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ABSTRACT13

This paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D

contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed

framework consists of point set registration, point correspondence determination, and parametric full-

shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail

in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically)

calculated probability values. These probability values represent the likelihood that, in the absence of

a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the

observed one. This proposed framework nevertheless possesses a number of limitations, including

sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be

substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary

for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets

using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate

how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis

of 3D shapes is discussed.
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INTRODUCTION28

The statistical analysis of shape variation is relevant to a wide variety of academic fields including:29

evolutionary biology (Mitteroecker and Gunz, 2009), biomechanics (Pedoia et al., 2017), computer vision30

(Murphy-Chutorian and Trivedi, 2008), and many others (Da Costa and Cesar, 2000; Rohlf and Marcus,31

1993; Adams et al., 2004, 2013). A key methodological framework for the statistical analysis of shape to32

have emerged in the literature is Geometric Morphometrics (Corti, 1993; Bookstein, 1996; Slice, 2007;33

Zelditch et al., 2012). Geometric Morphometrics consists of a variety of statistical techniques, ranging34

from classical hypothesis testing (e.g. Goodall, 1991) and classical dimensionality reduction techniques35

like principal component analysis (Adams et al., 2004) to machine learning techniques like unsupervised36

clustering (Renaud et al., 2005). This paper is concerned primarily with classical hypothesis testing as it37

pertains to shape analysis.38

A common geometric morphometric approach to classical hypothesis testing regarding group differ-39

ences (depicted in Fig.1a), consists of: (1) landmark definition, (2) spatial registration, and (3) Procrustes40

ANOVA (Goodall, 1991). Landmark definition refers to the manual identification and digitizing (i.e.,41

XYZ coordinate specification) of homologous points on multiple objects, for example the corners on42

polyhedra. Spatial registration refers to the optimal, non-shearing affine alignment of a set of landmarks;43

that is, the optimal translation, rotation and scaling of each set of landmarks is calculated so that the44



the landmarks are optimally aligned in space. Procrustes ANOVA is effectively equivalent to classical45

ANOVA, where Procrustes distance is the dependent variable (Zelditch et al., 2012).46

Landmarks with evolutionary, developmental or functional homology are essential for accurate47

interpretation of results (Hallgrimsson et al., 2015), especially for biological studies which seek to48

understand morphological variation in the context of evolution (e.g. Stayton, 2005; Morgan, 2009;49

Casanovas-Vilar and Van Dam, 2013; Dumont et al., 2016; Page and Cooper, 2017), ontogeny (e.g50

Klingenberg and McIntyre, 1998; Mitteroecker et al., 2004; Singleton, 2015) or function (e.g. Terhune51

et al., 2015; Toro-Ibacache et al., 2016). A key practical advantage of landmark approaches is that52

they impose problem tractability; they convert abstract, usually high-dimensional shape representations53

including images, scans and line contours, to a relatively small set of numeric coordinates which can be54

assembled into readily processable data formats like text files and spreadsheets. This practical advantage55

is reinforced by well-established statistical theory (e.g. Gower, 1975; Kendall, 1977, 1984, 1985; Kent,56

1994; Rohlf, 1999) which describes a comprehensive solution for dealing with shape data’s inherent57

dimensionality problem (Rohlf, 2000b,a; Collyer et al., 2015).58

A common approach to landmark-based hypothesis testing is Procrustes ANOVA. While landmark59

data themselves are multivariate (i.e., multiple landmarks, each with multiple coordinates are used to60

describe a single shape), Procrustes ANOVA uses a univariate metric (Procrustes distance) to test shape-61

relevant hypotheses. One problem with this approach is that a single value is likely inadequate to fully62

characterize shape effects. Many other shape descriptors exist (Kurnianggoro et al., 2018), including both63

univariate metrics like eccentricity and multivariate metrics like geometric moments (Zhang and Lu, 2004).64

It has been argued that focus on relatively low dimensional shape metrics like these is necessary in order65

to achieve suitable statistical power, with the assumption that too many variables relative to the number of66

phenotypes can preclude hypothesis testing via parametric methods, especially for small samples (Collyer67

et al., 2015); one aim of this paper is to challenge that assertion, and to show that hypothesis testing is68

indeed possible for even high-dimensional representations of shape, and with suitably high statistical69

power for even relatively small sample sizes.70

A related sample size-relevant theoretical limitation of Procrustes ANOVA is that there is no known71

parametric solution to the underlying Procrustes distance probability distributions. Consequently, sta-72

tistical inference is conducted nonparametrically, often using bootstrapping or permutation techniques73

(Zelditch et al., 2012, pp.248-259). These nonparametric procedures are inherently poor for small sample74

sizes (Anderson and Braak, 2003; Brombin and Salmaso, 2009) because the probability distributions are75

constructed empirically and numerically, using the actual data, and both the precision and accuracy of76

these nonparametrically constructed distributions can decrease substantially with small sample sizes.77

A variety of landmark-free or landmark-minimal methods also exist, including for example techniques78

that fit mathematical curves to shape outlines (Rohlf, 1990). One technique that has been particularly79

widely used is elliptical Fourier analysis (Claude, 2013; Bonhomme et al., 2014), which considers the80

spatial relations amongst neighboring points, and characterizes the spatial frequencies along the contour81

perimeter as a change-relevant representation of shape. Elliptical Fourier analysis has been frequently82

employed to analyse structures on which few homologous landmarks can be identified such as fins, jaws83

and teeth (e.g. Fu et al., 2016; Hill et al., 2018; Cullen and Marshall, 2019). These methods are highly84

relevant to the methods described in this paper, in that they deal with original, high-dimensional shape85

data like 2D contours and 3D surface scans.86

While landmark-free or landmark-minimal methods initially operate on original high-dimensional87

shape data, they tend to use much lower-dimensional representations of shape when conducting classical88

hypothesis testing. For example, elliptical Fourier analysis tends to conduct hypothesis testing using89

a relatively small number (fewer than ten) harmonic coefficients (Bonhomme et al., 2014). Common90

landmark and landmark-free methods are thus similar from from a hypothesis testing perspective in that91

the hypothesis tests ultimately pertain to relatively low-dimensional shape metrics.92

This main aim of this paper was to show that classical hypothesis testing is possible on original, high-93

dimensional shape data, and in particular on continuous surfaces, without the need for low-dimensional94

shape representations, and with suitably high power even for analyses of relatively small samples. The95

methodology, which we refer to as ‘continuous, mass-multivariate analysis’ consists of a number of96

previously described techniques including: (1) point set registration, (2) correspondence, and (3) mass-97

multivariate hypothesis testing. This combination of techniques allows one to conduct landmark-free98

hypothesis testing on original surface shapes. For interpretive convenience we limit focus to 2D contours99
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(Bookstein, 1997; Carlier et al., 2016), but in the Discussion describe how the proposed methodology can100

be applied to 3D surfaces.101
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Figure 1. Overview of 2D contour data processing approaches employed in this paper. (a) The most

common analysis approach, consisting of Generalized Procrustes Analysis (GPA) and Procrustes ANOVA

for landmarks. (b) Same as (a), but using mass-multivariate (MV) analysis instead of Procrustes

ANOVA’s univariate (UV) approach. (c) and (d) are conceptually equivalent to (a) and (b), respectively,

but operate on full contour data instead of landmark data, and can also be fully algorithmic. Statistical

Parametric Mapping (SPM) is a methodology for mass-MV analysis of continuous data. See text for more

details.
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METHODS102

Analyses were conducted in Python 3.6.10 (van Rossum, 2019) using Anaconda 3.6.10 (Anaconda,103

2020) and in R 3.6.2 (R Core Team, 2019) . Data processing scripts are available along with all original104

and processed data in this project’s public repository at: https://github.com/0todd0000/105

lmfree2d.106

Datasets107

Nine datasets were analyzed (Fig.2). All datasets were taken from the the open-source 2D Shape Struc-108

ture database (Carlier et al., 2016) (http://2dshapesstructure.github.io). The database109

consists of 70 different shape classes. Inclusion criteria for shape class were: (i) qualitatively similar110

geometry in at least 10 shapes (Fig.3), and (ii) at least four readily identifiable landmarks for all contour111

shapes.112

Each dataset consisted of 20 contour shapes, where a ‘dataset’ represents a shape class (e.g., ‘Bell’ or113

‘Face’) and individual shapes represent morphological variation within that shape class. We manually114

selected ten shapes from each dataset in a pseudo-random manner in order to span a range of effect115

sizes; in the Results, note that p values span a wide range (p < 0.001 to p > 0.9). We selected just116

ten shapes primarily because it has been suggested that parametric procedures are unsuitable for the117

morphological analyses of small samples (Collyer et al., 2015), and we wished to demonstrate that the118

proposed parametric technique is indeed sufficiently powerful for small-sample analyses. Secondary119

reasons for considering just 10 shapes included: (1) qualitatively different within-class geometry, implying120

that statistical comparisons would be dubious if all 20 shapes were used, (2) inconsistent curvature121

characteristics (e.g., some with sharp corners, others with no discernible corners), implying landmarking122

difficulties, and (3) untrue contour data (e.g., internal loops and thus non-convex polygons) implying that123

contour parameterization was not possible for all shapes.124

Two-sample tests were conducted on each dataset using the four approaches as described below. For125

replicability, the final set of ten shapes selected for analysis from each class are redistributed in this126

project’s repository at: https://github.com/0todd0000/lmfree2d. Note that the ultimately127

selected contours had a variable number of contour points within each dataset (Table 1).128

Table 1. Dataset count summary. Point counts refer to the original data from Carlier et al. (2016).

Name Shapes Points Landmarks

Min Median Max

Bell 10 101 104 185 8

Comma 10 101 104 108 4

Device8 10 101 104 107 8

Face 10 103 104 106 4

Flatfish 10 100 102 112 5

Hammer 10 102 105 119 7

Heart 10 102 105 109 4

Horseshoe 10 106 109 128 6

Key 10 103 106 115 5

Data processing129

The 2D contour shape data were analyzed using four related approaches, consisting of the four combina-130

tions of (i) landmarks vs. contours, and (ii) univariate (UV) vs. mass-multivariate (mass-MV). These four131

approaches are summarized in Fig.1. The Landmarks-UV approach (Fig.1a) is common in the literature,132

none of the other approaches is common. The primary purpose of this study was to compare and contrast133

the Landmarks-UV and Contours-MassMV approaches (Fig.1a,d). We also employed intermediary134

approaches (Fig.1b,c) to more clearly highlight the differences between the two main approaches.135

Landmarks univariate (UV) analysis136

Landmarks were defined for each dataset as depicted in Fig.2. Both the number of landmarks (Table137

1) and their locations were selected in an ad hoc manner, with the qualitative requirement of readily138
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Figure 2. Overview of analyzed datasets. All contour data are available in the 2D Shape Structure

Dataset (Carlier et al., 2016). For each dataset in this figure, one representative shape is highlighted,

along with its numbered landmarks. Note that shape variance ranges from relatively small (e.g. Bell,

Face) to relatively large (e.g. Device8, Heart).

(a)  Cup (b)  Octopus

Figure 3. Shape class exclusion examples. Shape classes were excluded if they contained shapes with

qualitatively different contour geometry. For example: (a) the ‘cup’ class was excluded because some

shapes had unattached handles with holes and others had attached handles without holes. (b) The

‘octopus’ class was excluded because the eight appendages appeared in non-homologous locations.

identifiable, homologous locations. The ultimately selected landmarks arguably span a representative139

range of landmarking possibilities.140

One operator used a mouse to manually digitize the landmarks for each of the 90 shapes (10 shapes141

for each of 9 datasets). The operator was ignorant of the final shape groupings for the ultimate two-sample142

tests (see below), implying that the landmarking was performed without grouping bias.143

The landmarks were spatially registered using Generalized Procrustes Analysis (GPA) (Gower, 1975),144

and the resulting registered landmarks were analyzed in a univariate manner, using Procrustes ANOVA145
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(Goodall, 1991) — a method which considers the variance in the Procrustes distance across a dataset.146

Note that the Procrustes distance is a scalar quantity that summarizes shape difference, and thus that this147

method is univariate. GPA and Procrustes ANOVA were both conducted using the geomorph package for148

R (Adams and Otárola-Castillo, 2013).149

Landmarks mass-multivariate (mass-MV) analysis150

This approach was identical to the Landmarks-UV approach described above, except for statistical analysis.151

The two-sample Hotelling’s T 2 statistic was calculated for each landmark according to its definition:152

T 2
i =

n1n2

n1 +n2

(

r1i − r2i

)⊤
W−1

i

(

r1i − r2i

)

(1)

where i indexes landmarks, the subscripts “1” and “2” index the two groups, n is sample size, ri is the153

mean position vector of landmark i, and W i is the pooled covariance matrix for landmark i:154

Wi =
1

n1 +n2 −2

(

n1

∑
j=1

(r1i j − r1i)(r1i j − r1i)
⊤+

n2

∑
j=1

(r2i j − r2i)(r2i j − r2i)
⊤

)

(2)

where the i index is dropped for convenience in Eqn.2.155

Statistical inference was conducted in a mass-multivariate manner, using Statistical Parametric156

Mapping (SPM) (Friston et al., 2007). SPM bases statistical inferences on the distribution of the maximum157

T 2 value
(

T 2
max

)

, which can be roughly interpreted as the largest landmark effect, and which is defined as:158

T 2
max ≡ max

i∈L
T 2

i (3)

where L is the number of landmarks.159

SPM provides a parametric solution to the distribution of T 2
max under the null hypothesis, so significance160

can be assessed by determining where in this distribution the observed T 2
max lies. Classical hypothesis161

testing involves the calculation of a critical threshold (T 2)critical , defined as the (1−α)th percentile of this162

distribution, and all landmarks whose T 2 values exceed (T 2)critical are deemed significant at a Type I error163

rate of α . This is a correction for multiple comparisons (i.e., across multiple landmarks) that is ‘mass-164

multivariate’ in the following sense: ‘mass’ refers to a family of tests, in this case a family of landmarks,165

and ‘multivariate’ refers to a multivariate dependent variable, in this case is a two-component position166

vector. This is similar to traditional corrections for multiple comparisons like Bonferroni corrections,167

with one key exception: rather than using the total number of landmarks L as the basis for the multiple168

comparisons correction, as the Bonferroni correction does, SPM instead solves the mass-MV problem169

by assessing the correlation amongst neighboring landmarks or semilandmarks, and using the estimated170

correlation to provide a less severe correction than the Bonferroni correction, unless there is no correlation,171

in which case the SPM and Bonferroni corrections are equivalent.172

Contours univariate (UV) analysis173

Similar to the Landmarks UV approach, this approach ultimately conducted Procrustes ANOVA, but174

did so on contour data rather than landmark data. This was achieved through two main processing175

steps: coherent point drift (CPD) point set registration (Fig.4) and optimum roll correspondence (Fig.5).176

Coherent point drift (CPD) (Myronenko and Song, 2010) is a point set registration algorithm that spatially177

aligns to sets of points that belong to the same or a similar object. Neither an equal number of points nor178

homologous points are required (Fig.4), making this approach useful for contours that have an arbitrary179

number of points.180

Since contour points from arbitrary datasets may generally be unordered (Fig.5a), we started our181

analyses by randomly ordering all contour points, then applying CPD to the unordered points. We182

acknowledge that many 2D contour datasets consist of ordered points — including those in the database183

used for this study (Carlier et al., 2016) — but since 3D surface points are much more likely to be184

unordered, we regard unordered point support as necessary for showing that the proposed method is185

generalizable to 3D analyses. Following CPD, we re-ordered the points using parametric surface modeling186
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(Bingol and Krishnamurthy, 2019), which fits a curved line to the contour, and parameterizes the contour187

using position u, where u ranges from zero to one (Fig.6). This contour parameterization results in a188

continuous representation of the contour, from which an arbitrary number of ordered points (Fig.5b) can189

be used to discretize the contour of each shape for subsequent analysis. We used NURBS parameterization190

with B-spline interpolation (Bingol and Krishnamurthy, 2019) to calculate specific contour point locations.191

We then applied an optimum roll transformation, which found the value of u for one contour that minimized192

the deformation energy across the two contours (Fig.5c,d).193

We repeated contour parameterization, ordering, and optimum roll correspondence across all contour194

shapes, using the shape with the maximum number of contour points in each dataset as the template shape195

to which the nine other shapes were registered. Note that this registration procedure is unrelated to the196

traditional landmark analyses described in ‘Landmark UV analysis’ above, for which an equal number of197

points is a requirement of registration and analysis. The correspondence analysis step resulted in an equal198

number of contour points, upon which we conducted Procrustes ANOVA.199

Contours mass-multivariate (mass-MV) analysis200

This approach was identical to the Contours-UV approach, with the exception of statistical analysis, which201

we conducted using SPM as outlined above. Unlike the landmark data above, which are generally spatially202

disparate, contour points are spatially proximal, and neighboring points tend to displace in a correlated203

manner. For example, if one contour point in a specific shape lies above the mean point location, its204

immediate neighbors also tend to lie above the mean location). SPM leverages this correlation to reduce205

the severity of the multiple comparisons correction, and SPM solutions converge to a common (T 2)critical206

regardless of the number of contour points, provided the number of contour points is sufficiently large207

to embody the spatial frequencies of empirical interest, as outlined in classical signal processing theory208

(Nyquist, 1928).209

As SPM uses parametric inference to calculate the critical T 2 threshold, and Procrustes ANOVA uses210

nonparametric inference, we also conduct Contours Mass-MV analysis using statistical non-parametric211

mapping (Nichols and Holmes, 2002), which uses permutation to numerically build the T 2
max distribution212

under the null hypothesis. This permutation approach converges to the parametric solution when the213

residuals are normally distributed (i.e., point location variance follows an approximately bivariate Gaussian214

distribution). All SPM analyses were conducted in spm1d (Pataky, 2012); note that one-dimensional215

SPM is sufficient because the contour domain (U) is one-dimensional (Fig.6).216

(a)  Original

nPoints = 50

nPoints = 40

(b)  CPD-registered

Figure 4. Example point set registration using the coherent point drift (CPD) algorithm (Myronenko and

Song, 2010). Note that CPD requires neither corresponding points, nor an equal number of points.
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(a)
Contour Points A

Contour Points B

Initial Point A

Initial Point B

Correspondence Line

Original

(b)

Ordered

(c)

Rolled

(d)

Optimum Roll

Figure 5. Example optimum roll correspondence. (a) Original data, consisting of an equal number of

contour points, arranged in a random order. (b) Ordered points; clockwise along the contour. (c) Rolled

points; moving the initial point of contour B brings the shapes into better correspondence. (d) Optimally

rolled points; the total deformation energy across all points (i.e. the sum-of-squared correspondence line

lengths) is minimum.

Figure 6. Example parametric representations of 2D contour shape. Dots represent manually defined

landmarks, and are shown as visual references. Left panel (XY plane): the spatial plane in which shape

data are conventionally presented. The three colors represent different shapes. Bottom panel (UX plane)

and right panel (UY plane): abstract planes in which U represents the parametric position (from 0 to 1)

along the contour; positions U=0 and U=1 are equivalent.
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RESULTS217

The four analyses approaches produced a range of p values from very low (p < 0.001) to very high218

(p > 0.9), and even yielded a large range of p values for single datasets (e.g. Heart: 0.016 < p < 0.940)219

(Table 2). Of the nine datasets, only two yielded consistent hypothesis testing conclusions (at α = 0.05)220

across the four analysis approaches: for the Comma dataset all approaches failed to reject the null221

hypothesis, and for the Flatfish dataset all approaches rejected the null hypothesis. The seven other222

datasets showed a range of disagreement on the methods. For example, for the Key dataset neither223

Landmarks approach reached significance, but both Contours approaches did reach significance. For224

the Hammer dataset, three approaches failed to reach significance, but the Contours Mass-MV approach225

produced a very low p value (p < 0.001). The Landmarks approaches executed comparatively rapidly226

( 50 ms) compared to the Contours approaches ( 2 s) (Table 3).227

Since Procrustes ANOVA results are commonly used in the literature, and are summarized for the228

current study in (Table 2), the remainder of the results considers the Mass-MV approaches’ results.229

First, the Landmarks Mass-MV approach indicate a wide range of T 2 statistic values at each landmark230

(Fig,7). For example, Landmark 5 in the Horseshoe dataset (Fig.2) had a very high T 2 value, and all other231

landmarks had comparatively low p values (Fig,7). This suggests that (a) shape differences can be highly232

localized, and that (b) univariate methods that employ an overall shape change metric, like Procrustes233

ANOVA, may not be able to detect these changes, even when the landmarks are identical (Table 2).234

The Contour Mass-MV results showed little qualitative difference between parametric and non-235

parametric inference (Fig.8), with minor exceptions regarding specific locations and spatial extent of236

supra-threshold contour points (e.g. Key, Horseshoe). Since this Contour Mass-MV approach is sensitive237

to point-specific variation, it was generally more sensitive at detecting changes, as shown in the relatively238

high rate of null hypothesis rejection relative to the other approaches (Table 2); that is, even though the239

Contours-UV and Contours Mass-MV approaches consider the same data, the latter reached significance240

more often than the former, implying that it is more sensitive to location-specific effects. Whether this241

sensitivity is a benefit or not is considered in the Discussion.242

Table 2. Statistical results summary, probability values. As nonparametric inference yielded similar p

values (see Results), only parametric p values are reported in this table for brevity.

Name Landmarks Contours

UV Mass-MV UV Mass-MV

Bell 0.130 0.302 0.084 0.041

Comma 0.155 0.294 0.719 0.327

Device8 0.022 0.214 0.433 0.681

Face 0.025 0.103 0.052 0.013

Flatfish 0.023 0.016 0.026 0.001

Hammer 0.708 0.206 0.417 < 0.001

Heart 0.940 0.976 0.544 0.016

Horseshoe 0.084 0.008 0.006 0.001

Key 0.532 0.270 0.013 0.022
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Figure 7. Landmark results from mass-multivariate testing. Landmark-specific T 2 values are presented

along with the critical threshold at α=0.05, and probability values for the overall mass-multivariate test.

Table 3. Execution durations (unit: ms). Averages across the nine datasets. Procrustes ANOVA

(Proc-ANOVA) involved 1000 iterations for each dataset. Average SnPM durations (not shown in this

table) were 344.0 and 6336.0 ms for Landmarks Mass-MV and Contours Mass-MV, respectively.

Category Procedure Landmarks Contours

UV Mass-MV UV Mass-MV

Registration

CPD - - 414.1 414.1

Point Ordering - - 327.9 327.9

Interpolation - - 835.1 835.1

Correspondence - - 40.9 40.9

GPA 6.7 6.7 8.5 -

Hypothesis test
Proc-ANOVA 60.0 - 99.0 -

SPM - 39.3 - 66.8

Total 66.7 46.0 1725.5 1684.8
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Figure 8. Contours mass-multivariate results using Statistical Parametric Mapping (SPM). Results for

both parametric and nonparametric inference are shown. P values represent the probability that random

variation in the Mean A contour would produce a deformation as large as in the observed Mean B, given

the estimated contour variance. Dots on the Mean B contour represent contour points whose T 2 values

exceeded the threshold for significance at α=0.05; if the maximum T 2 value did not reach this threshold,

the p value is greater than α , and no dots are shown.
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DISCUSSION243

Main findings244

This study’s main result is the demonstration that it is possible to conduct fully automated, landmark-free,245

parametric hypothesis testing regarding whole 2D contour shapes, irrespective of the number of points246

and point ordering in the original contour data. These analyses can be executed relatively quickly; the247

current non-optimized implementation required less than 2 s for all analysis steps (Table 3 ). The proposed248

analysis framework (Fig.1d) consists of families of previous techniques including: point set registration249

(e.g. Myronenko and Song, 2010), point correspondence algorithms (e.g. Loy et al., 2000; Myronenko and250

Song, 2010), and mass-multivariate testing (Friston et al., 2007; Taylor and Worsley, 2008; Chung et al.,251

2010), and some of these techniques have been used for classical hypothesis testing regarding shapes252

in the past (Taylor and Worsley, 2008; Chung et al., 2010). A variety of landmark-free techniques have253

also been previously proposed (e.g. Wuhrer et al., 2011; Taylor and Worsley, 2008; Chung et al., 2010)254

Nevertheless, these techniques have not, to our knowledge, been previously combined into a general255

hypothesis testing framework — from raw data to statistical results — as depicted in Fig.1d. The main256

novelty of this paper is thus the demonstration that it is possible to fully automate data processing from257

raw 2D contour data to final hypothesis testing results.258

The second main novelty of this paper is the demonstration that parametric hypothesis testing is259

possible when conducted at the whole-contour level. We stress that ‘possible’ implies neither ‘valid’260

nor ‘appropriate’; demonstrating the validity and appropriateness of the proposed method would require261

substantial empirical efforts over a range of datasets, data modalities, experimental designs, and appli-262

cations, in addition likely to simulation studies, and as such assessing validity and appropriateness are263

beyond the scope of this paper. We also stress that ‘possible’ does not imply that one should use the264

proposed technique in isolation. We believe that the proposed technique offers unique information that is265

complimentary to other techniques, and that ideally the results of multiple analysis techniques should be266

corroborated to build interpretive robustness.267

The proposed analysis framework (Fig.1d) offers various improvements over landmark analysis268

(Fig.1a) including: (1) the modeling flexibility of classical hypothesis testing, (2) increased objectivity269

due to avoidance of subjective landmark definition and selection, (3) increased speed due to avoidance270

of manual work, and (4) unique, implicit morphological meaning in hypothesis testing results. We271

acknowledge that each of these improvements also involve limitations, and we address these limitations272

below. We stress that ‘objectivity’ implies none of ‘accurate’, ‘useful’ or ‘interpretable’. We use ‘objective’273

instead primarily to mean ‘algorithmic’.274

Statistical Parametric Mapping (SPM)275

SPM, like most parametric tests, assumes normality, so in this case SPM assumes that the spatial variability276

of all contour points are distributed in a bivariate Gaussian manner. This distributional assumption could be277

directly tested using distributional tests in a point-by-point manner. In this paper, instead of directly testing278

for distributional adherence, we instead tested the assumption indirectly, by conducting nonparametric tests279

(Fig.8), which do not assume bivariate normality. In this case there were minor quantitative differences280

between the parametric and nonparametric results, but overall the qualitative interpretations were largely281

unaffected by the use of parametric vs. nonparametric analysis. This represents relatively strong (albeit282

indirect) evidence that the parametric approach’s distributional assumptions are appropriate at best, or283

largely inconsequential at worst, for these particular datasets. This however does not imply that parametric284

inference is appropriate for all datasets, so distributional assumptions should generally be tested for all285

datasets, possibly indirectly through nonparametric tests like those conducted in this paper.286

Although this paper considered only two-sample tests, SPM supports all classical hypothesis testing287

procedures, ranging from simple linear regression to MANCOVA (Friston et al., 2007), thereby making288

the proposed framework highly flexible to arbitrary experimental designs. To emphasize this point, and289

how it may be valuable for general shape analysis, we conducted a set of supplementary analyses using290

synthetic data involving simple, circular shapes with controlled morphological effects (Fig.9a,b). The291

controlled effects included a size-dependent signal, which was modeled using a Gaussian contour pulse292

that increased in amplitude with increasing shape size (as defined by the shape’s average radius) (Fig.9a),293

and a group-dependent signal, which was modeled similarly, but which was applied to just one of two294

hypothetical groups (Fig.9b). To isolate and emphasize design flexibility, and to eliminate registration and295

correspondence as potential sources of error, we controlled both by sampling at 101 evenly distributed296
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angular displacements with respect to the horizontal axis. We considered two MANCOVA possibilities:297

analysis of the original, unscaled dataset (Fig.9a), and analysis of the scaled / registered dataset (Fig.9b).298

We applied a single MANCOVA model, which modeled both shape size (i.e., mean shape radius) and299

group, and which thereby afforded consideration of both (1) size effects, with group effects linearly300

removed, and (2) group effects, with size effects linearly removed. Size effects for the original, unscaled301

data naturally showed very large test statistic values at all contour points (Fig.9c). In contrast, size302

effects for the registered data correctly isolated the modeled size-dependent signal (Fig.9d). Group303

effects were practically identical for both the original, unscaled data and the registered data (Fig.9e,f),304

emphasizing the point that MANCOVA can be used to remove size-related effects in lieu of registration.305

More generally, this analysis shows that the proposed framework is highly flexible, and can be used306

with arbitrary continuous and categorical independent variables, provided these variables adhere to the307

requirements of classical linear design modeling. We nevertheless caution readers that the (Fig.9) analyses308

consider close-to-ideal data, for which registration and correspondence are near-perfectly controlled. For309

real dataset analysis, both registration and correspondence generally introduce errors that may or not310

affect the ultimate hypothesis testing results. Results’ sensitivity to data processing algorithms and their311

parameters must be considered in general analyses.312

Comparison with landmarking and other methods313

The proposed methodology partially overcomes limitations of landmark selection, and the corresponding314

susceptibility to bias (Arnqvist and Martensson, 1998; Rohlf, 2003; Fruciano, 2016); shape-to-shape315

landmark identification is often manual and therefore subjective. Algorithmic landmark identification is316

nevertheless possible (Claes et al., 2011; Strait and Kurtek, 2016), and indeed modern machine learning317

techniques have been shown to substantially improve landmark detection, with the promise of eliminating318

landmark-associated subjectivity (Morris, 2003; Young and Maga, 2015; Strait and Kurtek, 2016; Devine319

et al., 2020). Like automated landmarking, the proposed method can be used with little-to-no subjective320

intervention, implying generally more repeatable results. Here ‘objective’ does not necessarily mean321

‘accurate’ or ‘appropriate’; it simply means that results are expected to be more reproducible than the322

results from more subjective methods. Determining the accuracy and appropriateness of all methods,323

including the proposed one, requires substantial empirical effort across a range of data modalities and324

applications.325

We also note that the proposed landmark-free approach is just one end of the spectrum, where manual326

landmark definition is the other, and that a variety of alternative techniques occupy positions between327

these two extremes. For example, semilandmarks (Mitteroecker and Gunz, 2009) provide an objective way328

to fill spatial gaps between landmarks, thereby creating a continuous surface. From the perspective of the329

proposed method, semilandmarks represent the results of piecewise registration over the domain u (Fig.6),330

or equivalently a hybrid registration method consisting of both algorithmic and manual components331

(Ramsay and Li, 1998). As there are a plethora of automated techniques for geometrical matching332

(Holden, 2008), the proposed framework regards these techniques each as objective, substitutable, yet333

each imperfect components, whose assumptions and parameters could ultimately affect the final results.334

From this perspective, a second layer of objectivity could be added to the proposed framework, whereby335

different techniques and/or parameters are iteratively substituted in a sensitivity framework, to objectively336

discern the numerical stability of the final results, as well as the boundaries of that stability (Pataky et al.,337

2014).338

Landmarks and other low-dimensionality representations of shape — including harmonic coefficients339

from elliptic Fourier analysis (Bonhomme et al., 2014) — embody a second important limitation: a poten-340

tially over-simplified representation of shape. In the case of landmarks, a danger of over-simplification341

arises from the Nyquist theorem: under-sampling a continuous process (including the continuous spatial342

surface of an object) can lead to aliasing, whereby the under-sampled measurement can misrepresent the343

true characteristics of the underlying object (Nyquist, 1928), and can even reverse statistical interpreta-344

tions through mechanisms such as regional conflation (Pataky et al., 2008). This latter problem of shape345

simplification can nevertheless be solved by the use of semi-landmarks (Bookstein, 1997; Adams et al.,346

2004) which, as argued above, can be regarded as a specific approach to shape registration, implying that347

semi-landmark approaches could interface easily with the proposed technique.348

An advantage of the proposed method is processing speed. The current, non-optimized analyses349

executed in under 2 s, with statistical inference itself requiring well under 100 ms (Table 3). We350
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Figure 9. Example MANCOVA using synthetic data; for simplicity, data were generated to have (i) a

relatively large signal:noise ratio, and (ii) close-to-perfect correspondence, by sampling at 101 equally

spaced angular distances around the contour. (a) The original contour dataset, consisting of five noisy

circles for each of two groups, with systematically different mean radii, and also with both group- and

size-dependent signal, where ‘size’ was considered to be the mean radius, and where ‘signal’ implies true

morphological difference. Note that the size-dependent signal is more easily perceived in panel (a), and

that the group-dependent signal is more easily perceived in the next panel. (b) Registered contours. (c,d)

Size effects from MANCOVA for the original and registered data; the test statistic is presented as
√

T 2

because a linear T 2 scale would result in imperceivable color differences (i.e., the panel (c) points would

be all white, and the points in the other panels would all be close-to-black). (e,f) Group effects from

MANCOVA for the original and registered data; note that the (e) and (f) results are similar because

MANCOVA accounts for size-related effects in the ‘Original’ data.

acknowledge that other data processing steps, including image segmentation and registration for example,351

can require substantial effort, so we caution readers that the reported execution speeds do not necessarily352

translate to reduced laboratory hours. The primary advantage in our view is instead the promotion of353

sensitivity analysis: since the entire data processing chain can be executed relatively rapidly, it would be354

possible to systematically adjust algorithm parameters, and even swap algorithms, in a sensitivity loop, to355

probe the robustness of particular results.356

14/20



Another advantage of the proposed method is implicit morphological information. The proposed357

method yields results that are rich in morphological detail (Fig.8) which, much like a highlighted358

photograph or x-ray image, can be readily interpreted at a glance. Since SPM operates directly on359

(registered) contours, without reducing the object-of-hypothesis-testing to a single abstract metric (like360

Procrustes ANOVA), or to a small handful of abstract metrics (like elliptical Fourier analysis), SPM361

results embody morphological meaning insofar as contours themselves embody morphological meaning.362

While individual contour points do not necessarily embody meaning, one could argue that the set of all363

contour points collectively embodies substantial morphological meaning. This perspective is analogous to364

a pixel-and-image argument. The color of a single pixel is largely irrelevant to the overall interpretation365

and meaning of an image. Similarly, the test statistic value at a single contour point is itself largely366

irrelevant to the overall morphological interpretation of SPM results; morphological meaning is instead367

encapsulated implicitly in the overall excursion set, where ‘excursion set’ means the set of supra-threshold368

contour points, like those in Fig.8. Regardless of the quality of morphological meaning, SPM results must369

be viewed as just one set of results, which may or may not embody useful morphological information,370

and which should be considered along with other, more explicit morphological methods like Procrustes371

ANOVA and elliptical Fourier analysis.372

Considering last specific results from this paper, a particularly unintuitive set of results was observed373

for the Device8 dataset, for which UV analysis yielded the smallest p value (0.022), and for which no374

other method yielded significance (p > 0.2) (Table 2). This result was likely caused by widespread but375

relatively small-magnitude mean-shape differences (Fig.8c); since the deformation is widespread it would376

be detected by a general deformation metric like Procrustes distance, but since the deformation magnitude377

is relatively small it would not be detected by local contour-point methods like SPM. The interpretation378

is emphasized in the Flatfish dataset, where general deformations were similarly broadly distributed379

across the contour, but maximal local deformations were greater (Fig.8e), which yielded significance in380

all methods (Table 2). Nevertheless, this interpretation appears to be inconsistent with the Horseshoe381

dataset, which exhibited both large and widely distributed deformation (Fig.8h), but which also failed382

to yield significant UV results (Table 2). Nevertheless, this apparent consistency may be resolved by383

considering the large variability in the Horseshoe dataset, particularly at the selected landmarks (Fig.2h).384

To more completely resolve such apparent inconsistencies, and more generally to understand the nature of385

landmark- vs. contour-based methods, it would be necessary to consider individual contour points, their386

deformations, and their covariances.387

Generalization to 3D analysis388

While this paper was limited to 2D analysis, it should be noted that the proposed analysis framework389

(Fig.1d) can be readily extendable to the morphological analysis of 3D surfaces. Similar to the unwrapping390

of 2D contours onto a 1D domain u (Fig.6), 3D surfaces can be unwrapped onto a 2D domain uv Fig.10,391

and methods like SPM (Friston et al., 2007) can be used to conduct domain-level hypothesis testing392

regarding these unwrapped data. This domain-wide testing is possible due to the underlying model of393

domain-level variance, which SPM models as smooth, Gaussian random fields, and which can be extended394

to arbitrarily high-dimensional domains with arbitrary geometry (Adler and Taylor, 2007). For the current395

paper involving 2D shapes, the (flattened) domain is one-dimensional, and the dependent variable is a396

two-component position vector; that is, a two-component position is defined at all locations u along the397

contour. Similarly, for 3D surfaces, the (flattened) domain is two-dimensional and the dependent variable398

is a three-component position vector, where position is defined at all locations uv across the surface. A399

variety of computational tools exist for 3D geometry flattening (e.g. Dale et al., 1999; Sawhney and Crane,400

2017), so 3D implementations of the proposed method could presumably proceed in a fully automated401

manner.402

Limitations403

The proposed mass-multivariate framework (Fig.1d) has a number of limitations. The most severe of404

these is sensitivity to algorithmic specifics. For example, simply by randomly changing the order of the405

points, it is possible to yield qualitatively different results (Fig.11). Systematic, random variations of406

point ordering would be necessary for assessment of the results’ sensitivity, but in our view this would407

be insufficient because ultimate results may also be sensitive to other particulars including, for example,408

specific parameter values used in contour parameterization, registration, and correspondence algorithms.409

In other words, one should regard the results as potentially sensitive to all data processing steps, and not410
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Figure 10. Example 3D surface unwrapping. (a) Original 3D geometry. (b) Unwrapped geometry; this

is a 2D parametric (UV) representation of the original geometry. Colors represent changes in surface

normal direction. The thick black line in panel (a) represents a seam along which the 3D geometry is cut

so that it can be flattened into a 2D shape. Unwrapping was performed here using boundary first

flattening (Sawhney and Crane, 2017).

just to point ordering. The current paragraph considers just one example (point ordering) as a potential411

source of sensitivity concern. In (Fig.11), the qualitative change in results can be attributed to a minor412

shift in point correspondence (Fig.11a-b), which created a small shift in pointwise covariance, but a413

shift that was large enough to alter the hypothesis rejection decision at α = 0.05. That is, point-specific414

covariance is direction dependent, so small changes in point-deformation direction can yield qualitative415

changes in test statistics (Pataky et al., 2014). Nevertheless, we observed this type of sensitivity to random416

point ordering only occasionally, with most randomizations resulting in qualitatively similar results. Also,417

in most cases we noticed that probability results, while variable, were generally stable. The problem418

only emerged qualitatively when that variability spanned α=0.05, as depicted in Fig.11). This problem419

of probability value variability (Halsey et al., 2015) partially reflects a weakness of classical hypothesis420

testing, which has a binary interpretation of continuous probability. We acknowledge that we did not421

systematically conduct sensitivity testing, and also that each stage of processing involves a variety of422

components or parameters that could be subjected to sensitivity analysis. Comprehensive consideration of423

this sensitivity would require a large research effort, so we leave this for future work.424

The datasets and analyses presented in this paper also have limitations. We analyzed shapes from425

just one database (Carlier et al., 2016) and, for each dataset, we selected only ten shapes for analysis,426

and only conducted two-sample tests. While we do not expect analysis of datasets from other databases427

to appreciably affect this paper’s messages, we acknowledge that analyses of relatively small samples,428

and just one simple experimental design, fully exposes neither the advantages nor disadvantages of the429

proposed analysis framework. We selected just ten shapes for each dataset primarily to emphasize that430

the proposed parametric procedure is sufficiently sensitive to detect morphological effects for small431

sample sizes. The specific ten shapes were selected in an ad hoc manner to emphasize particular concepts432

including, for example: interpretation agreement between the proposed and landmark methods’ results,433

and the opposite: interpretation disagreement. Since these datasets were selected in an ad hoc manner,434

from a single database, and with only two-sample analyses, the reader is left to judge the relevance of435

these results to other datasets and experimental designs.436
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Figure 11. Example processing sensitivity. Case 1 depicts the result reported in Fig.8g. Case 2 depicts

the results after point re-shuffling (i.e., a new random points order, see Fig.5a), then re-application of the

processing chain depicted in Fig.1d. Note: results for Case 1 were qualitatively replicated for most

random re-shufflings, but approximately 1 in 20 re-shufflings yielded qualitatively different results, like

those depicted for Case 2.

CONCLUSIONS437

This paper demonstrates that parametric hypothesis testing can be conducted at the whole-contour level438

with suitably high statistical power for the analysis of even relatively small samples of 2D shapes (N = 10).439

We describe a general framework for automated, landmark-free hypothesis testing of 2D contour shapes,440

but this paper implements just one realization of that framework. The main advantages of the proposed441

framework are that results are calculated quickly (<2 s in this paper), and yield morphologically rich442

results in an easy-to-interpret manner. Since innumerable realizations of the proposed framework are443

possible through algorithm and parameter substitution at each stage in the proposed data processing chain,444

sensitivity analysis may generally be required for robust statistical conclusions.445
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