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Insights from exact exchange-correlation kernels
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The exact exchange-correlation (xc) kernel fxc(x, x′, ω) of linear response time-dependent density functional

theory is computed over a wide range of frequencies for three canonical one-dimensional finite systems. Methods

used to ensure the numerical robustness of fxc are set out. The frequency dependence of fxc is found to be largely

due to its analytic structure, i.e., its singularities at certain frequencies, which are required in order to capture

particular transitions, including those of double excitation character. However, within the frequency range of the

first few interacting excitations, fxc is approximately ω independent, meaning the exact adiabatic approximation

fxc(ω = 0) remedies the failings of the local density approximation and random phase approximation for these

lowest transitions. The key differences between the exact fxc and its common approximations are analyzed, and

cannot be eliminated by exploiting the limited gauge freedom in fxc. The optical spectrum benefits from using

as accurate as possible an fxc and ground-state xc potential, while maintaining exact compatibility between the

two is of less importance.

DOI: 10.1103/PhysRevB.103.125155

I. INTRODUCTION

The density-density linear response function of a many-

body quantum system can be used to extract a great deal

of excited-state information about the system, for exam-

ple, its optical transition probabilities and transition energies

when subject to incident light [1]. Linear response time-

dependent density functional theory (DFT) constitutes an

exact methodology, in principle, for recovering an interacting

response function from the response function of a correspond-

ing Kohn-Sham system [2–8]. The interacting χ (x, x′, |t − t ′|)

density-density response function describes the first-order

change in the density due to a perturbation in the external

potential [2,3]:

χ (x, x′, |t − t ′|) =
δn(x, t )

δvext(x′, t ′)

∣

∣

∣

∣

n0

. (1)

The Kohn-Sham response function χ0 = δn/δvKS is speci-

fied with the ground-state exchange-correlation (xc) potential

vxc(x), and then a map from the Kohn-Sham response function

to the interacting response function is established using the xc

kernel,

fxc(x, x′, |t − t ′|) =
δvxc(x, t )

δn(x′, t ′)

∣

∣

∣

∣

n0

, (2)

i.e., the first-order change in the xc potential due to a perturba-

tion in the density. The uniqueness of this map is guaranteed

by the Runge-Gross theorem of time-dependent DFT [9,10],

*nw361@cam.ac.uk
†Present address: FU Berlin, Department of Mathematics and Com-

puter Science, Arnimallee 6, 14195 Berlin, Germany.

and the definition of fxc in Eq. (2) demonstrates that, like the

ground-state xc potential, fxc is a functional of the ground-

state density n0. The principal aim of this work is to elucidate

the structure and features of the exact numerical fxc, that is,

fxc(x, x′, |t − t ′|) including the full extent of its spatial and

temporal character.

The map from the Kohn-Sham response function to the in-

teracting response function is identified with the requirement

that density perturbations in the Kohn-Sham system match

those in the interacting system. This map is often referred to

as the Dyson equation of linear response time-dependent DFT,

χ (x, x′, ω) = χ0(x, x′, ω) +

∫∫

χ0(x, x′′, ω){ fH(x′′, x′′′)

+ fxc(x′′, x′′′, ω)}χ (x′′′, x′, ω) dx′′dx′′′,

where fH = δvH/δn is the Hartree kernel (the electron-

electron interaction) and all objects are now expressed in the

frequency domain ω, the Fourier transform of the time do-

main |t − t ′|. An approximate Kohn-Sham response function

in conjunction with an approximate fxc provides an approxi-

mation to the exact interacting response function, from which

a host of properties can be calculated, such as the optical

absorption spectrum [11] and the ground-state correlation en-

ergy [12,13]. The optical absorption spectrum [2]

σ (ω) = −
4πω

c

∫∫

Im[χ (x, x′, ω)]xx′ dxdx′ (3)

is the main focus of this work, and provides the transition en-

ergies and transition rates of a sample subject to classical light

within the dipole approximation [14]. Linear response time-

dependent DFT is now a prominent method used to excited-

and ground-state aspects of finite and extended systems.
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The development and understanding of approximate xc

kernels has been the subject of intense interest over the

past decades, see, for example, [2,7,11,15,16] and references

therein. In most cases, these approximations can be sorted

hierarchically depending on the level of theory involved in the

approximation. The lowest orders of this hierarchy contain the

random phase approximation (RPA) and the adiabatic local

density approximation (LDA). The former ignores exchange

and correlation at the level of the xc kernel entirely by setting

f RPA
xc = 0 [17], and the latter includes exchange and correla-

tion within the framework of an LDA, leading to an adiabatic,

spatially local f ALDA
xc ∝ δ(x − x′)δ(t − t ′) [18,19].

The xc kernel itself, however, is known to possess a range

of pathological features that depart significantly from these

approximations. In particular, certain circumstances demand

a spatial ultra-non-locality in fxc [2]. Furthermore, a nonadia-

batic temporal structure is known to be essential to capture

excitations of a multiparticle character [20–23]. These are

two manifestations of the fact that the exact fxc contains all

correlated many-body effects. More sophisticated approxi-

mations to fxc seek to include these effects in some form

or another, such as those that utilize the GW approximation

and the Bethe-Salpeter equation [16,24–26], exact-exchange

kernels [27–31], and long-range corrected kernels [32,33].

The use of model systems has been effective in de-

veloping understanding of fxc. In particular, the frequency

dependence of fxc has been the subject of model analytic stud-

ies [21,34–36], numerical studies using model Hamiltonians,

e.g., the Hubbard model [37–40], and numerical studies of

exact one-dimensional Hamiltonians in a truncated Hilbert

space [41–43]. This work continues along the lines of the

last approach, and seeks to address the spatial and frequency

dependence of fxc for energies far beyond the first few excita-

tions. The observed features of fxc are examined in relation to

matters of practical interest, such as optical properties.

II. METHODOLOGY

A. Background

The iDEA code [44] is used in order to obtain the in-

teracting and Kohn-Sham response functions. This software

implements quantum mechanics for finite systems in one

dimension interacting with a softened Coulomb electron-

electron interaction

vc(x, x′) =
1

|x − x′| + α
, (4)

where α is the extent of the softening; we use α = 1 a.u. A

delta function basis set, i.e., real-space grid, of dimension N is

used to discretize the spatial domain [−a, a] of length L = 2a

subject to Dirichlet boundary conditions.

Our three prototype systems each consist of two like-spin

electrons [45] in the external potentials described below.

For some input external potential vext(x), the full set of

eigenvectors {|�i〉} of the interacting Hamiltonian is found

using exact diagonalization. The corresponding exact Kohn-

Sham potential vKS(x) is then reverse engineered by applying

preconditioned root-finding techniques to an appropriate

fixed-point map [46]. The full set of Kohn-Sham eigenvectors

{|φi〉} is also obtained using exact diagonalization. The causal

response functions are computed in the frequency domain

directly using the Lehmann representation; the interacting

response function, for example, is given by

χ (x, x′, ω) = lim
η→0

∞
∑

n=1

〈�0|n̂(x)|�n〉〈�n|n̂(x′)|�0〉

ω − �n + iη

−
〈�0|n̂(x′)|�n〉〈�n|n̂(x)|�0〉

ω + �n + iη
,

where �n = En − E0 is the nth excitation energy of the in-

teracting Hamiltonian, and the response function is zero for

times t > t ′. Construction of the interacting response func-

tion in this fashion is an accurate but demanding procedure,

whereas the methods outlined in [42] to construct the response

functions are amenable to larger systems, but more prone

to error; either method will suffice here. On a finite spatial

grid, the response functions at a given ω become response

matrices, denoted χ (ω) and χ0(ω). The Dyson equation gives

an alternate definition of the xc kernel,

fxc(ω) = χ−1
0 (ω) − χ−1(ω) − fH, (5)

where superscript −1 is to be understood as the matrix inverse,

and the Hartree kernel fH becomes softened due to Eq. (4).

This expression is used as the definition of fxc in the present

context, where the matrix inverses require the careful treat-

ment described in the next section.

B. Challenges in computing exact exchange-correlation kernels

Numerical difficulties arise when attempting to construct

fxc as an object in itself using Eq. (5), which is one of a few

reasons that has prevented or hindered studies of the exact

fxc along these lines [41–43]. The xc kernel represents the

solution to an inverse problem, i.e., find the δvxc that produces

a given δn, and inverse problems are notoriously sensitive to

small error [47], such as those introduced by finite-precision

arithmetic. As discussed, fxc in Eq. (5) requires the matrix in-

verse of the response matrices at a given ω, and hence a naive

inversion procedure introduces numerical error at a given ω in

proportion to the condition of the response matrices, that is,

the ratio of the maximum to minimum eigenvalue.

Physical eigenvalues that are close to, or below, machine

precision manifest in the response matrices from various

sources [48]. One such source is related to the linear response

v-representability problem. That is to say, there exist density

perturbations that oscillate with some nonresonant frequency

ω that cannot be produced by a perturbing potential at linear

order [27,48,49]. Therefore, at such a frequency, the response

function has an eigenvector |u(ω)〉 whose eigenvalue is zero,

indicating that the density perturbation δn = |u(ω)〉 does not

correspond to some finite δv, as the response function is

noninvertible [50]. This can happen in both the interacting and

Kohn-Sham response functions at distinct frequencies. These

eigenvalues are of importance for the work to follow, and are

discussed in more depth in Sec. III B.

Another source of low eigenvalues is due to extended

regions of nearly vanishing ground-state density. Since the

aim of this work is, in part, to study the optical response of

confined systems far beyond the first excitation, an appro-

priately large spatial domain [−a, a] is required in order to
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accommodate the more extended excited states without in-

troducing spurious features due to the boundary conditions.

Within such a system, a perturbing potential localized toward

the edge of the domain yields a negligible ground-state density

response, the effect of which is to introduce near-zero eigen-

values into the response functions. Therefore, ill-conditioning

is unavoidable if we are to study the response functions,

and thus fxc, at high frequencies. The extent of this ill-

conditioning depends on the maximum frequency up to which

one wishes to examine matters.

Note that these near-machine-precision eigenvalues of the

response functions are problematic only if the resultant near-

machine-precision difference between χ and χ0 accounts for

some particular physical phenomenon, such as charge transfer.

In order to capture excitations of charge-transfer character an

fxc that is divergent in proportion to the increasing separation

between the subsystems involved is required [51,52]. In such

cases the construction of numerical xc kernels will be chal-

lenging. However, the systems studied in this work do not

suffer this issue: the ill-conditioning of the interacting and

Kohn-Sham response functions can be assumed to cancel in

the definition of fxc, Eq. (5), thus producing a regular fxc. This

procedure can be viewed as a form of basis set truncation,

i.e., assign χ = χ0 within some subset of the basis responsible

for ill-conditioning and proceed to compute fxc under this as-

sumption. We now describe two such approaches: a truncation

in real space, and a truncation in eigenspace.

1. Real-space truncation

In finite systems with a confining potential, the response

functions tend toward zero outside of the confined region, and

this so-called long-range behavior is known to be relatively

unimportant in the present context—this is not the case in

periodic systems [15,16,53,54]. Therefore, as we demonstrate

in this work, forcing the interacting response function to equal

the noninteracting response function within some yet unde-

fined outer region does not much alter the derived properties

of the interacting response function, such as its optical spec-

trum.

To this end, a partition of the spatial domain [−a, a] is

made such that an inner region is defined where x takes values

−b � x � b; the numerical parameter b defines the extent

of the truncation. The outer region constitutes the remaining

space between the inner region and the edges of the domain,

−a and a. This partition of the space, as it applies to the

response functions, can be seen in Fig. 1. The assumption is

then made that

χ̃ (x, x′, ω) := χ (x, x′, ω) for (x, x′) in inner region,

χ̃ (x, x′, ω) := χ0(x, x′, ω) for (x, x′) in outer region,

where χ̃ is the truncated response function. The xc kernel is

now defined as the object that returns the truncated response

function χ̃ , rather than the interacting response function χ ,

upon solution of the Dyson equation. This leads to the follow-

ing piecewise form for fxc,

fxc =

{

χ−1
0 − χ−1 − fH for (x, x′) in inner region,

− fH for (x, x′) in outer region.

FIG. 1. A schematic depiction of the real-space truncation strat-

egy used to regularize computations of fxc, whereby a truncated

response function χ̃ is defined as the interacting response function

within some region parametrized by b, the inner region (shaded

gray), and is otherwise set equal to the Kohn-Sham response

function.

The regularizing effect of the method presented above can be

understood by examining the role of the truncation parameter

b. In particular, two extremes are considered, first, setting

b = a means the inversion of the response matrix at a given ω

is performed over the whole domain, and hence is dominated

by error due to excessive regions of nearly vanishing ground-

state density; this error is hereafter referred to as the numerical

error. Setting b = 0 turns the truncated response function into

the Kohn-Sham response function over the entire domain—an

evidently unsatisfactory state of affairs—and error of this kind

is referred to as method error. While this need not be the

case in principle, it is the case for the systems studied here

that it is possible to choose b such that an acceptable balance

is struck between method error and numerical error. In other

words, the truncated response function is able to retain all the

physical properties of the interacting response function and

ensure the computation of the resulting piecewise fxc is well-

conditioned. A discussion on the notion of error in the present

context, including an elaboration of the method error and

numerical error, is given in the Supplemental Material [55].

One might take issue that the above piecewise expression

for fxc is spuriously discontinuous at the boundary of the inner

and outer region, where the extent of this discontinuity de-

pends on the long-range behavior of fxc. However, we shall be

concerned with the behavior of fxc inside the inner region, i.e.,

the region where departure of the Hxc kernel fHxc = fxc + fH

from zero produces meaningful features in the output of the

Dyson equation.

2. Eigenspace truncation

A second, related, method used in this work in order to

regularize the computation of fxc is to truncate the inter-

acting response matrix in the eigenspace of the Kohn-Sham

response matrix. This method is much more accurate than

the real-space truncation, but is limited to Hermitian response
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FIG. 2. A schematic depiction of the eigenspace truncation strat-

egy used to regularize computations of fxc, whereby the interacting

response function is expanded in the basis of eigenvectors of the

Kohn-Sham response function, and set equal to the Kohn-Sham

response function inside the effective null space, parametrized by λ̄.

matrices, i.e., response matrices constructed without an artifi-

cial broadening η.

Consider the eigendecomposition of the interacting and

Kohn-Sham response matrices at a given ω, where the eigen-

pairs are denoted {|ui〉, λi} and {|uKS
i 〉, λKS

i } respectively.

Consider further some value λ̄ such that the effective null

space, Nulleff, is defined as the subspace spanned by eigen-

vectors whose eigenvalue has modulus below λ̄ [56]. The

assumption is now made that the truncated response matrix

χ̃ operates on vectors that are elements of the effective null

space as the Kohn-Sham response matrix,

χ̃ |v〉 = χ0|v〉 for |v〉 ∈ Nulleff(χ0), (6)

see Fig. 2. Given PN as the projection operator onto the ef-

fective null space, the expression in Eq. (6) is established as

follows:

χ̃ = (I − PN)χ + PNχ0; (7)

the first term on the right-hand side removes the effective

null space from χ , and the second term ensures χ̃ operates

as intended on elements of the effective null space. Another

view of this manipulation is that the truncated and Kohn-

Sham response functions are required to share eigenvectors

and eigenvalues inside the effective null space,

{|ũi〉, λ̃i} =
{∣

∣uKS
i

〉

, λKS
i

}

for
∣

∣λKS
i

∣

∣ < λ̄, (8)

and the truncated response function is otherwise equal to the

interacting response function, this is also depicted in Fig. 2.

The pseudoinverse [57] with cutoff λ̄, i.e., the eigendecom-

position with eigenpairs below λ̄ discarded, is now an exact

procedure to obtain fxc that recovers χ̃ after solution of the

Dyson equation,

fxc = χ+
0 − χ̃+ − fH, (9)

where superscript + denotes the pseudoinverse.

In direct analogy with the previous method, the parameter

λ̄ assumes the job of b, namely, it parametrizes the extent of

the truncation. The difference between the truncated response

function Eq. (6) and the exact interacting response function is

again given the name method error. Note that this approach is

quite distinct from applying the pseudoinverse to the response

functions in Eq. (5)—doing so would introduce much more

error and the source of this error is not clear. On the contrary,

the error inherent in the method presented here is identified as

the extent to which the effective null space of the interacting

and Kohn-Sham response functions do not overlap, and this

error can be tracked without reference to fxc using the method

error.

Since the eigenspace truncation method is much more ac-

curate than the real-space truncation method, results are given

using the eigenspace truncation where possible. Although,

visualization of the optical spectrum relies on evaluating

the response functions slightly above the real axis in the

frequency domain, along ω + iη. This leads to response

matrices that are complex symmetric, and thus (weakly) non-

Hermitian, in which case the real-space truncation method is

used.

C. Gauge freedom

As noted in Refs. [27,28,37,58], the following transforma-

tion:

fxc(x, x′, ω) → fxc(x, x′, ω) + g(x, ω) + h(x′, ω) + c(ω),

leaves the output of the Dyson equation unchanged, and

thus we are, in principle, free to choose the arbitrary

complex-valued functions g(x, ω), h(x′, ω), and c(ω). All

three transformations are a direct manifestation of the in-

variance of quantum Hamiltonian systems under a constant

time-dependent shift of the potential. From the point of view

of fxc approximations, two xc kernels are equivalent if they

exist within this family of functions [59].

A preferred gauge is defined by Eq. (5), since the objects

χ and χ0 are themselves invariant to a shift in the potential.

The unique fxc, modulo a constant shift (see below), defined

in Eq. (5) can be considered the physical fxc, and it is this

definition of fxc that is assumed in discussions on its various

properties and limits [15,16,53,54,60]. To modify this fxc

using its gauge freedom changes its underlying structure; for

example, setting g 	= 0 gives fxc spurious long-range behavior,

and setting g 	= h produces an fxc that is not symmetric under

interchange of x ↔ x′. In this work we illustrate fxc as it is

defined in Eq. (5), which also defines g = h = 0. The constant

shift c has special meaning, as it is itself an eigenvector of χ

and χ0 with eigenvalue zero, i.e., the response functions are

noninvertible in this direction. Since the Dyson equation is

therefore silent regarding the value of c, we anchor fxc by

requiring that, in the long-range limit, far outside the con-

fined density, fxc + fH → 0, and find that this limit is reliably

achieved.

Having decided upon a preferred gauge, one can consider

the possible consequences of this gauge freedom on matters of

practical interest. An approximate fxc that differs in relevant

structure from the exact fxc largely due to a change of gauge

provides at least a partial explanation for the performance of
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FIG. 3. The real part of the exact numerical xc kernel

fxc(x, x′, ω) for the atom at (a) ω = 0 (exact adiabatic), (b) the

first visible interacting excitation, (c) the second visible interacting

excitation, and (d) the third visible interacting excitation. For illus-

trative purposes, fxc is shown for −3.5 < x < 3.5, where its essential

structure is most visible. The xc kernel across the first two transitions

remains approximately equal to the exact adiabatic fxc(ω = 0), after

which a significant departure from the adiabatic limit is observed.

The exact adiabatic fxc(ω = 0) displays considerable nonlocal struc-

ture, despite a local dominance along x = x′.

a given approximate fxc; in Sec. III D we consider this line of

inquiry.

III. RESULTS AND DISCUSSION

A. Atom

Our first system consists of two interacting electrons con-

fined in the atomlike potential vext(x) = −2/(|0.1x| + 0.5),

within the domain [−8, 8] a.u. An illustration of this sys-

tem, and its associated numerical parameters, are given in the

Supplemental Material [55]. The purpose of the atom demon-

stration is twofold. First, it constitutes a proof-of-concept,

and defines a standard of accuracy to which the remainder

of the calculations are held unless stated otherwise. Second,

the optical spectrum of the atom is calculated in the range

ω ∈ [0, 6] a.u., which includes many excitations beyond the

first, and the efficacy of various approximations to fxc are

examined in relation to the optical spectrum.

The exact fxc, constructed using the real-space truncation

method, is shown for the first three visible interacting exci-

tations in the optical spectrum, and at ω = 0 a.u., in Fig. 3.

The last is sometimes termed the exact adiabatic fxc, and

it correctly describes any system in which the response to a

perturbation is essentially instantaneous, fxc(x, x′, ω = 0).

The real-space truncation parameter is chosen as b = 5.8

a.u., meaning the inner region is defined as −5.8 < x < 5.8.

It is important to stress that this choice of b is not unique, and

there exists some feasible range of b within which fxc itself is

insensitive to changes. Moreover, within this feasible range,

FIG. 4. The optical spectrum for the atom is computed using

the interacting response function χ (blue solid), the Kohn-Sham

response function χ0 (red dash), and the output of the Dyson equation

χDyson with the exact fxc(x, x′, ω) (black dot). The exact numerical fxc

reproduces the interacting peaks perfectly, as expected.

both the method error and numerical error are acceptable—a

discussion on the precise quantification of error here is given

in the Supplemental Material [55]. The mean absolute error

between the output of the Dyson equation, which is hereafter

defined as

χDyson(ω) =
χ0(ω)

I − χ0(ω)[ fxc(ω) + fH]
, (10)

and the interacting response function χ (ω) is O(10−9) over

the entire grid. The zero-force sum rule [2,61] is used to further

validate the numerics, which is discussed and illustrated in the

Supplemental Material [55].

In order to extract the optical transition energies and tran-

sition rates, given a single-particle response function χ0 and

xc kernel fxc, one can construct the entire optical absorption

spectrum Eq. (3) using the corresponding output of the Dyson

equation, denoted χDyson( fxc, vxc), where χ0 is specified with

some vxc, see Fig. 4.

As established in [62–64], the exact Kohn-Sham single-

particle transitions are in excellent agreement with the

interacting transitions, but this agreement becomes increas-

ingly poor at higher energies. An approach to understanding

this is to consider the overlap between the final states in-

volved in a given interacting |�0〉 → |� f 〉 and Kohn-Sham

|
(0,1)〉 → |
 f 〉 transition, where |
(i, j)〉 denotes the Slater

determinant constructed from ith and jth Kohn-Sham single-

particle states.

The overlap of the ground state is 〈�0|
(0,1)〉 = 0.99991,

and the overlap of the final states involved in the first tran-

sition at ω = 0.76 a.u. is 〈�1|
(0,2)〉 = 0.9995. The static

correlation in the interacting state here is modest, mean-

ing the interacting state has strong single-particle character,

which leads to agreement between the low-energy transitions

in the optical spectrum. At higher energies, the overlap de-

cays by multiple orders of magnitude, however this is not

the predominant source of error in higher energy transitions.

Rather, interacting excitations that correspond to Kohn-Sham

single-particle excitations out of the highest occupied state

(the second) are much more accurate than single-particle
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FIG. 5. The optical absorption spectrum for the atom around

the first transition, and around two higher energy transitions (inset),

calculated at various levels of approximation. The optical spectra

calculated from the interacting and Kohn-Sham response functions

are plotted alongside the optical spectrum computed from the Dyson

equation using the RPA, adiabatic LDA, and exact adiabatic xc

kernels. The adiabatic LDA and RPA fail to accurately reproduce

the interacting transitions, whereas the exact adiabatic approximation

successfully describes the low-energy transition, but fails at higher

energies.

excitations out of the first state. For example, the inter-

acting excitation |�0〉 → |�19〉 at ω = 4.41 a.u. in Fig. 4

is captured well with the Kohn-Sham excitation |
(0,1)〉 →

|
(0,12)〉, whereas this is not true of the preceding interacting

excitation. This is not surprising, as the highest occupied

Kohn-Sham state has energy equal to minus the exact electron

removal energy [65], and thus at least one energy involved

in the transition is correct. This might often be the case,

and to comment further would require additional many-body

calculations.

The following fxc approximations are now considered:

the RPA f RPA
xc = 0, an adiabatic LDA f ALDA

xc [n](x, x′, ω = 0)

∝ δ(x − x′) parametrized with reference to the homoge-

neous electron gas in [66], and the exact adiabatic xc kernel

fxc(x, x′, ω = 0), Fig. 3(a). These fxc approximations are used

to solve the Dyson equation in conjunction with the exact

Kohn-Sham response function. The atomic optical spectrum,

using the aforementioned series of approximations, is shown

in Fig. 5 for the first transition and a chosen higher energy

transition.

The exact adiabatic fxc reproduces the first peak well,

which reflects the fact that fxc at the first excitation, Fig. 3(b),

is visually indistinguishable from the exact adiabatic fxc. This

agreement demonstrates that, not only is the adiabatic approx-

imation valid for low-energy transitions, but also the nonlocal

spatial structure in the exact adiabatic fxc is required in order

to reproduce the low-energy peaks in the optical spectrum—

in lacking this structure, both the RPA and adiabatic LDA

significantly overcorrect the underestimation of the nonin-

teracting transition energy. At higher energies, i.e., beyond

the third peak in the optical spectrum (not shown), all three

approximations perform similarly, and do not improve matters

significantly beyond the corresponding noninteracting peak.

This behavior appears to be generic for all peaks observed

up to ω = 6 a.u., namely, the transition energies output from

the Dyson equation with these approximate xc kernels are

bound to the quality of the noninteracting transition energies.

Furthermore, the inset of Fig. 5 demonstrates that the exact

adiabatic approximation gives an excitation energy that is

worse than the other adiabatic approximations. This suggests

that, in order to capture higher energy transitions, a frequency

dependence is required, and in particular “improving” the

spatial structure of adiabatic approximations toward the exact

adiabatic structure does not assist matters here.

As alluded to above, the exact adiabatic approximation

ceases to out perform the adiabatic LDA and RPA beyond

the third transition in the optical spectrum, i.e., the same

transition for which the corresponding exact fxc departs from

its adiabatic structure in a serious manner, Fig. 3. In fact, as

the subsection to follow demonstrates, this violent departure

from adiabaticity has a particular and fairly simple form, and

its origin is understood in the context of eigenvalues of χ (ω)

or χ0(ω) that cross zero. The eigenvector corresponding to the

eigenvalue that touches zero is a non-v-representable density

perturbation at linear order.

B. Infinite potential well

The infinite potential well is defined with the external

potential vext = 0 inside the domain [−5, 5] a.u. (See the Sup-

plemental Material [55] for the corresponding Kohn-Sham

potential, density, and numerical parameters.) The numerical

response functions for this system are well-conditioned and

valid up to arbitrary ω, there are no regions of nearly vanishing

density, and thus there is no significant numerical error present

here.

The nonadiabatic character of fxc is illustrated up to ω ≈

6 a.u. in Fig. 6 (see the Supplemental Material [55] for an

animation). As in the atom, fxc exhibits little frequency de-

pendence, until after the second transition. The subsequent

nonadiabatic behavior is related to the poles that occur in fxc

infinitesimally below the ω axis [27,48]. The eigenvalues of

fxc as a function of frequency are given in Fig. 7, and in

particular, three divergences are shown (the singularities are

tempered slightly by evaluating the response functions just

above the real ω axis). The lower panels of Fig. 7 demon-

strate that these singularities coincide with a single eigenvalue

of either the interacting or noninteracting response function

crossing zero. Thus, the visual character of fxc is dominated

by the outer product of the eigenvector whose eigenvalue

is either beginning to diverge, or recovering from a diver-

gence. Moreover, nothing in principle is preventing these

singularities in fxc coming arbitrarily close to an interacting

excitation—either χ0 can cross zero close to an interacting

excitation, or χ itself can cross zero close to an interacting

excitation [67]. Since most fxc approximations lack these

divergences, one can question the importance of these diver-

gences in relation to optical properties.

In order to determine the impact of the divergences in fxc

on the optical spectrum, we examine how the optical spectrum

is affected after projecting out the divergent eigendirection

in fxc, but otherwise keeping fxc identical (the details of this
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FIG. 6. The real part of the exact numerical xc kernel

fxc(x, x′, ω) for the infinite potential well at (a) ω = 0 (exact

adiabatic), and at three higher frequencies that demonstrate its nona-

diabatic character, (b) the sixth interacting excitation, ω = 1.09 a.u.,

(c) ω = 3.28 a.u., and (d) ω = 5.55 a.u. The xc kernels are shifted

such that their maximum value is zero, since there exists no long-

range limit, see Sec. II C. A strong frequency dependence, i.e.,

departure from the adiabatic limit, is observed.

procedure are given in the Supplemental Material [55]). This

is tantamount to setting χ |v〉 := χ0|v〉 for some vector |v〉

within the Hilbert space that is associated with the divergence.

FIG. 7. Eigenvalues as a function of frequency, labeled

Re[λ(ω)], of fxc (upper), χ0 (lower left), and χ (lower right). Within

the frequency range shown, the predominant nonadiabatic behavior

of fxc is a result of three singularities and their surrounding diver-

gences at ω = 0.99, 1.01, 1.17 a.u. The source of the last two is

observed to be an eigenvalue crossing zero in χ0 and χ , respectively.

FIG. 8. The optical absorption spectrum for the infinite potential

well around a visible interacting excitation at ω = 1.094 a.u, and

its corresponding noninteracting excitation at ω = 1.024 a.u. The

projected xc kernel (inset), i.e., fxc with its divergences removed, is

indistinguishable from the adiabatic xc kernel, see Fig. 6(a), and the

optical peak associated with f
projected
xc is only a slight improvement on

the noninteracting peak.

The interacting excitation at ω = 1.09 a.u., see Fig. 7, is

visible in the optical spectrum, and furthermore the character

of fxc at this energy, see Fig. 6, is dominated by the outer

product of an eigenvector whose eigenvalue is much larger in

magnitude than the rest, and between the two divergences at

ω = 1.01, 1.17 a.u. The removal of these divergences from

fxc across the energy range of interest, and subsequently solv-

ing the Dyson equation with the projected xc kernel f
projected
xc ,

shifts the interacting optical peak back toward the noninter-

acting peak, Fig. 8. Conversely, the much weaker divergence

at ω = 0.99 a.u., as seen in Fig. 7, has a tail that also yields

an eigenvalue much larger in magnitude than the rest at the in-

teracting excitation, and removal of this divergence produces

no change in the optical spectrum, i.e., this eigenvector is not

relevant for capturing the transition in question. In the inset

of Fig. 8, the visual character of fxc is shown at the inter-

acting excitation ω = 1.09 a.u. after the divergences visible

in Fig. 7 have been removed. Underneath these divergences,

fxc is indistinguishable from the adiabatic fxc, meaning the

frequency dependence of fxc in this system is largely due to its

pole structure. These results suggest that functional approxi-

mations that do not capture the nonadiabatic pole structure of

fxc will struggle to improve matters beyond the noninteracting

peaks for certain transitions.

A further point of note is that there are many more zeros

in the interacting response function than the noninteracting

response function, as a simple counting argument is suf-

ficient to demonstrate. All N eigenvalues of the response

functions begin negative [48], and each excitation brings a

negative eigenvalue to a positive eigenvalue across a diver-

gence, which otherwise evolves as a continuous function of ω.

For two electrons discretized with a basis set of dimension N ,

there are 1
2
N (N − 1) − 1 interacting excitations, and 2N − 4

noninteracting excitations, the difference being made up of

double (triple, etc. with more than two electrons) excitations

that are notoriously not present in the Kohn-Sham response
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function [21]. Therefore, there are a great deal more eigen-

values that must pass through zero in the interacting response

function, and moreover, these eigenvalues that cross zero are

connected to the excitations that require them to do so—an

account of the precise conditions under which this occurs is

given in the Supplemental Material using a two-state model,

see also [66].

In Fig. 7 there are three divergences, two of which are

paired at ω = 1.01, 1.17 a.u., meaning the zero in the nonin-

teracting response function is a shifted version of the zero in

the interacting response function; such behavior can be related

to single excitations. There also exists an unpaired divergence

at ω = 0.99 a.u. related to the excitation at ω = 0.98 a.u.

which has double excitation character. That is, the overlap

between the final state involved in this transition |�0〉 → |�5〉

and the Slater determinant |
(2,3)〉 is 〈
(2,3)|�5〉 = 0.98.

It is perhaps, then, no surprise that removal of the eigenvec-

tor and eigenvalue whose source is the unpaired divergence

did not alter the visible (single excitation) transition in Fig. 8.

In fact, the pole in the interacting response function relat-

ing to the double excitation disappears with removal of the

unpaired divergence, and so this divergence, and its surround-

ing character, is important in order to capture the transition

for which it is relevant. The xc kernel exhibits unpaired

divergences after all double excitations up to ω = 6 a.u.

at frequencies slightly higher than the interacting double

excitation energy. References [21,23] derive, under certain

assumptions, the necessarily divergent character of fxc around

a double excitation. The above analysis reveals that diver-

gences in fxc are, in fact, common and associated with the

ω neighborhood containing multiple and single excitations

alike.

C. Quantum harmonic oscillator

The quantum harmonic oscillator is defined in the domain

[−8, 8] a.u. with the potential vext(x) = 1
2
ν2x2 where ν :=

0.45 a.u. (See the Supplemental Material for the correspond-

ing exact Kohn-Sham potential, the interacting ground-state

density, and the numerical parameters.)

First, the spatial structure, and in particular the long-range

behavior [16], of the exact fxc is examined. The delicate

nature of the numerics involved in computing the exact fxc is

brought to the fore when attempting to capture its long-range

limit. The ill-conditioning in the response matrices can be

identified with regions of nearly vanishing ground-state den-

sity, see Sec. II B, and it is precisely in these regions that we

expect to observe the long-range character of fxc. However,

fxc, when evaluated outside some central region where we can

be confident there is little-to-no numerical error, diverges in a

manner that is not consistent with the known long-range limit

of fxc. This spurious divergence in fxc does not much affect

the accuracy of the output of the Dyson equation χDyson, be-

cause the Dyson equation Eq. (10) involves the matrix product

χ0 fxc, and the divergent regions of fxc operate on the nearly

vanishing regions of χ0.

If we are to observe the long-range limit of fxc in the

present context, the region where the numerical error is low

must overlap with the region where the long-range limit is

observed. This is the case for the exact adiabatic fxc, which is

FIG. 9. The exact adiabatic xc kernel fxc(x, x′, ω = 0) for the

quantum harmonic oscillator constructed with the eigenspace trun-

cation method. The precise spatial structure exhibited by the exact

adiabatic kernel, including its long-range limit and nonlocal charac-

ter, is discussed in the main text.

shown, together with slices of fxc along a particular axis, in

Figs. 9 and 10.

The centermost region of the domain is where exchange

and correlation effects are most important, and in this region

fxc exhibits a strong local response that quickly decays as

x 	= x′. Since this region can be interpreted as the most crucial

for recovering accurate observable properties from the Dyson

equation, this observation supports, at least in part, local ap-

proximations to fxc, such as the adiabatic LDA.

FIG. 10. The exact adiabatic xc kernel fxc(x, x′, ω = 0) for the

quantum harmonic oscillator along x′ = 0 a.u. (top) and x′ = −2 a.u.

(bottom). The xc kernel, Hxc kernel, and Hartree kernel are shown,

and the long-range limit fxc → − fH is observed.
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FIG. 11. The optical absorption spectrum for the quantum har-

monic oscillator around the first transition, and around a chosen

higher energy transition, calculated at various levels of approxi-

mation. The optical spectrum calculated from the interacting and

Kohn-Sham response functions are plotted alongside the optical

spectrum computed from the Dyson equation using the RPA, ALDA,

and exact adiabatic xc kernels. At higher frequencies (inset), all

optical peaks are suppressed for the quantum harmonic oscillator,

a state of affairs that the exact adiabatic fxc reproduces, but the RPA

and adiabatic LDA do not.

The nonlocal structure of fxc at ω = 0 a.u. can be seen most

clearly in the lower panel of Fig. 10, where perturbations in

the density outside the centermost region cause a significant

change in the exchange-correlation potential inside the center-

most region. The failure of the adiabatic LDA to capture this

nonlocal response leads to fairly poor agreement between the

exact and approximate transition energies, which is seen for

the atom in Fig. 5, and illustrated for the quantum harmonic

oscillator below [68].

The long-range limit fxc(x, x′, ω = 0) → − fH(|x − x′|) is

explored in Fig. 10 along both x′ = 0 a.u. and x′ = −2 a.u.

Due to the rapid decay of the ground-state density in the

quantum harmonic oscillator, convergence of fxc toward − fH

along x = −2 a.u. is not directly observed in the x → −∞

limit—the atom, whose ground-state density does not decay

as quickly, converges toward − fH in both the positive and

negative limits (see the Supplemental Material [55]). It is

known that the long-range limit of fxc, in both finite and

periodic systems, satisfies fxc(ω) → −α(ω) fH [15,16,53,54],

where α(ω) is a frequency-dependent constant that reflects

dielectric screening in the system. Therefore, one expects

α = 1 in finite systems, and at lower frequencies, where the

numerical methodology provides a robust long-range limit,

our observations are consistent with this, see Fig. 10.

To conclude matters for the quantum harmonic oscillator,

we examine its optical absorption spectrum, and in particular

highlight a failing of the fxc approximations considered in this

work when compared to the exact and exact adiabatic xc ker-

nels. The optical absorption spectrum, using the same range of

approximations discussed in the case of the atom, is shown in

Fig. 11. In the noninteracting quantum harmonic oscillator, all

transitions but the first are disallowed, otherwise known as its

selection rules. The inclusion of the Coulomb interaction lifts

these special symmetries of the noninteracting quantum har-

monic oscillator, but not enough for the previously disallowed

transitions to be observed in the optical spectrum—the dipole

matrix elements for these allowed transitions are O(10−8).

On the other hand, the exact Kohn-Sham potential differs

significantly from the harmonic form, which creates a series

of visible peaks beyond the first in the optical spectrum; the

transition rates for these transitions are vastly overestimated.

In this situation, the RPA and adiabatic LDA do not achieve

the required strong suppression of the optical peaks. Inter-

estingly, the exact adiabatic kernel, as seen in Fig. 9, is able

to reproduce the exact optical spectrum across the entire fre-

quency range considered ω ∈ [0, 6] a.u., presumably due to

the correct oscillator strengths used in its construction. This

suggests that, in cases where the exact system possesses heav-

ily suppressed transitions, perhaps due to symmetries that are

not shared by the Kohn-Sham system, the typical fxc approx-

imations are insufficient to recover the exact state of affairs,

but improvement of their nonlocal spatial structure toward the

exact adiabatic kernel can assist matters.

D. Gauge freedom

Two xc kernels that differ in structure that is predominantly

captured with the gauge transform defined in Sec. II C pro-

vides an explanation for the approximate agreement between

the derived properties of the two xc kernels in question. This

possibility is now considered, and in fact we shall demonstrate

that the gauge freedom of fxc is not sufficient to explain the

similarity observed between, for example, the optical proper-

ties calculated using the adiabatic LDA and RPA in Sec. III.

Moreover, the particular form of the nonlocal spatial structure

within the exact fxc(x, x′, ω) is in general not possible to cap-

ture with this gauge freedom, and it is unlikely that this line

of reasoning is able to explain the efficacy of approximations

of any kind.

In order to demonstrate this, an optimal gauge is defined

that transforms, in as much as is possible, one xc kernel into

another using the gauge freedom, i.e., it brings one fxc toward

another fxc in a particular matrix norm. The definition and

derivation of the optimal gauge is given in the relevant section

of the Supplemental Material [55]. Furthermore, an illustra-

tion of the optimal gauge transform for each of the examples

to follow is also provided in the Supplemental Material. The

atom of Sec. III is considered, and in particular the optimal

gauge is found in order to match the RPA, f RPA
xc = 0, with the

adiabatic LDA used in this work, f ALDA
xc [66]. As discussed in

Sec. II C, the vectors g and h introduce an unavoidable degree

of nonlocality, and the local spatial structure of the adiabatic

LDA simply cannot be reproduced with a gauge transform of

this kind applied to the RPA.

The story remains much the same when an attempt is made

to match the adiabatic LDA xc kernel to the exact adiabatic

xc kernel for the atom fxc(x, x′, ω = 0). The particular form

of the spatial nonlocality in the exact adiabatic xc kernel

does not lend itself to the fairly inflexible structural freedom

afforded by the functions g and h. This conclusion holds true

for almost all the xc kernels examined in this work, namely,

the spatial profile of the exact fxc at any ω is not possible
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FIG. 12. The exact optical absorption spectra for the atomic sys-

tem illustrated alongside the optical absorption spectrum from the

noninteracting response functions χ0 calculated with wave functions

and energies given by Hartree theory, an LDA, and the exact Kohn-

Sham potential. The corrected transitions, given upon solution of

the Dyson equation with the corresponding fxc, are also shown for

Hartree theory/RPA, and LDA/adiabatic LDA. The most accurate op-

tical spectrum is that of the noninteracting exact Kohn-Sham system,

and hence improving treatment of ground-state exchange-correlation

toward this ideal is found to be most important. In particular, use of

fxc to shift the noninteracting peaks toward the interacting peaks is,

in general, unable to achieve accuracy improvements comparable to

those observed from improving ground-state exchange correlation—

this is seen most clearly at higher frequencies (inset).

to reproduce with a gauge transform applied to the adiabatic

LDA or RPA, despite, at high frequencies, the similarity of the

derived optical spectra from these approximations.

A final remark is given in relation to the divergences in

fxc studied in the previous section. The xc kernel around a

divergence is approximately of the form of an outer product

|u〉〈u|, where |u〉 is the eigenvector of fxc that is diverging.

The xc kernel is therefore mostly composed of N degrees of

freedom, a state of affairs that is a priori much more amenable

to the gauge freedom. In fact, the first pole in the fxc of the

atom, i.e., the beginning of the nonadiabatic behavior, see

Fig. 3(d), is nondivergent after the optimal gauge is applied.

This divergence therefore does not affect observable proper-

ties such as its associated optical peak, and indeed the exact

adiabatic kernel is able to capture this peak, despite it existing

squarely within the divergence. However, such a situation is

not detected again for the remainder of the divergences.

E. Exchange-correlation potential versus

exchange-correlation kernel

In finite systems, it is the conventional wisdom that an

accurate ground-state xc potential is more important for cap-

turing the interacting excitation spectrum than a sophisticated

fxc [15,16,69–71]. The effect of an improved treatment of ex-

change and correlation in the ground state is shown in Fig. 12,

which demonstrates the optical spectrum for the atomic sys-

tem calculated from the noninteracting response function χ0

at various levels of approximation. The transition energies

and rates calculated from the exact Kohn-Sham system are

considerably closer to the exact transitions than, for example,

Hartree theory, which is increasingly poor at higher energies.

These noninteracting response functions can be used, in

conjunction with their corresponding fxc, to solve the Dyson

equation, thus shifting the position and weight of the peaks.

An xc kernel functional corresponds to an xc potential func-

tional if it is the second functional derivative of the xc

potential with respect to the density. Thus, the RPA xc ker-

nel corresponds to Hartree theory, and the adiabatic LDA

xc kernel corresponds to the ground-state LDA from which

it came. To use an xc kernel that does not correspond to

the ground-state xc potential can violate various exact con-

ditions [72]—this is evidently the case here for the zero-force

sum rule.

The aforementioned conventional wisdom is exhibited

clearly in Fig. 12, namely, use of a corresponding fxc is only

able to improve matters slightly beyond the noninteracting

peaks, which is most visible at higher frequencies. For this

reason, even when using an incompatible fxc, the calculation

benefits from an improved treatment of ground-state exchange

and correlation. This is evidenced in the case of the atom in

Sec. III, where using the RPA and adiabatic LDA xc kernels

in conjunction with the exact Kohn-Sham ground state yields

a more accurate optical spectrum than if one were to attempt

to keep the xc potential and xc kernel compatible.

IV. CONCLUSIONS

We have calculated and analyzed the spatial and frequency

dependence of the exact xc kernel fxc of time-dependent DFT

for three one-dimensional model systems: an atom, an infinite

potential well, and a quantum harmonic oscillator. A set of nu-

merical methods is designed to ensure numerical robustness.

The xc kernel exhibits a significant nonlocal spatial struc-

ture at all frequencies, including at ω = 0, i.e., the exact

adiabatic fxc. In lacking this structure, local approximations

to fxc are found to be insufficient for recovering the low-

est energy excitations, whereas the exact adiabatic xc kernel

performs well. However, beyond the lowest few excitations,

all the approximations considered here—the exact adiabatic

xc kernel, the RPA, and the adiabatic LDA—are equally

poor, and do not generally improve the optical spectrum ob-

tained directly from the noninteracting Kohn-Sham response

function χ0 (that is, setting fxc + fH to zero everywhere). A

notable exception is the quantum harmonic oscillator, whose

optical transitions beyond the first are heavily suppressed, a

feature that the exact adiabatic xc kernel is able to capture.

In general, improvement of the spatial structure of adiabatic

xc kernel approximations toward the exact adiabatic xc kernel

is expected to assist matters for the lowest energy transitions,

but beyond these transitions the lack of frequency dependence

hinders all adiabatic xc kernels. In addition, the long-range

limit of fxc for finite systems fxc → − fH is confirmed, al-

though the long-range character of fxc is demonstrated to be

unimportant in the present context, in contrast to its character

within and around the region of high density.

Drastic nonadiabatic behavior is observed in fxc for all

systems studied in this work, and is, to a considerable extent,

attributable to specific aspects of its analytic structure as a
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function of ω. (Simple) poles in fxc, related to certain inter-

acting or noninteracting transitions that necessitate them, can

in practice appear close to interacting excitations, for example,

between two nearly degenerate charge-transfer excitations in a

double-well system [51]. It is possible that a gauge transform

can remove the divergence in specific cases without affecting

the optical spectrum, but this is the exception rather than

the rule. If fxc is kept identical apart from removal of the

diverging eigenvalue and its associated eigenvector, then fxc

can be rendered unable to capture the relevant transition. This

suggests that an fxc approximation that does not attempt to

exhibit the nonadiabatic pole structure of the exact fxc cannot

reproduce transitions with energies higher than the first few

excitations. This is the case for single, double, triple, and so

on, excitations alike. The fact that these divergences can be

related to certain excitations that necessitate them provides a

new perspective on the divergent character of fxc that is known

to exist around double excitations [21,36].

In general, the subtle spatial structure of the exact fxc

cannot be captured by applying a gauge transformation to one

of the usual kernel approximations. However, the divergent

ω dependence discussed in the previous paragraph is more

amenable to the gauge freedom. Indeed, in the case of the

atom, the first divergence (around the third peak in the optical

spectrum) turns out to be related to the exact adiabatic fxc with

a gauge transform. Hence, the exact adiabatic approximation

is able to describe the third peak in the optical spectrum,

despite the significant frequency dependence of fxc around

this peak.

As noted earlier in this section, the simple noninteract-

ing kernel fxc = − fH often yields surprisingly good spectra,

provided that the exact Kohn-Sham potential, or a good

approximation to it, is used to calculate χ0. This is in part

due to the fact that the exact Kohn-Sham transitions are, in

certain circumstances, good approximations to the interacting

transitions [71]. By extension, in practical calculations, effort

may be usefully devoted to improving approximations used

for fxc and vxc individually, without an overriding need to

maintain one as the functional derivative of the other. The

quality of vxc is of particular importance, as previous authors

have observed in specific cases [15,16,69–71].

In systems where predictive spectral accuracy beyond that

provided by the simplest kernels is required, note should be

taken of the intricate spatial nonlocality and analytic structure

as a function of ω exhibited by the exact kernels calculated

in this paper. Approximate kernels that are spatially local

(whether local density or not), and/or exhibit no more than

a gentle variation with ω, are unlikely to prove adequate for

calculating optical spectra and other aspects of the density

response function. A fruitful direction appears to be kernels

that are obtained by making a connection between the time-

dependent DFT description and some level of many-body

perturbation theory, such as the kernel obtained from the

Bethe-Salpeter equation presented in [26], since nonlocality

and frequency dependence emerge automatically from even

the simplest level of many-body perturbation theory.

Data created during this research is available through the

Cambridge Apollo research repository [73].
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