight out of
ten models identified as having good representation
of Atlantic SSTs, which impact Amazon P through
location of the intertropical convergence zone (Chen
et al 2018), overlap with models that captured the
correct controls on Amazon ET in this study. This
demonstrates that a subset of CMIP5models are con-
sistently performing well over the Amazon, through
accurate representation of different physical processes
operating at different spatial scales. This provides fur-
ther evidence that a ‘model democracy’ approach,
whereby information from all models is combined
without discrimination, may not always be the most
useful (Eyring et al 2019).

Previously identified as a potential ‘tipping ele-
ment’ in the Earth’s climate system (Lenton et al
2008), the fate of the Amazon rainforest has global
importance. Of particular interest is whether the
Amazon will see a widespread ‘dieback’, as suggested
by an early study (Cox et al 2004). Although the likeli-
hood of such an extreme scenario unfolding has been
questioned (Malhi et al 2009, Rammig et al 2010),
increases in dry season severity could still threaten
the stability of the Amazon forest (Zemp et al 2017).
We found that while the most extreme increases and
decreases in basin-meanAmazon Pwere frommodels
that simulated unrealistic hydrological relationships,
projections from plausible models showed a robust
increase in Amazon P seasonality, with P reductions
in the dry season and start of the wet season. Increases
in the severity and length of the Amazon dry sea-
son since the 1970s have already been observed (Fu
et al 2013, Arias et al 2015, Debortoli et al 2015),
possibly related to changes in land cover (Costa and
Pires 2010, Alves et al 2017). Projected dry season P
reductions in realistic models were comparable to the
P anomalies observed during recent major Amazon

droughts (i.e. <50%,Marengo et al 2008, Coelho et al
2012, Marengo and Espinoza 2016), with profound
implications for forest dynamics and the terrestrial
carbon balance (Gatti et al 2014, Feldpausch et al
2016). Future declines in P are also expected to impact
the Amazon ecosystem, which has already seen a shift
in species composition towards those better adapted
to survive drought (Esquivel-Muelbert et al 2019).

5. Conclusion

Our analysis found that half of all CMIP5 mod-
els misrepresent controls on Amazon ET, and show
little change in evaporative regime with changing
water availability. These models simulated both large
increases and decreases in Amazon P by 2100, likely
enhanced by unrealistic positive land–atmosphere
interactions. In contrast, models showing realistic
hydrological behaviour over the historical period
showed amore constrained future rainfall response at
the basin scale, robust drying in the eastern Amazon
and in the dry season, and wetting in the western
Amazon, with more than 75% of models agreeing on
the direction of these changes. Future work should
extend this analysis to other tropical regions, which
tend to be less well studied than Amazonia. Alto-
gether, the results presented in this study substan-
tially reduce uncertainty in Amazon P projections,
and highlight the vulnerability of the Amazon under
an extreme warming scenario.

Data availability

The data that support the findings of this study are
openly available in the following repositories:

• CMIP5 model output: http://data.ceda.acuk/badc/
cmip5/data/cmip5/output1

• TRMM P: https://disc2.gesdisc.eosdis.nasa.gov/
data/TRMM_L3/TRMM_3B43.7/

• MODIS ET: https://search.earthdata.nasa.gov/
search/granules?p=C1000000524-LPDAAC_ECS&
tl=1554219774!4!!&q=mo
dis%20mod16&ok=modis%20mod16&ac=true

• GLEAM ET: www.gleam.eu/#downloads
• P-LSH ET: http://files.ntsg.umt.edu/data/
ET_global_monthly/Global_8kmResolution/

• ERA5 ET and SM: https://climate.copernicus.eu/
climate-reanalysis

• WECANN ET: https://avdc.gsfc.nasa.gov/pub/
data/project/WECANN/

• FLUXCOM_RS and FLUXCOM_RS_METEO ET:
www.bgc-jena.mpg.de/geodb/projects/Data.php

• CLARA-A1 CLD and RDN: https://wui.cmsaf.eu/
safira/action/viewDoiDetails?acronym=CLARA_
AVHRR_V001

• The data that support the findings of this study are
openly available at the following URL/DOI: https:/
/esgf-data.dkrz.de/projects/esgf-dkrz/.
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