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MODELS OF MARTIN-LÖF TYPE THEORY FROM ALGEBRAIC WEAK
FACTORISATION SYSTEMS

NICOLA GAMBINO AND MARCO FEDERICO LARREA

Abstract. We introduce type-theoretic algebraic weak factorisation systems and show how they give rise
to homotopy-theoretic models of Martin-Löf type theory. This is done by showing that the comprehension
category associated with a type-theoretic algebraic weak factorisation system satisfies the assumptions
necessary to apply a right adjoint method for splitting comprehension categories. We then provide methods
for constructing several examples of type-theoretic algebraic weak factorisation systems, encompassing the
existing groupoid and cubical sets models, as well as new models based on normal fibrations.

§1. Introduction.

1.1. Context and motivation. The construction of category-theoretic models of
Martin-Löf type theory [26] is a complex task that involves two main problems.
First, one needs to find a category with sufficient structure, so as to be able to
interpret the type-formation rules, e.g., those for dependent sum and dependent
product types (Σ-types and Π-types, respectively, for short). In particular, in order
to have a model with intensional identity types (Id-types for short), the category
under consideration needs to possess some homotopy-theoretic structure, as given
for example by a weak factorisation system (wfs for short) [1, 12, 27]. Secondly,
one has to transform the category under consideration into a genuine model of
Martin-Löf type theory, in which certain strictness conditions (needed to model
correctly the substitution operation) are required to hold, as in a split comprehension
category [21, 22]. As these conditions are rarely satisfied in practice, this second step
often involves applying suitable general coherence theorems, analogous to Mac
Lane’s theorem relating monoidal categories and strict monoidal categories [25]. To
make things more difficult, these two issues are closely related.

There are two main methods to address the strictness issues, to which we refer as
the left and right adjoint splitting [9, 18, 24], since they are based on the left and
the right adjoint to the inclusion of split Grothendieck fibrations into Grothendieck
fibrations, respectively [16, 32]. The right adjoint splitting was already used in [18]
in order to remedy the issues affecting the interpretation of Martin-Löf type theory
in locally Cartesian closed categories [31], thus accounting for Σ-types, Π-types,
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Key words and phrases. Martin-Löf theory, comprehension category, algebraic weak factorisation

system.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/23/8801-0010
DOI:10.1017/jsl.2021.39

242

https://doi.org/10.1017/jsl.2021.39 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2021.39
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2021.39&domain=pdf
https://doi.org/10.1017/jsl.2021.39


MODELS OF MARTIN-LÖF TYPE THEORY 243

and extensional Id-types. Subsequently, Warren isolated sufficient conditions to
apply the right adjoint splitting and produce models with intensional Id-types [33].
These conditions, however, are not generally satisfied in categories equipped with
weak factorisation systems, giving the impression, apparently widespread in the
research community, that the right adjoint splitting cannot be used to construct
homotopy-theoretic models of Martin-Löf type theories and that the left adjoint
splitting should be used instead, applying the results in [24].

Our aim in this paper is to show that this impression is wrong and that the right
adjoint splitting can be applied to obtain homotopy-theoretic models of Martin-Löf
type theory. The key observation underpinning this work, which was suggested by
Garner (see [33, p. 34]), is that the right adjoint splitting can be applied provided
that we work with algebraic, rather than ordinary, weak factorisation systems (awfs’s
for short) [15, 17] (see also [5, 6, 29]). In an awfs, the lifting properties that are part
of the definition of a wfs are replaced by lifting structures, satisfying a naturality
condition. As we will see, it is the algebraic character of awfs’s that allows us to
apply the right adjoint splitting.

While awfs’s may seem cumbersome, there are situations in which it is actually
more natural to consider awfs’s than wfs’s, most notably in the ongoing work
aimed at defining homotopy-theoretic models of Martin-Löf’s in a constructive
metatheory [7, 13, 14]. Indeed, the left adjoint splitting used in [24] seems to work
only under certain exponentiability assumptions, which are not constructively valid
in simplicial sets [4]. Issues of constructivity are also the main motivation for our
work on normal uniform fibrations, as explained further below.

1.2. Main results. This paper makes two main contributions. The first is to
introduce type-theoretic awfs’s and show that they give rise to models of Martin-
Löf’s type theory with Σ-types, Π-types, and Id-types. The second is to introduce
a general method to obtain examples of type-theoretic awfs’s and to give a
homogeneous account of several models in which dependent types are interpreted
as uniform fibrations (in the sense of [7, 14]), including the groupoid model [20],
in which dependent types are interpreted as split fibrations, and models based on
simplicial and cubical sets [7, 14], in which dependent types are interpreted as
uniform Kan fibrations.

Our construction of models of Martin-Löf type theory from type-theoretic awfs’s
is obtained in two steps. The first is to define a non-split comprehension category
from a type-theoretic awfs (Proposition 4.2) and show that this comprehension
category is equipped with pseudo-stable Σ-types, Π-types, and Id-types (Theorem
4.11) in the sense of [24], i.e., commuting with substitution up to isomorphism.
The second step is to apply the right adjoint splitting and turn the non-split
comprehension category obtained in the first step into a split one equipped with
strictly stable Σ-types, Π-types, and Id-types (Theorem 2.6). It should be noted
that the extra algebraic structure of a type-theoretic awfs is crucial to have pseudo-
stable Id-types in the non-split comprehension category (cf. [3]) and this, in turn,
is essential to apply the right adjoint splitting. As an illustration, we revisit the
groupoid model of Martin-Löf type theory [20]. Specifically, we equip the category
of groupoids Gpd with an awfs whose right maps correspond to normal isofibrations
and then we prove that such an awfs is type-theoretical. In this way, we show that
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the original groupoid model can be obtained as the split comprehension category
associated with this type-theoretic awfs. Since the appearance of this paper as a
preprint, these results have been extended to enriched groupoids [11] and to split
isofibrations [34].

Our results on constructing type-theoretic awfs’s build on the theory of uniform
fibrations in [14]. Our Theorem 6.10 isolates structure on a Grothendieck topos
that suffices to produce a type-theoretic awfs of uniform fibrations. We call a
Grothendieck topos equipped with such structure a type-theoretic suitable topos
(Definition 6.9). We then show that any Grothendieck topos equipped with an
interval object with connections is an example of a type-theoretic suitable topos.
The main technical machinery used in the proof of Theorem 6.10 is Proposition 6.8,
where we show that given a type-theoretic suitable topos, the resulting awfs of
uniform fibrations can be equipped with a stable functorial choice of path objects,
which is the structure necessary to produce pseudo-stable identity types. This result
fills the gap between the theory developed in [14] and its intended application to the
construction of models of Martin-Löf type theory.

We also advance the theory of [14] by introducing a stronger version of uniform
fibrations, which we call normal uniform fibrations, in which the lifts are required
to preserve degeneracies. These can be seen as generalisations of normal cloven
isofibrations in groupoids, as explained in Remark 7.5. We then show that the ideas
in [14] can be adapted so as to accommodate this new normality property. With
this, we prove that any suitable topos admits an awfs of normal uniform fibrations
(Theorem 7.2).

One of the reasons for our interest in normal uniform fibrations is that they
allow us to avoid one of the hypotheses for a type-theoretic suitable topos E when
constructing a type-theoretic awfs (Theorem 8.10). The requirement on E is that
for any object X ∈ E, the reflexivity map rX : X → XI , that maps a point of X to
the constant path on it, is a member of a distinguished class of monomorphisms M
whose members are to be thought as generating cofibrations. While this assumption
holds if we consider M to be the class of all monomorphisms, it fails in some
situations that are of interest for constructive mathematics. For example, if E is
a presheaf topos and we restrict our attention to Mdec the class of decidable
monomophisms (i.e., those whose image is level-wise constructively decidable).
As noted in [28], it is important to consider decidable monomorphisms when
trying to model univalent universes. This issue is also relevant to the question
of whether the path types and the identity types coincide in the cubical type
theory of [7].

1.3. Outline of the paper. Section 2 reviews the interpretation of type dependency
using comprehension categories and the right adjoint splitting. Section 3 reviews
algebraic weak factorisation systems. In Section 4 we introduce type-theoretic awfs’s
and prove that the induced comprehension categories support pseudo-stable Π-
types, Σ-types, and Id-types. We then move on to the construction of examples of
type-theoretic awfs. In Section 5 we revisit the groupoid model. In Section 6 we
show how to construct a type-theoretic awfs from a type-theoretic suitable topos. In
Section 7 we introduce the awfs of normal uniform fibrations and in Section 8 we
show that it is type-theoretic.
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MODELS OF MARTIN-LÖF TYPE THEORY 245

§2. Strict stability, pseudostability, and coherence. We review basic notions and
results on Grothendieck fibrations and comprehension categories, referring to
[22, 32] for more information. A comprehension category over a category C consists
of a strictly commutative diagram of the form

E
�

��

�
��
��

��
��

��
C

→

cod
����
��
��
��

C,

where cod: C→ → C is the codomain functor, such that � : E → C is a Grothendieck
fibration, and � : E → C

→ maps Cartesian arrows in E to pullback squares in C.
We refer to such a comprehension category by the tuple (C, �, �) or by the pair
(�, �) if the category C is easily inferable from the context. A cleavage for (C, �, �)
consists of a choice of lifts for the fibration �, i.e., for each u : Δ → Γ in C and
A over Γ, a Cartesian morphism u∗ : A[u] → A over u. We will refer to A[u] as
the reindexing of A along u. A cleavage is normal if it preserves identities and is
split if it preserves identities and composition. A split comprehension category is a
comprehension category equipped with a split cleavage. Occasionally, we will make
use the following notation:

B
f

�� A B
f

��

��
A

Δ
�

�� Γ Δ
�

�� Γ,

where the diagram on the left indicates that f is an arrow in E, � is an arrow in C,
and �(f) = �. The pullback notation on the diagram on the right indicates that, in
addition to the previous data, f is Cartesian.

A split comprehension category (C, �, �) provides a natural setting to interpret
the basic judgements and the structural rules of a dependent type theory [22].
Type-theoretic contexts are interpreted as objects of C. A judgement Γ � A : type
is interpreted as an object A in the fibre of � over Γ ∈ C. Context extension is
modelled via the comprehension functor: for an object A in the fibre over Γ there
is a morphism �A : Γ.A→ Γ whose domain Γ.A is the interpretation of the context
extension. A judgement Γ � a : A is interpreted as a map a : Γ → Γ.A in C which is
a section of �A : Γ.A→ Γ.

Substitution of terms into types is interpreted with the use of the split cleavage,
while substitution of terms into terms is interpreted by composition. Weakening is
modelled by reindexing an object A along a morphism of the form �B : Γ.B → Γ.
For simplicity, the comprehension of A[�B ] is written �B,A : Γ.B.A→ Γ.B .

In order to model type-theoretic constructs, we require a split comprehension
category to be equipped with additional, chosen, structure. Furthermore, this
structure must cohere strictly with the split cleavage, so as to ensure validity of
substitution rules. Definition 2.1 and Definition 2.2 describe the structure necessary
to model Id-types. The corresponding structure for Σ-types and Π-types is defined
in the Appendix.
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Definition 2.1. A choice of Id-types on a comprehension category (C, �, �)
consists of the following data.

(1) For each A in the fibre over Γ and a, b : Γ → Γ.A sections of �A, an object
IdA(a, b) over Γ.

(2) For each A over Γ, a section rA over the diagonal morphism �A, giving a
factorisation:

Γ.A.A.IdA(x, y)

�IdA(x,y)

��

Γ.A
�A

��

rA

������������������
Γ.A.A,

where IdA(x, y) is given by (1) applied to the weakened type A over Γ.A.A
and to the canonical variables x, y : Γ.A.A→ Γ.A.A.A.

(3) For any A over Γ, C over Γ.A.A.IdA(x, y) and t a section of C over rA as
shown by the solid arrows in the following diagram:

Γ.A

rA

��

t �� Γ.A.A.IdA(x, y).C

�C

��

Γ.A.A.IdA(x, y)

jA(C,t)

��

Γ.A.A.IdA(x, y),

a section jA(C, t) of �C (shown as the dotted arrow) making both triangles
commute.

We refer to a choice of Id-types by (Id, r, j). Similarly, we refer to a choice of
Σ-types as (Σ, pair, sp) and to a choice of Π-types as (Π, �, app) (see the Appendix
for details).

Definition 2.2. Assume (C, �, �) is split and is equipped with a choice (Id, r, j)
of Id-types. We say that the choice is strictly stable if for every morphism � : Δ → Γ in
the base category, and for every object A in the fibre over Γ, the following conditions
are satisfied:

(1) For any pair of sections a, b : Γ → Γ.A, we have that IdA[�](a[�], b[�]) =
IdA(a, b)[�].

(2) The following diagram commutes:

Δ.A[�] �∗ ��

rA[�]

��

Γ.A

rA

��

Δ.A[�].A[�].IdA[�](x′, y′)
�∗∗∗

�� Γ.A.A.IdA(x, y),

where the horizontal arrows are given by split reindexing along �.
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(3) For any (C, t) as in (3) of Definition 2.1, we can obtain a second pair
(C [�], t[�]) relative to IdA[�](x′, y′) by reindexing along �. We require the
following diagram to commute:

Δ.A[�].A[�].IdA[�](x′, y′)

jA[�](C [�],t[�])

��

�∗∗∗ �� Γ.A.A.IdA(x, y)

jA(C,t)
��

Δ.A[�].A[�].IdA[�](x′.y′).C [�]
�∗∗∗∗

�� Γ.A.A.IdA(x, y).C ,

where the horizontal arrows are given by reindexing along �.

While split comprehension categories provide a sound interpretation of type
theory, non-split comprehension categories arise most naturally in examples. This
mismatch can be remedied by applying a well-known construction by Giraud
and Bénabou [16] that replaces a comprehension category (C, �, �) with an
equivalent split one (C, �R, �R), universally as a right adjoint functor. We review
this construction.

Definition 2.3. Let (C, �, �) be a comprehension category and A an object in
the fibre over Γ ∈ C. A local cleavage for A consists of an operationA[–] that assigns
to each map � : Δ → Γ a Cartesian arrow �∗ : A[�] → A over �. We say that a local
cleavage A[–] is normal if when applied to the identity 1Γ : Γ → Γ it outputs the
identity arrow, i.e., A[1Γ] = A and 1∗Γ = 1A.

For a fibration � : E → C the category E
R is defined as follows. Its objects are

pairs (A,A[–]), where A is an object of E and A[–] is a local normal cleavage for A.
An arrow f : (B,B[–]) → (A,A[–]) is just an arrow f : B → A in E. Composition
and identities are just those of E. Notice that there is a functor �R : ER → C given
on objects by �R(A,A[–]) = �(A). The next lemma is well-known [9, 16].

Lemma 2.4. The functor �R : ER → C is a split Grothendieck fibration.

This construction extends to comprehension categories. Fix a comprehension
category (C, �, �). First, we have a morphism �� : �R → � of fibrations (i.e., a functor
over C that preserves Cartesian arrows) that acts on an object (A,A[–]) of ER by
forgetting the local normal cleavage. Then, we obtain a split comprehension category
(C, �R, �R), by letting �R be the composite in

E
R

�R ��
��

��
��

��
��

�� E

�

��

�
�� C

→

cod
����
��
��
��

C.

It is natural to ask what structure on a cloven comprehension category gives rise
to strictly stable Σ, Π, and identity types on its right adjoint splitting. As we discuss
below, one needs a choice of Σ, Π, and Id-types which are pseudo-stable.

Definition 2.5. A choice (Id, r, j) of Id-types in a comprehension category is said
to be pseudo-stable if for any Cartesian arrowf : B → A over a morphism � : Δ → Γ
in the base, the following conditions are satisfied:
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(1) For any pair of sections a, b : Γ → Γ.A, there is a Cartesian arrow

Idf(a, b) : IdB(a[�], b[�]) → IdA(a, b),

over � : Δ → Γ. Moreover, the assignment f �→ Idf(a, b) is functorial, that
is, Id1A(a, b) = 1IdA(a,b) and Idf◦g(a, b) = Idf(a, b) ◦ Idg(a[�], b[�]).

(2) The following diagram commutes:

Δ.B
f

��

rB
��

Γ.A

rA
��

Δ.B.B.IdB(x′, y′)
Idf (x,y)

�� Γ.A.A.IdA(x, y).

(3) For any pair (C, t) as in (3) of Definition 2.1 and for any Cartesian
h : C ′ → C over Idf , we can construct a pair (C ′, t′) by pulling back t along
h appropriately. We require that the following diagram commutes:

Δ.B.B.IdB(x′, y′)

jB (C ′,t′)
��

Idf (x,y)
�� Γ.A.A.IdA(x, y)

jA(C,t)
��

Δ.B.B.IdB(x′, y′).C ′
h

�� Γ.A.A.IdA(x, y).C ,

where the lower horizontal arrow is the (comprehension of the) Cartesian
arrow h : C ′ → C .

The definition of pseudo-stability for Σ-types and Π-types is given in the
Appendix. The following coherence result connects pseudo-stability in a compre-
hension category and strict stability on its right adjoint splitting. The proof is based
on [18, Theorem 2] for Σ-types and Π-types and on [33, Theorem 2.48] for Id-types.

Theorem 2.6 (Coherence Theorem). Let (C, �, �) be a comprehension category
equipped with pseudo-stable choices of Σ-, Π-, and Id-types. Then the right adjoint
splitting (C, �R, �R) is equipped with strictly stable choices of Σ-, Π-, and Id-types;
and the counit �� : (C, �R, �R) → (C, �, �) preserves each choice of logical structure
strictly.

Proof. For Σ-types, let us consider a dependent tuple (see the Appendix for
definition) (Γ, (A,A[–]), (B,B[–])) of (�R, �R). The Σ-type associated with this tuple
has the following form: (ΣAB,ΣAB[–]) where ΣAB is the Σ-type given by the pseudo-
stable choice of (�, �) applied to (Γ, A, B). The component at � : Δ → Γ of the local
cleavage ΣAB[–] is given as follows. First, we use the local cleavages A[–] and B[–]
to construct a Cartesian arrow of dependent tuples (�,f∗, g∗) : (Δ, A[�], B[�]) →
(Γ, A, B) where the arrows f∗ and g∗ are given by the local cleavage (see
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Definition 2.3). Then, we use the action on morphisms of the pseudo-stable choice of
Σ-types to define:

ΣAB[�] : = ΣA[�]B[�]
�∗ : =Σf∗g

∗
��

��
ΣAB

Δ
�

�� Γ.

This local cleavage is normal because the pseudo-stable choice is functorial.
We must show that this choice is strictly stable. By definition, for � : Δ → Γ,

(ΣAB,ΣAB[–])[�] = ((ΣAB)[�], (ΣAB)[�][–]) (by def. of the cleavage of (�R, �R))

= (ΣA[�]B[�], (ΣAB)[�][–]) (by def. of ΣAB[–]).

It only remains to show that the local cleavages (ΣAB)[�][–] and (ΣA[�]B[�])[–]
coincide, but this follows from the functoriality of the pseudo-stable choice of
Σ-types in (�, �).

The construction for the case of dependent products or Π-types is completely
analogous and hence omitted.

For Id-types, note that the terms of a type (A,A[–]) in (CR, �R, �R) are the same
as the terms of A in (C, �, �). Let (A,A[–]) be an object in the fibre of �R over Γ,
and consider sections a, b : Γ → Γ.A. We need an object in E

R over Γ.A.A, which
we denote as

(
IdA(a, b), IdA(a, b)[–]

)

for brevity. The object IdA(a, b) is obtained by applying the pseudo-stable choice of
Id-types in (�, �) to A and the sections a, b : Γ → Γ.A.

To define the local normal cleavage IdA(a, b)[–], consider � : Δ → Γ in C. The
local normal cleavage A[–] gives a Cartesian arrow �∗ : A[�] → A over �. Using the
stable functorial choice of Id-types of (�, �), we get the Cartesian arrow

Id�∗(a, b) : IdA[�](a[�], b[�]) → IdA(a, b)

over �. We then let IdA(a, b)[�] := IdA[�](a[�], b[�]), so that the Cartesian arrow to
IdA(a, b) can be taken to be Id�∗(a, b). By pseudo-stability, if � = 1A then

IdA[�](a[�], b[�]) = IdA(a, b) Id�∗(a, b) = 1IdA(a,b),

as required. It remains to check that this choice is strictly stable. For � : Δ → Γ and
sections a, b : Γ → Γ.A, we must verify that:

(IdA(a, b)[�], IdA(a, b)[�][–]) = (IdA[�](a[�], b[�]), IdA[�](a[�], b[�])[–]).

By definition, IdA(a, b)[�] is given by the local normal cleavage IdA[–] applied to the
arrow �∗, which is IdA[�](a[�], b[�]). By the functoriality of the pseudo-stable choice
of Id-types, the local cleavages IdA(a, b)[�][–] and IdA[�](a[�], b[�])[–] coincide. �

In the next sections we show how to construct comprehension categories with
pseudo-stable choices of Σ-, Π-, and Id-types. For Id-types, the structure that arises
more naturally in example corresponds to the so-called variable-based formulation
of Id-types [12, Table 3], which is known to be equivalent to the usual formulation.
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We define this variant in Definition 2.7 and then show that it is equivalent to the
notion of Definition 2.1.

Definition 2.7. A choice of variable-based Id-types on a comprehension category
(C, �, �) consists of an operation that assigns a tuple (IdA, rA, jA), to each object A
in the fibre over some Γ ∈ C, where:

(1) IdA is an object in the fibre over Γ.A.A,
(2) rA is a section of IdA over the diagonal morphism �A, giving a factorisation

Γ.A.A.IdA

�IdA
��

Γ.A
�A

��

rA

		��������������
Γ.A.A,

(3) jA is an operation that takes a pair (C, t), where C is an object C in the slice
over Γ.A.A.IdA and t is a section of C over rA, as in the diagram of solid
arrows

Γ.A

rA

��

t �� Γ.A.A.IdA.C

�C

��

Γ.A.A.IdA

jA(C,t)

��

Γ.A.A.IdA,

to a section jA(C, t) of �C (shown as the dotted arrow) making both triangles
commute.

We will refer to a choice of variable-based Id-types by (Idv.b., r, j).

Definition 2.8. A choice of variable-based Id-types (Idv.b., r, j) in a comprehen-
sion category is said to be pseudo-stable if for any Cartesian arrow f : B → A over
a morphism � : Δ → Γ in the base, the following conditions are satisfied.

(1) There is a Cartesian arrow Idf : IdB → IdA over the canonical morphism
�f : Δ.B.B → Γ.A.A, and the assignment f �→ Idf is functorial, i.e., Id1A =
1IdA and Idf◦g = Idf ◦ Idg .

(2) The following diagram commutes:

Δ.B
f

��

rB

��

Γ.A

rA

��

Δ.B.B.IdB
Idf

�� Γ.A.A.IdA.
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(3) For any pair (C, t) as in (3) of Definition 2.7 and for any Cartesian
h : C ′ → C over Idf , we can construct a pair (C ′, t′) by pulling back t along
h appropriately. We require that the following diagram commutes:

Δ.B.B.IdB

jB (C ′,t′)
��

Idf
�� Γ.A.A.IdA

jA(C,t)
��

Δ.B.B.IdB.C ′
h

�� Γ.A.A.IdA.C ,

where the lower horizontal arrow is the (comprehension of the) Cartesian
arrow h : C ′ → C .

Proposition 2.9. A cloven comprehension category (C, �, �) is equipped with a
pseudo-stable choice of Id-types if and only if it is equipped with a pseudo-stable choice
of variable-based Id-types.

Proof. Suppose we have a pseudo-stable choice of Id-types. To construct a
pseudo-stable choice of variable-based Id-types, consider an object A over Γ, and
we define IdA := IdA(x, y) over Γ.A.A using the canonical variables x, y : Γ.A.A→
Γ.A.A.A. The operations r and j are given just as in Definition 2.5.

For the converse, assume a pseudo-stable choice of variable-based Id-types.
Consider an object A over Γ and sections a, b : Γ → Γ.A. We have IdA over
Γ.A.A, and thus, we can define IdA(a, b) to be the reindexing of IdA along
(a, b) : Γ → Γ.A.A, as in

IdA(a, b) ��

��
IdA

Γ
(a,b)

�� Γ.A.A.

(2.1)

We can extend this definition to provide the rest of the data in part (1) of
Definition 2.5. Consider f : B → A Cartesian over � : Δ → Γ, then we have

IdA[�](a[�], b[�])
Idf (a,b)





�� IdB
Idf

��	
		

		
		

		
	

��

IdA(a, b) �� IdA

Δ
(a[�],b[�])

��

�

��






















 Δ.B.B

���
��

��
��

��

Γ
(a,b)

�� Γ.A.A,

where Idf(a, b) : IdB(a[�], b[�]) → IdA(a, b) is given uniquely by the universal
property of the square in (2.1). If f (and �) are identities, then by pseudo-stability of
Id-types, Idf : IdA → IdA is also the identity, and thus Idf(a, b) must be the identity
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by the uniqueness property that characterises it. Similarly, the pseudo-stability of
the variable-based Id-types and the uniqueness property of Idf(a, b) can be used to
show that this operation preserves composition.

For the operations r and j, we first consider the diagram

IdA(x, y) ��

��
IdA

Id��A,A
��

��
IdA

Γ.A.A
(x,y)

�� Γ.A.A.A.A
��A,A

�� Γ.A.A,

where the square on the right is obtained by the functoriality of the pseudo-stable
choices of variable-based Id-types to �A,A : Γ.A.A→ Γ. The square on the left is
obtained by definition of IdA(x, y) applied to the object A weakened to Γ.A.A and to
the variablesx, y : Γ.A.A→ Γ.A.A.A. Both top horizontal arrows are Cartesian and
the composition of the bottom two arrows equals the identity. Thus IdA(x, y) ∼= IdA
as objects over Γ.A.A. We can then transport the operations r and j along this
isomorphism. �

Remark 2.10. The reason for introducing two versions of identity types is that
examples give rise more naturally to the variable-based Id-types of Definition 2.7,
while the coherence theorem Theorem 2.6 is easier to prove constructively with the
identity types of Definition 2.1. Indeed, if one works with variable-based Id-types
and tries to follow the argument used for Σ- and Π-types, the construction of the
local cleavage seems to require a case distinction on whether the argument is an
identity or not to ensure functoriality.

Our goal in the reminder of the paper is to construct and study comprehension
categories equipped with pseudo-stable choices of Σ-, Π-, and Id-types. By Theorem
2.6, these will give rise to genuine models of Martin-Löf type theory with Σ-, Π-,
and Id-types.

§3. Algebraic weak factorisation systems. We review some of the basic theory on
algebraic weak factorisation systems and on orthogonal categories of arrows [5, 6,
15, 17]. These will be the basis for our definition of a type-theoretic algebraic weak
factorisation system in Section 4.

First of all, recall that a functorial factorisation (Q,L,R) on a category C consists
of an operation that assigns to each arrow f : X → Y a factorisation

X
Lf−−→ Qf Rf−−→ Y

functorially in f. The induced endofunctors L,R : C→ → C
→ are canonically

copointed and pointed respectively; that is, there are a counit � : L→ 1 and a unit
� : 1 → R. We denote the category of (R, �)-algebras by R-Map and the category of
(L, �)-coalgebras by L-Map, and refer to their objects also as R-maps and L-maps,
respectively. There are faithful, but not full, forgetful functors to the arrow category,

L-Map → C
→ and R-Map → C

→.

https://doi.org/10.1017/jsl.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.39


MODELS OF MARTIN-LÖF TYPE THEORY 253

Let (g, �) : A→ B be an L-map, (f, s) : X → Y an R-map, and (h, k) : g → f a
morphism in the arrow category. Then we can construct a filler for the square (h, k),
which is given by j : = s ·Q(h, k) · �, whereQ(h, k) : Qg → Qf is the map obtained
by applying the functorial factorisation to (h, k). These fillers satisfy naturality
conditions with respect to morphism of L-maps and R-maps.

Definition 3.1. An algebraic weak factorisation system (awfs for short) on a
category C consists of the following data:

(1) a functorial factorisation (Q,L,R) on C,
(2) an extension of the pointed endofunctor (R, �) to a monad (R, �, 	),
(3) an extension of the copointed endofunctor (L, �) to a comonad (L, �, �),
(4) the canonical map Δ: LR→ RL defined using the monad and comonad

structures is a distributive law.

We refer to an awfs as in Definition 3.1 just as (L,R). Item (4) of Definition 3.1
is a technical requirement which plays no role in this work. Given an awfs as
Definition 3.1, we have also the category of algebras for the monad (R, �, 	), which
we denote R-Alg, and the category of coalgebras for the comonad (L, �, �), which
we denote L-Coalg. We refer to the objects of R-Alg and L-Coalg as R-algebras and
L-coalgebras, respectively. There are full and faithful functors R-Alg ↪→ R-Map and
L-Coalg ↪→ L-Map.

Remark 3.2. The category R-Alg (and also R-Map) is closed under ‘vertical’
composition; that is if (f, s) : X → Y and (f′, s ′) : Y → Z are R-algebras then
there is a canonical R-algebra structure s ′ · s on the composite f′ · f. In fact,
finding such a vertical composition operation provides a complete characterisations
of the awfs [2, Theorem 4.15].

Also, for an R-algebra (f, s) and a pullback square (h, k) : f′ → f then, there
exists a unique R-algebra structure s ′ onf′ making (h, k) a morphism of R-algebras.
The same result holds for R-maps.

We recall some notions regarding categories of arrows and of orthogonality in
the setting of awfs’s. By a category of arrows over C we mean a functor u : J → C

→

where J is a category. A right J -map consists of a pair (f, �) where f : X → Y is
an arrow of C and � is a right lifting operation against J , i.e., � assigns a filler �(i)
to each commutative square of the form (l, m) : ui → f, with i ∈ J . These fillers,
in addition, are compatible with the arrows in J in the evident way.

Given a pair of right J -maps (f, �) and (f′, � ′), a right J -map morphism consists
of a square (α, 
) : f → f′ such that for every i ∈ J , the triangle created by the
corresponding choices of diagonal fillers commute. Given a category of arrows
u : J → C

→, we define the category J � consisting of right J -maps (f, �) together
with the corresponding morphisms. There is a functor u� : J � → C

→ forgetting the
lifting structure. It can be shown that this operation defines a contravariant functor
denoted by (–)�. In a completely analogous manner, we can define the concepts
of left J -map and left J -map morphism, and obtain a dual functor �(–). These
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data constitute the orthogonality adjunction, which generalises the classical Galois
connection between orthogonal classes of maps:

CAT/C→ ⊥

�(–)




(CAT/C→)op.

(–)�
�� (3.1)

The next proposition [5, Lemma 1] relates awfs and orthogonal categories of arrows.

Proposition 3.3. Let (L,R) be an awfs on C. Then, there are lifting functors over
C

→ as shown in the following commutative diagram:

R-Alg lift ��

��

(L-Coalg)�

R-Map

lift
∼=

����������������

lift
�� (L-Map)�

��

All functors are full and faithful and the diagonal one is an isomorphism. There is also
a functor (L-Map)� → R-Map, which is not an equivalence in general.

We say that an awfs (L,R) is algebraically-free on a category of arrows J if there
is a functor � : J → L-Coalg over C→, such that the composition

R-Alg lift �� (L-Coalg)�
��

�� (J )�

is an isomorphism of categories, cf. [15, Theorem 4.4]. The following result regarding
algebraically-free awfs is implicit in the literature (cf. [14, Theorem 6.9] for example).

Proposition 3.4. If (L,R) is algebraically-free on some category of arrows J ,
then there are functors back-and-forth R-Map ↔ R-Alg over C→.

This proposition shows that when working with an algebraically-free awfs (L,R)
(as will be the case in Section 6), any construction made using R-maps can be
functorially transported to a construction using R-algebras, and vice versa.

§4. Type-theoretic awfs’s. In this section we introduce the notion of a type-
theoretic awfs. We then show how a type-theoretic awfs induces a comprehension
category structure equipped with pseudo-stable choices of Σ-, Π-, and Id-types. We
begin by making the connection between awfs and comprehension categories.

Lemma 4.1. Let (L,R) be an awfs over C. The functor R-Map → C mapping an
R-map (f, s) to cod (f) is a Grothendieck fibration. Moreover, the Cartesian arrows
are the morphisms of R-maps whose underlying square is a pullback square.
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Proposition 4.2. Let (L,R) be an awfs on a category C. Then there is a
comprehension category

R-Map U ��

��















C

→

cod
����
��
��
��

C ,

where U is the evident forgetful functor.

Results analogous to Lemma 4.1 and Proposition 4.2 hold also for R-Alg. Next,
we study additional logical structure on the comprehension category induced by an
awfs.

Proposition 4.3. Let (L,R) be an awfs on C. Then the comprehension category
induced by (L,R) is equipped with a pseudo-stable choice of Σ-types.

Proof. Let (f, s) : X → Γ and (g, t) : Y → X be in R-Map. The pullback
functor along f : X → Γ has a left adjoint Σf : C/X → C/Γ, which is given by
composition. By Remark 3.2, this functor lifts to slices of R-Map, as follows:

R-Map/X
Σf

��

��

R-Map/Γ

��

C/X
Σf

�� C/Γ.

For the formation rule, we define Σfg : = Σf(g) = f ◦ g : Y → Γ. For the
introduction rule, we define pairf,g : Y → Y over f,

Y
pairf,g

��

g

��

Y

Σfg

��

X
f

�� Γ

by letting pairf,g : = 1Y . Finally, for the elimination rule, let C be over Σfg and let
t be a section of C over pairf,g , and we define spf,g(C, t) : = t. The computation
rule holds trivially, thus giving rise to a choice of Σ-types. Stable functoriality and
coherence of elimination terms also follow easily; the crucial observation is that
vertical composition of R-maps plays nicely with the horizontal categorical structure
(see [5, Section 2.8]). �

The case of Π-types requires the following property.

Definition 4.4. An awfs (L,R) on C satisfies the exponentiability property if
for any g : Z → Y , f : Y → X in the image of R-Map → C

→, the exponential
Πfg ∈ C/X exists.
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Clearly, any awfs in a locally Cartesian closed category satisfies the exponentia-
bility property. We need something more than mere exponentiability, namely a way
to coherently lift an exponential from C/X to R-Map/X . For this reason we recall
the following notion from [14].

Definition 4.5. Let (L,R) be an awfs on a category C. A functorial Frobenius
structure is given by a lift of the pullback functor as shown:

R-Map ×C L-Map P̃B ��

��

L-Map

��

C
→ ×C C

→
PB

�� C
→ ,

where PB(f, g) denotes the pullback of g along f.

Proposition 4.6. Consider an awfs (L,R) on C satisfying the exponentiability
property and equipped with a functorial Frobenius structure. Then the comprehension
category induced by (L,R) has a pseudo-stable choice of Π-types.

Proof. Consider (f, s) : X → Γ in R-Map. By the exponentiability property, we
have a pushforward functor Πf : R/X → C/Γ (here R/X denotes the slice category
whose objects are arrows g : Y → X that can be equipped with an R-map structure)
and, by [14, Proposition 6.5 and Proposition 6.7] this lifts to a functor

Πf : (L-Map)�/X → (L-Map)�/Γ .

Using the functors R-Map ↔ L-Map� of Proposition 3.3 we can find a lift of Πf
as follows:

R-Map/X
Πf

��

��

R-Map/Γ

��

C/X
Πf

�� C/Γ.

Consider an R-map (g, t) : Y → X . For the formation rule, we apply Πf to
obtain an R-map Πfg : Y → Γ. For the introduction rule, we define the operation �;
consider a section t of g, this is an arrow t : 1X → g in C/X and since f∗(1Γ) ∼= 1X
this is the same thing as an arrow t : f∗(1Γ) → g. Taking the transpose yields a
map �(t) : 1Γ → Πfg, as required. For the elimination rule we need to provide
an arrow appf,g : f∗(Πfg) → g. We can take appf,g to be the counit of the
adjunction, appf,g : = �g : f∗(Πfg) → g. The computation rule follows easily from
the bijection � : C/X [1X , g] → C/Γ[1Γ,Πfg].
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It only remains to show the assignment (Γ, f, g) �→ (Πfg, �, app) is pseudo-
stable. This is a diagram-chasing argument, which relies on the fact that, for a
Cartesian square of the form

X ′
��
� ��

f′

��

X

f

��

Δ
�

�� Γ,

the Beck-Chevalley isomorphism BC : Δ�Πf → Πf′Δ� (where we write Δ� and Δ�
for the pullback functors along � and �, respectively) lifts to an isomorphism of
R-maps by [14, Proposition 6.7]. We leave the details to the readers. �

Remark 4.7. As shown above, an awfs equipped with a functorial Frobe-
nius structure implies the existence of lifts Σf : R-Map/X → R-Map/Γ and
Πf : R-Map/X → R-Map/Γ of the composition and pushforward functor, respec-
tively, for each R-map (f, s). However, the underlying adjunctions need not lift
to R-Map. Fortunately, this is not necessary for the construction of pseudo-stable
choices of Σ- and Π-types since we only need the universal property at the level of
the underlying category.

The case for intensional identity types is more complicated. Here the extra
algebraic structure is essential; it will allow us to keep track of the necessary
information needed to coherently produce the ‘elimination terms’ (i.e., the fillers j
of Item 3 from Definition 2.7) for the choice of Id-types. To address this issue, recall
that a functorial factorisation of the diagonal is a functor P : C→ → C

→ ×C C
→ that

acts on a map f : X → Y as

f �→ (X
rf−→ PX

�f−→ X ×Y X ),

such that the composition �f · rf equals the diagonal morphism �f : X → X ×Y X .
We say that a functorial factorisation of the diagonal is stable if the square
�(h,k) : �f′ → �f is Cartesian when (h, k) : f′ → f is so. We denote a (stable)
functorial factorisation of the diagonal by P = 〈r, �〉, where r, � : C→ → C

→ are the
induced functors from the two legs of the factorisation respectively. The following
notion was first described in [3, Definition 3.3.3].

Definition 4.8. Let (L,R) be an awfs on C. A stable functorial choice of path
objects (or sfpo for conciseness) consists of a lift of a stable functorial factorisation
of the diagonal P as shown in the following diagram:

R-Map P ��

��

L-Map ×C R-Map

��

C
→

P
�� C

→ ×C C
→.

Proposition 4.9. Let (L,R) be an awfs equipped with an sfpo of the form P =
〈r, �〉. Then (L,R) is equipped with the structure of a pseudo-stable choice of Id-types.
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Proof. We first construct a pseudo-stable choice (Idv.b., r, j) of variable-based
Id-types (see Definition 2.7) and then apply Proposition 2.9 in order to obtain a
pseudo-stable choice of Id-types (see Definition 2.5).

The choices for Id and r are canonically given by the stable functorial choice of
path objects. These satisfy the coherence properties of Definition 2.8. Since the maps
rf are equipped with an L-map structure, we have lifts against R-maps. Using this,
we obtain a choice of canonical elimination terms (i.e., j-terms).

We are left to verify that this choice is coherent. For this, it is sufficient to show
that given a Cartesian morphism of R-maps (h, k) : f′ → f, a R-map q : C → PX ,
if the diagram on the left of (4.1) commutes, then so does the one on the right.

X

rf

��

d �� C

q

��

C ∗ P(h,k)∗
�� C

PX PX PX ′
P(h,k)

��

j(q∗)

��

PX ,

j(d )

��

(4.1)

where q∗ : C ∗ → PX ′ is defined as the pullback of q along P(h, k). The arrows
denoted by j are the canonical choices of lifts. The arrow d∗ is the pullback of d
along P(h, k), i.e., it is defined to be the unique arrow d∗ : X ′ → C ∗ such that:

q∗ ◦ d∗ = rf′ and P(h, k)∗ ◦ d∗ = d ◦ h. (4.2)

We split the problem into two. First, consider the following diagram equipped with
the corresponding canonical lifts:

X ′ d∗ ��

rf′
��

C ∗

q∗
��

P(h,k)∗
�� C

q

��

PX ′

j(d∗)

��
j

��

PX ′
P(h,k)

�� PX .

Note that j = P(h, k)∗ ◦ j(d∗) since the Cartesian square q∗ → q is a morphism of
R-maps. Now consider the following lifting problem:

X ′ h ��

rf′
��

X
rf

��

d �� C

q

��

PX ′
P(h,k)

��

j′

		

PX

j(d )

��

PX .

Once more, j′ = j(d ) ◦ P(h, k) since the square rf′ → rf is morphism of L-maps.
Finally, (4.2) tells us that the outer squares of the two previous diagrams are equal,
implying that they have the same lift j = j′. Thus,P(h, k)∗ ◦ j(d∗) = j(d ) ◦ P(h, k)
as needed. �

Type-theoretic awfs’s, defined below, collect the structure that we discussed so far.

Definition 4.10. Let C be a category. A type-theoretic awfs on C consists of the
following data:

(1) an awfs (L,R) on C satisfying the exponentiability property,
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(2) a functorial Frobenius structure on (L,R),
(3) a stable functorial choice of path objects on (L,R).

The following theorem summarises our results obtained so far in this section.

Theorem 4.11. Let (L,R) be an awfs on a category C with the structure of a
type-theoretic awfs. Then the comprehension category induced by (L,R) is equipped
with pseudo-stable choices of Σ-, Π-, and Id-types.

Proof. Apply Proposition 4.3, Proposition 4.6, and Proposition 4.9. �
We conclude the section summarising how type-theoretic awfs’s give rise to models

of type theory.

Theorem 4.12. Let (L,R) be an awfs on a category C with the structure of a
type-theoretic awfs. Then the right adjoint splitting of the comprehension category
associated with (L,R) is equipped with strictly stable choices of Σ-, Π-, and Id-types.

Proof. Combine Theorem 2.6 and Theorem 4.11. �

§5. Revisiting the groupoid model. The aim of this section is to provide a first
example of a type-theoretic awfs by revisiting the original Hofmann–Streicher model
[20] on the category of groupoids. Explicitly, we construct a type-theoretic awfs
(Cf, F ) on the category Gpd of groupoids and functors.

Consider f : X → Y a functor between groupoids. The comma category of f,
denoted by ↓ f, has as objects tuples (a, b, p) with a ∈ X , b ∈ Y and p : b → fa.
We have that ↓ f is again a groupoid, and moreover the construction is functorial:
↓ (–) : Gpd→ → Gpd. This forms the middle part of a functorial factorisation
assigning

X
Ctf

�� ↓ f
Ff

�� Y

to f : X → Y , where Ctf(a) = (a,fa, 1fa) and Ff(a, b, p) = b.

Proposition 5.1. The functorial factorisation (↓ (–), Ct, F ) is an algebraic weak
factorisation system on Gpd. The Ct-maps are the strong deformation retractions,
while the F-maps are the normal isofibrations.

Proof. We start by examining the structures of the Ct-maps and the F-maps.
We know that an F-map structure on a map f : X → Y corresponds to a lift s as
shown on the diagram on the left below:

X

Ctf

��

X

f

��

A

g

��

Ctg
�� ↓ g

Fg

��

↓ f
Ff

��

s

��

Y B

�

��

B .

A closer analysis will show that s equips f : X → Y with the structure of a normal
isofibration. An L-map structure on g : A→ B is given by a lift � as shown on the
diagram on the right of the previous figure. The structure obtained from such a
lift � can be decomposed as �(b) = (�1(b), b, �2(b)) where �1 : B → A corresponds
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to a retraction of g and �2 : 1B → g ◦ �1 corresponds to a natural transformation
constant on the image of f. This information corresponds to the structure of a strong
deformation retraction.

We construct the corresponding structures of a comonad and a monad for Ct
and F respectively. We provide a brief description and leave the details to the reader.
The comultiplication �f : ↓ f → ↓ Ctf for Ct is defined by letting

�f : (a, b, p) �→ (a, (a, b, p), (1a , p) : (a, b, p) → (a, Fa, 1fa)).

Similarly, the endofunctor F has a multiplication 	f : ↓ Ff → ↓ f given by

	f : ((a, b, p), b̃, p̃ : b̃ → b) �→ (a, b̃, p ◦ p̃) . �

Remark 5.2. The identification of the F-maps with normal isofibrations implies
that the category Gpd satisfies the exponentiability condition (see Definition 4.4)
with respect to the awfs (Ct, F ) since isofibrations can be exponentiated [8], even
if Gpd is not locally Cartesian closed. The F-algebras can be identified with split
isofibrations. An extension of the theory considered here to F-algebras has been
considered in [34].

Proposition 5.3. The awfs (Ct, F ) is equipped with a functorial Frobenius
structure.

Proof. We show that pulling back a Ct-map along an F-map is uniformly a
Ct-map. Consider (g, �) : A→ Y a Ct-map and (f, s) : X → Y an F-map. Let
g ′ : A×Y X → X be the pullback of g along f. We define a Ct-map structure �′

on g ′ which, by Proposition 5.1, corresponds to a strong deformation retraction
(g ′, �′1, �

′
2). Using that f corresponds to a normal isofibration, we can find for each

point x ∈ X , a point x′ ∈ X and a lift �′2(x) of �2(fx), as in

x
�′2(x)

�� x′

fx
�2(fx)

�� g�1fx.

We define �′1(x) = (�1(fx), x′); the homotopy �′2 : 1 → g ′ ◦ �′1 is defined using the
top arrow in the previous diagram. �

We turn our attention to identity types. The category Gpd has a stable and
functorial factorisation of the diagonal given on a map f : X → Y by:

X
rf

�� Pf
�f

�� X ×Y X ,

where the objects of Pf are tuples (a, a′, p) such that p : a → a′ is a morphism in X
over the identity, i.e.,fa = fa′ andfp = 1fa . The map rf is given by a �→ (a, a, 1a)
and the map �f is given by (a, b, p) �→ (a, b).

Proposition 5.4. The awfs (Ct, F ) is equipped with a stable and functorial choice
of path objects.
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Proof. For an F-map (f, s) : X → Y , we need to uniformly provide a Ct-map
structure to rf and an F-map structure to �f . Let us define �1 := tf : Pf → X the
canonical target map. We define the natural transformation �2 : 1Pf → rf ◦ tf by

�2(a, a′, p) := (p, 1a′) : (a, a′, p) → (a′, a′, 1′a).

This corresponds to a strong deformation retraction structure on rf . An F-map
structure on �f corresponds to a normal isofibration. Consider (α, 
) : (b, b′) →
(a, a′) in X ×Y X and an object (a, a′, p) ∈ Pf over (a, a′). We find the lift
(α, 
) : (b, b′, q) → (a, a′, p) by setting q := 
 ◦ p ◦ α–1 : b → b′. �

Theorem 5.5. The awfs (Ct, F ) on the category Gpd is equipped with the structure
of a type-theoretic awfs.

Proof. Apply Proposition 5.1, Proposition 5.3, and Proposition 5.4. �

By Theorem 4.12 and Theorem 5.5 we obtain a version of the groupoid model
of [20], using normal isofibrations instead of split fibrations and presented in terms
of a split comprehension category rather than of a category with families [10]. In our
presentation, the connection to the homotopy theory of groupoids is made explicit
thanks to the notion of a type-theoretic awfs.

§6. Type-theoretic awfs from uniform fibrations. In this section we investigate how
to obtain type-theoretic awfs using the theory of uniform fibrations of [14]. This
provides a major source of examples of categories equipped with type-theoretic awfs,
including some on simplicial and cubical sets.

We begin by recalling the pushout-product construction [30]. Let us consider
a Grothendieck topos E; the pushout-product bifunctor – ×̂ – : E→ × E

→ → E
→ is

defined on a pair of arrows f : X → Y and g : A→ B as the dotted arrow in

X × A f×A
��

X×g
��

Y × A

��
Y×g

��

X × B ��

f×B ��

(Y × A) +X×A (X × B)
��

f×̂g
��

Y × B .

An interval object in E consists of an object I together with two morphisms
�0, �1 : ⊥ → I (where we write ⊥ for the terminal object of E), respectively called
the left and right endpoint inclusions; these morphisms are required to be disjoint,
i.e., the pullback of one along the other is the initial object. We require the following
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additional structure. The connection operations on I are given by ck : I × I → I for
k ∈ {0, 1}, making the following diagrams commute:

I
�k×I

��

�

��

I × I

ck

��

I
�1–k×I

��

���
���

���
���

���

���
���

���
���

���
I × I

ck

��

⊥
�k

�� I , I .

Connections correspond to a special type of degeneracy maps that can be pictured
as the two possible deformations of the square I × I into its diagonal by fixing one
of the two endpoints. With this in place, we proceed to describe the construction of
uniform fibrations. Our starting point is the following definition.

Definition 6.1. A suitable topos consists of a tuple (E, I,M) where E is a
Grothendieck topos equipped with an interval object I with connections and a
class M of arrows in E satisfying the following conditions:

(M1) the objects of M are monomorphisms,
(M2) the initial map ∅ → X is in M for every X ∈ E,
(M3) the objects of M are closed under pullback along any arrow in E,
(M4) the elements of M are closed under pushout-product with the endpoint

inclusions, i.e., for each j ∈ M, we have that �k×̂j ∈ M.

The elements of M are called generating monomorphisms.

Given a suitable topos (E, I,M), we can consider M as a category by taking
Cartesian squares as arrows. Now, let us denote by M×̂ the category that has as
objects maps of the form �k×̂j with j ∈ M and k ∈ {0, 1} and whose morphisms
are given by squares of the form �k×̂� : (�k×̂j′) → (�k×̂j) induced by functoriality
of the pushout-product applied to Cartesian squares � : j′ → j between generating
monomorphisms. We considerM×̂ to be a category of arrows by taking the inclusion
into E

→.

Construction 6.2. Let us consider a suitable topos (E, I,M). The category of
arrows of trivial uniform fibrations, denoted by

TrivUniFib → E
→,

is defined as the right orthogonal category of arrow toM, that is, TrivUniFib : = M�.
Analogously, the category of arrows of uniform fibrations, denoted by

UniFib → E
→,

is defined as the right orthogonal category of arrow to M×̂, i.e., UniFib : = M�

×̂.

We construct awfs’s of trivial uniform fibrations and uniform fibrations, even if we
cannot apply Garner’s small object argument directly because M need not be small.

Lemma 6.3. Consider a suitable topos (E, I,M) with a fixed dense small
subcategory A. Let us denote by I the full subcategory of M spanned by those arrows
in M whose codomain lie in A. Similarly, denote by I×̂ the full subcategory of M×̂
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whose objects are pushout-product maps �k×̂j with j ∈ I. Then the following are
satisfied:

(1) The right orthogonal functor of the inclusion inc : I ↪→ M is an isomorphism
i.e., inc� : M� ∼= I�.

(2) The right orthogonal functor of the inclusion inc×̂ : I×̂ ↪→ M×̂ is an isomor-
phism i.e., inc�

×̂ : M�

×̂
∼= I�

×̂ .

Proof. We start with (1). In order to define an inverse I� → M�, consider an
object (f, �) ∈ I�, where � is a lifting operation for squares (a, b) : i → f with
i ∈ I. We need a way to canonically extend � to all arrows in M. In order to do this,
let us consider j : A→ B in M. Since A is dense, we can express B canonically as a
colimit B ∼= colimk : A→BA with A ∈ A. Moreover, in a topos, pullbacks commute
with colimits, and thus we obtain

j ∼= colimk : A→B(Δkj),

where Δkj is the pullback of j : A→ B along k : A → B . Since M is closed under
base change, Δkj ∈ M and by definition, we get Δkj ∈ I. A filler for a square
(a, b) : j → f is canonically obtained from the universal property of the colimit,
applied to the collections of fillers given by � relative to Δkj for each k : A → B .

For (2), we proceed in a similar manner. Consider (f, �) ∈ I�

×̂ , we need to

canonically extend � to all arrows in M×̂. For this, consider �k×̂j ∈ M×̂. By
definition, j ∈ M and thus j ∼= colimk : A→B(k∗j) by the previous argument. Since
�k×̂ – is cocontinuous, we obtain:

�k×̂j ∼= �k×̂colimk : A→B(Δkj) ∼= colimk : A→B(�k×̂(Δkj)),

and by definition �k×̂(Δk) ∈ I×̂. Once more, any square (a, b) : �k×̂j → f can be
filled canonically by the universal property of the colimit applied to the collections
of fillers given by � relative to �k×̂(Δkj). �

Proposition 6.4. Consider a suitable topos (E, I,M). There exists two awfs (C,Ft)
and (Ct, F ) on E which are algebraically-free on M and on M×̂ respectively.

Proof. Apply Garner’s small object argument to I and I×̂ respectively. Since E

is a Grothendieck topos, there exists a small dense subcategory A of E (for example,
the full subcategory of compact objects for a large enough cardinal). By Lemma
6.3, the resulting awfs’s are algebraically-free on M and M×̂ respectively. �

Remark 6.5. By definition of algebraically-free awfs we have the following
isomorfisms Ft-Alg ∼= TrivUniFib and F-Alg ∼= UniFib. And, by Proposition 3.4
we have back-and-forth functors Ft-Map ↔ TrivUniFib and F-Map ↔ UniFib.

We proceed to show that, under some extra hypothesis, the awfs (C,Ft) of uniform
fibrations is type-theoretic. We know that it has a functorial Frobenius structure by
[14, Theorem 8.8] and so we only need to construct a stable functorial choice of path
objects on (Ct, F ). For this, we require the following construction. Given a topos E
equipped with an interval object I, there is a natural way to construct a stable and
functorial factorisation of the diagonal: for a morphism f : B → A, consider

B
rf

�� Pf
�f

�� B ×A B ,

https://doi.org/10.1017/jsl.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.39


264 NICOLA GAMBINO AND MARCO FEDERICO LARREA

where the object Pf and the map rf arise from the pullback diagram:

B B�

��

f

��

rf

��

Pf
��

��

��

BI

fI

��

A
A�

�� AI .

(6.1)

Here, we use the abbreviation of (–)I for the exponential object hom(I, –) and
denote by � : I → ⊥ the unique map to the terminal object. The second leg of
the factorisation �f : Pf → B ×A B is given by the universal property of B ×A
B applied to the canonical source and target maps sf, tf : Pf → B given by the

composition of the arrow Pf → BI from the pullback square, and B�
0
, B�

1
: BI →

B respectively. We denote the factorisation by PI , so as to indicate that it was
constructed from the interval I.

Let us provide an alternative construction of this factorisation which makes
evident some intermediate steps and uses the adjunction – ×̂i � ˆhom(i, –) given by
the pushout-product and pullback-exponential. Denote by i : ∂I → I the boundary
inclusion of the interval object and by �k : ⊥ → ∂I the composition of the boundary
with the k-th endpoint inclusion. The following diagram expands the previous one,
i.e., the exterior part is exactly the one in (6.1).

B
B�





rf

��
















Δf

��
��
��
��

��
��

��
��

�

1B

��

f

��

Pf
��

��

�f

��

BI

ĥom(i,f)
��

ĥom(�1,f)

��

fI

��

B ×A B
��

�2

��

〈αf,�f〉 �� AI ×A∂I B∂I

1×
A�

1 B
�1

��

B
��

〈
f,1B 〉 ��

f

��

AI ×A B
�1

��

A
A�

�� AI .

(6.2)

The intermediate horizontal arrows �f , αf , and 
f are given intuitively as follows.
The map �f sends a pair of points in B ×A B to the same pair of points but now in
B∂I , αf sends a similar pair of points (b1, b2) to the reflexivity (constant) path on
f(b1) = f(b2), and map 
f also sends a point b to the reflexivity path on f(b).

The next essential ingredient needed to prove that the factorisation PI = 〈r, �〉
lifts to a stable functorial choice of path objects, is that of the categories of
strong homotopy equivalences and of strong deformation retracts. We recall from
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[14, Definition 4.1] the definition of k-oriented strong homotopy equivalence (for
k ∈ {0, 1}) and from [14, Lemma 8.1] that they assemble into a category of
arrows which we will call SEk . We then define SE: = SE0 + SE1. The definition
of k-oriented strong deformation retracts is analogous; briefly, a k-oriented
strong deformation retraction structure corresponds to a tuple (g : A→ B, r : B →
A, h : I × B → B) such that rg = 1A, h is an homotopy from gr to 1B or from 1B
to gr respectively if k is 0 or 1 and such that h is degenerate in the image of g (hence
the strength). Strong deformation retracts assemble into categories of arrows SDRk
depending on the orientation k ∈ {0, 1}, and so we obtain SDR: = SDR0 + SDR1
by taking their coproduct. Notice that any strong deformation retract is also a strong
homotopy equivalence, i.e., there is a functor of category of arrows SDR → SE over
the identity of the underlying category.

The following two lemmas constitute the first key results regarding the connection
between the factorisation PI = 〈r, �〉 and the awfs of uniform fibrations.

Lemma 6.6. Consider a suitable topos (E, I,M) and let (Ct, F ) be a corresponding
awfs of uniform fibrations onE. Suppose that the following additional hypothesis holds:

(M5) Maps in M are closed under pushout-product against the boundary inclusion
i : ∂I → I , i.e., for any j ∈ M, we have that i×̂j ∈ M.

Then, the second component of the factorisation PI , i.e., � : E→ → E
→, lifts to a

functor � : F-Map → F-Map.

Proof. Since the awfs of trivial uniform fibrations (C,Ft) is suitable (see [14,
Definition 7.1]), the functor �k×̂ – lifts to the category C-Map and �k×̂ – also
factors though the category SE of strong homotopy equivalences by [14, Lemma
8.4]. Combining these two facts, we obtain a lift

�k×̂(–) : C-Map → C-Map ×E→ SE.

By [14, Proposition 8.5], we have a functor C-Map ×E→ SE → Ct-Map over E
→,

and composing with the one above, we obtain a lift of �k×̂ –

�k×̂(–) : C-Map → Ct-Map. (6.3)

By functorial orthogonality arguments with respect to the pushout-product and
pullback-exponential constructions (see [14, Proposition 5.11] and [14, Remark
5.12]) together with the hypothesis (M5), the functor i×̂ – : M → M lifts to the
category C-Map,

i×̂(–) : C-Map → C-Map. (6.4)
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Applying the lifts in (6.3) and (6.4), together with the fact that (C,Ft) is
algebraically-free on the category of arrows M → E

→, as witnessed by the functor
� : M → C-Coalg, we obtain the diagram

M �̃
��

��















C-Map

i×̂–
��

��

C-Map
�k×̂–

��

��

Ct-Map

��

E
→

i×̂–
�� E

→
�k×̂–

�� E
→,

where �̃ is the composite of � and the forgetful functor from C-algebras to C-maps.
By symmetry of the pushout-product functor, we obtain a natural isomorphism

between i×̂�k×̂ – and �k×̂i×̂ –. We can transfer the algebraic structure along this
natural isomorphism in order to obtain the following lift:

M

��

�� Ct-Map

��

E
→

�k×̂–
�� E

→
i×̂–

�� E
→.

Taking the coproduct of these lifts for k = 0, 1 we obtain a lift of i×̂ –,

i×̂(–) : M×̂ → Ct-Map. (6.5)

Using that Ct-Map ∼= �F-Alg (cf. Proposition 3.3) and that (Ct, F ) is
algebraically-free on M×̂, we can apply [14, Proposition 5.9] to (6.5) and obtain

F-Alg
ĥom(i,–)

��

��

(M×̂)�

��

∼= �� F-Alg

����
��
��
��
�

E
→

ĥom(i,–)
�� E

→.

By the top pullback square in (6.2), the morphism �f : Pf → B ×A B is obtained
in the following two steps:

f �→ ĥom(i, f) �→ 〈αf, �f〉∗ĥom(i, f) = �f ,

i.e., by first applying ˆhom(i, –) and then pulling back along 〈αf, �f〉. Since we have
lifts of ˆhom(i, –) and of the pullback functor to the category of F-algebras, we
obtain a lift of �,

F-Alg

�

��

ĥom(i,–)
�� F-Alg

PB(–,〈α,�〉)
�� F-Alg.

Finally, as we are working with an algebraically-free awfs, we have lifts back-and-
forth between R-Alg and R-Map over E

→ (cf. Proposition 3.4), and thus we can
transfer the lift of � from the category of R-algebras to that of R-maps. �
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Lemma 6.7. Consider a suitable topos (E, I,M) and let (Ct, F ) be a corresponding
awfs of uniform fibrations on E. Then the first component r : E→ → E

→ of the
factorisation PI lifts to the category of strong deformation retracts,

F-Map

��

r �� SDR

��

E
→

r
�� E

→.

Proof. We first show that the target map functor (that takes a map f : B → A
to a map tf : Pf → B) lifts to a functor from F-Map to Ft-Map. Using that we
have a lift �1×̂ – : C-Map → Ct-Map as shown in the proof of Lemma 6.6, we can
transpose using [14, Proposition 5.9] to obtain a lift of ˆhom(�1, –):

ĥom(�1, –) : F-Alg → Ft-Alg.

Looking at (6.2), note that tf : Pf → B is obtained by applying ˆhom(�1, –) to f
and then pulling back along 〈
f, 1B〉. Thus, the functor mapping f �→ tf lifts as

F-Alg

t(–)

��

ĥom(�1,–)
�� Ft-Alg

PB(–,〈
,1〉)
�� Ft-Alg. (6.6)

Since both awfs in question are algebraically-free, we can apply Proposition 3.4 to
obtain the desired lift.

Let us return to the task of finding a lift of the functor r : E→ → E
→ to a functor

r : F-Map → SDR. For this, we show that for each uniform fibration (f, s) : B → A
the target map tf : Pf → B is a strong homotopy retraction of rf : B → Pf.

Looking again at (6.2) it is clear that tf ◦ rf = 1B . Thus, we are left with the task
of constructing an homotopy H : rf ◦ tf ∼ 1Pf , for this consider the commutative
diagram

Pf
〈rf◦tf ,1Pf〉

��

B�◦tf
��

Pf∂I

t∂If
��

BI
Bi

�� B∂I ,

where the top horizontal arrow is given by the universal property of Pf∂I ∼= Pf ×
Pf. This gives us an arrow into the pullback

H̃ : Pf → BI ×B∂I Pf∂I .
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We already have a lift of the target map t(–) : F-Map → Ft-Map. Combining this

with the fact that ˆhom(i, –) lifts to Ft-Map (which follows by similar arguments to
those used in the proof of Lemma 6.6), ˆhom(i, t(–)) lifts to a functor

ĥom(i, t(–)) : F-Map → Ft-Map,

which we can apply to f to obtain a uniform trivial fibration ˆhom(i, tf).
By part (M2) of Definition 6.1, for every object X ∈ E, the map ∅ → X is in M.

Using this, we obtain a morphism H as the canonical filler in

∅

��

�� PfI

ĥom(i,tf )
��

Pf
H̃

��

H

		

BI ×B∂I Pf∂I .

It is straightforward to verify that this H is actually an homotopy from rf ◦ tf
to 1Pf . This shows that tf is a strong deformation retract of rf .

We have given the action of the desired lift r : F-Map → SDR on objects.
To show that this construction is functorial on f, consider a morphism
of F-Map(h, k) : f′ → f. Since the factorisation of the diagonal is functorial,
we obtain the diagram

B ′ h ��

rf′
��

B

rf

��

Pf′ P(h,k) ��

tf′
��

Pf

tf

��

B ′
h

�� B .

The bottom square is a morphism of Ft-Map since it is the result of applying the
lift of t(–) of (6.6) to the square (h, k). Let us prove that (h, P(h, k)) : rf′ → rf is a
morphism of strong deformation retracts. Looking at the definition of a morphism
of homotopy equivalences (in the paragraph before [14, Lemma 8.1]), we observe
that the only thing we need to show is that the following diagram commutes:

Pf′ P(h,k)
��

H ′

��

Pf

H

��

Pf′I
P(h,k)I

�� PfI ,
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where the left and right horizontal arrows are the homotopies witnessing that rf′
and rf respectively are strong deformation retracts. For this, we make use of the
naturality of the filling operations. Consider the diagrams:

∅

��

�� ∅

��

�� PfI

ĥom(i,tf )
��

Pf′
P(h,k)

��

L′

��

Pf

H

		

H̃

�� fI ×B∂I PfI ,

(6.7)

∅

��

�� Pf′I

ĥom(i,tf′ )

��

P(h,k)I
�� PfI

ĥom(i,tf )
��

Pf′
H̃ ′

��

L

��

H ′

		

f′I ×B′∂I Pf′I
hI×

h∂I
P(h,k)∂I

�� fI ×B∂I PfI .

(6.8)

The left square in (6.7) is a morphism in M since it is Cartesian. The right
square of (6.8) is a morphism of Ft-maps since it is the result of applying the
lift ˆhom(i, t(–)) : F-Map → Ft-Map to the square (h, k) which is, by hypothesis, a
morphism of F-maps. Hence, the corresponding lifts cohere.

Since the construction of the maps H̃ and H̃ ′ is given by a universal property, it
is functorial and so the diagram

Pf′ P(h,k)
��

H̃ ′

��

Pf

H̃
��

B ′I ×B′∂I Pf′I
hI×

h∂I
P(h,k)∂I

�� BI ×B∂I PfI

commutes. Thus, the composition of the bottom horizontal arrows in (6.7) and (6.8)
coincide. This makes the fillerL′ and L in diagrams 6.7 and 6.8 respectively, the same
morphism and thusH ◦ P(h, k) = L′ = L = P(h, k)I ◦H ′, as required. �

Using Lemma 6.6 and Lemma 6.7, we can prove the following proposition.

Proposition 6.8. Consider a suitable topos (E, I,M) and let (Ct, F ) be a
corresponding awfs of uniform fibrations on E. Suppose that the following additional
hypotheses hold:

(M5) Maps in M are closed under pushout-product against the boundary inclusion
i : ∂I → I , i.e., for any j ∈ M, we have that i×̂j ∈ M.

(M6) For anyf : B → A inE, the first leg map rf : B → Pf from the factorisation
of the diagonal PI belongs to M :

Then, the factorisation of diagonal PI = 〈r, �〉 induced from the interval object lifts to
a stable functorial choice of path objects for (Ct, F ) :

PI : F-Map → Ct-Map ×E F-Map.
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Proof. Recall that the factorisation of the diagonal PI = 〈r, �〉 is divided into
two functors r, � : E→ → E

→. By Lemma 6.6, � lifts to the category F-Map, so
it remains to show that r : E→ → E

→ lifts to a functor r : F-Map → Ct-Map. This
follows from two observations. First, since the factorisation of the diagonal is stable,
r preserves Cartesian squares and thus, by item (M6) in the hypothesis of the
theorem, r lifts to M (considered as a category of arrows), r : E→ → M. Secondly,
consider the unit �M : M → �(M�) of the orthogonality adjunction of 3.1 and
note that since (C,Ft) is algebraically-free on M, we obtain a morphism in the slice
over E→,

�M : M → C-Map.

We can compose these last two lifts to obtain r : E→ → C-Map.
Finally, we can combine the lifts r : F-Map → SDR from Lemma 6.7 with

r : E→ → C-Map and apply [14, Proposition 8.5] in order to obtain the desired
lift of r,

F-Map

r

��
�� C-Map ×E→ SE �� Ct-Map .

�
We introduce the following definition to summarise our results.

Definition 6.9. A type-theoretic suitable topos consists of a suitable topos
(E, I,M) (see Definition 6.1) which moreover satisfy the conditions (M5) and (M6)
in the hypothesis of Proposition 6.8.

Theorem 6.10. Let (E, I,M) be a type-theoretic suitable topos, and let (Ct, F ) be
the awfs of uniform fibrations on E. Then (Ct, F ) is equipped with the structure of a
type-theoretic awfs.

Proof. The result follows from [14, Theorem 8.8] and Proposition 6.8. �
The next result allows us to construct examples of type-theoretic suitable toposes.

Proposition 6.11. Consider E be a Grothendieck topos equipped with an interval
object I with connections. Let Mall be the class that consists of all monomophisms of
E. Then the tuple (E, I,Mall ) is a type-theoretic suitable topos.

Proof. We need to verify conditions (M1)–(M6) from the definition of type-
theoretic suitable topos. By elementary properties of monomorphisms, it is clear
that (M1)–(M3) hold. Condition (M4) follows because in the topos E the pushout-
product construction �k×̂j for a given monomorphism j : A→ B , computes the
join (or union) of the subobjects �k × B : B → I × B and I × j : I × A→ I × B ,
which is again a subobject of I × B and in particular a monomorphism. The same
arguments applies for condition (M5). Finally condition (M6) follows since for
any map f : X → Y , the morphism rf : X → Pf is the section of the target map
tf : Pf → X and in particular, it is a monomorphism. �

Example 6.12. We can instantiate Proposition 6.11 on the presheaf toposes of
simplicial sets sSet and of cubical sets cSet equipped with the obvious choices of
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interval objects given by the representable 1-simplex and 1-cube respectively. We
thus obtain type-theoretic awfs on sSet and cSet. In sSet, assuming classical logic,
a morphism admits the structure of a uniform fibration if and only if it is a Kan
fibration by [14, Theorem 9.9].

Remark 6.13. Although the proof of Theorem 6.10 is constructive, in order to
construct a univalent universe à la Hofmann–Streicher [19] in a constructive setting,
it is necessary to restrict the category Mall of generating monomorphisms to that
of decidable ones; i.e., those monomorphisms that have level-wise decidable image
[28]. The arguments in this section do not apply if we take Mdec as the category
of generating monomorphisms, where Mdec is the subclass of Mall of decidable
monomorphisms (for either sSet or cSet). The issue lies in condition (M6), i.e.,
that the first leg rf : X → Pf of the factorisation of the diagonal of a morphism
f : X → Y is in Mdec. Intuitively, the morphism rf maps an object of x of X to the
degenerate path on x; this morphism is not decidable because, in general, it is not
possible to decide degeneracies [4]. Because of this, in the next section we turn our
attention to normal uniform fibrations (see Remark 8.2). An alternative approach
would be to restrict attention to cofibrant objects, as in [13].

§7. Normal uniform fibrations. In this section, we develop the notion of a normal
uniform fibration in the context of a suitable topos (E, I,M) (Definition 6.1). Recall
from the discussion before Proposition 6.4 that the category of arrows of uniform
fibrations was constructed by right orthogonality form the category of arrows M×̂
over E, whose objects are maps of the form �k×̂j with j ∈ M and k ∈ {0, 1}.
Moreover, recall from Proposition 6.4 that we cannot use Garner’s small object
argument directly with M×̂ to construct the awfs of uniform fibrations (Ct, F ) as
M×̂ is not small; instead, we need to restrict to the small category of arrows I×̂
that consists of arrows �k×̂j with j ∈ I, where I consists of the arrows in M whose
codomain lie in a fixed small dense subcategory of E.

We define a new category of arrowsIn
×̂ → E

→ such that a rightIn
×̂-map will consist

of a uniform fibration with an extra normality property. The idea is that In
×̂ → E

→ is
obtained from I×̂ → E

→ by adding, for each generating monomorphism i : A� B
and for k ∈ {0, 1}, the coherence square on the left in

B +A (I × A)

�k×̂i
��

sqk (i)
�� B

I × B
�×B

�� B ,

A
i ��

�k×A
��

B

�k×B
��

1B

  

I × A ��

�×A
!!

B +A (I × A)

sqk (i)

""
A

i
�� B ,

(7.1)

where sqk(i) : B +A (I × A) → B is the universal map out of the pushout as
described on the right of the previous diagram. The arrows � × B and � × A are
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the projections from the second component of the product. We refer to the square
on the left of (7.1) as the k-squash square of i : A� B and we denote it by

squashk(i) : �k×̂i → 1B.

The name follows the intuition of squashing the mapping cylinder in the direction of
the interval (i.e., the filling direction). The following technical result about squash
squares will be needed in what follows.

Lemma 7.1. Let k ∈ {0, 1} and consider monomophisms i : A� B and j : C �
D. Then applying the pushout-product functor (j×̂ –) : E→ → E

→ to the k-squash
square of i : A� B produces the k-squash square of j×̂i ; that is:

j×̂(squashk(i)) ∼= squashk(j×̂i) : �k×̂(j×̂i) → 1D×B .

Proof. If we apply (j×̂ –) : E→ → E
→ to the k-squash square of i : A� B ,

using that the pushout-product is symmetric and associative, we get the following
square:

dom(�k×̂(j×̂i))

�k×̂(j×̂i)
��

Θ �� D × B

I × (D × B)
�×(D×B)

�� D × B ,

where we only need to verify that the top horizontal arrow Θ is the squash morphism,
that is, we need to verify that Θ = sqk(j×̂i) : dom(�k×̂(j×̂i)) → D × B , but this
follows since the diagram commutes. �

We now proceed to construct the arrow category In
×̂ → E

→ that will generate the
category of normal uniform fibrations. We do this as follows. First let us denote by I

the ‘walking arrow’, that is the poset with two objects 0 < 1 considered as a category,
this has the structure of an interval object in Cat, and we denote the inclusions by:

∗
�1

��
�0 ��

I .

We defineIn
×̂ := I× I×̂, whereI×̂ is the generating category of uniform fibrations.

The functor down to E
→ is determined by the following two properties.

(1) The following diagram commutes:

I×̂

u⊗
���

��
��

��
�

In
×̂

�0##

��

�1 �� I×̂

�cod
����
��
��
��

E
→

where the map �cod : I×̂ → E
→, sends an object i ∈ I×̂ to the identity arrow

on the codomain of i.
(2) For k ∈ {0, 1} and for each i : A� A in I, the functor un

⊗ takes the arrow in
I× I×̂ of the form I× i : {0} × i → {1} × i , to the k-squash square of i; i.e.,
squashk(i) : �k×̂i → 1A.
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In other words, In
×̂ → E

→ is a natural transformation: u⊗ → �cod : I×̂ → E
→ whose

components are the k-squash squares.
We define NrmUniFib → E

→ to be the category of arrows of right In
×̂-maps in

E, and we call its objects normal uniform fibrations. Using Garner’s small object
argument [15, Theorem 4.4] along the lines of Lemma 6.3 and Proposition 6.4, we
obtain the following result.

Theorem 7.2. There is an algebraically-free awfs on the category of arrows In
×̂ →

E
→, denoted by (NCt,NF ), whose category ofNF -algebras is that of normal uniform

fibrations.

Let us observe that the forgetful functor into E
→ factors through the category of

uniform fibrations, i.e., we have a commutative diagram:

NrmUniFib U ��

$$��
���

���
��

UniFib

�����
���

���

E
→ .

Moreover, we can prove the following lemma.

Lemma 7.3. The forgetful functor U : NrmUniFib → UniFib is fully faithful.

Proof. This follows intuitively by noticing that the structure of a normal uniform
fibration does not add any new lifting problems to that of a uniform fibrations; this
is because the only new vertical arrows we are adding are identities and every
morphism has a unique lift against them. Concretely, if (f, φ) ∈ NrmUniFib and if
(f, �) ∈ UniFib, then both lifting structuresφ and � produce lifts against the exactly
same squares, the difference is that φ may have additional coherence properties. �

In the following proposition we characterise those uniform fibration structures
that are normal. We use the following terminology: we say that a morphism � : I ×
B → X is degenerate in the lifting direction if it factors through the projection
�1 : I × B → B via some arrow �∗ : B → X ; we call �∗ the lifting degeneracy of b.

Proposition 7.4. Let (f, �) ∈ UniFib, then the following conditions are equiva-
lent.

(1) (f, �) is a normal uniform fibration.
(2) For any generating monomorphism i : A� A in I and for any square:

A +A (I × A) a ��

�k×̂i
��

X

f

��

I × A

�i (a,b)

		

b
�� Y ,

if the square factors through the squash square of i as �k×̂i
squashk (i)

�� 1A
(a∗,b∗)

�� f ,
then the lift �i(a, b) is degenerate in the lifting direction with a∗ as lifting
degeneracy.
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(3) For any generating monomorphism i : A� B in M and for any square:

B +A (I × A) a ��

�k×̂i
��

X

f

��

I × B

�i (a,b)

		

b
�� Y

if the square factors through the squash square of i as �k×̂i
squashk (i)

�� 1B
(a∗,b∗)

�� f ,
then the lift �i(a, b) is degenerate in the lifting direction with a∗ as lifting
degeneracy.

Proof. Let us first assume that (f, �) is a normal uniform fibration. It is easy to
see that item (2) holds; for this consider the diagram:

A +A (I × A)

�k×̂i
��

sqk (i)
�� A

a∗ �� X

f

��

I × A
�

��

�1
�� A

a∗

%%

b∗
�� Y

it is clear that the lifts cohere because the left square is by definition a morphism in
(the image of) In

×̂ → E
→.

It is also easy to see that (2) implies (1); this follows since the uniform fibration
structure � already provides lifts against all lifting problems coming form In

×̂;
moreover, the lifts will also cohere with all the squares coming from u⊗ : I×̂ → E

→.
So we only need to verify that it coheres with the squash squares, but these squares
are precisely those as in the hypothesis of item (2).

It is clear that (3) implies (2). For the converse let us first observe, using that
colimits in E are universal, that any monomorphism i : A� B is the colimit over
the generalised elements with domain on the dense subcategory A used to define the
category of arrows I (see Proposition 6.4); that is,

i ∼= colimx : A→B
A∈A

x∗(i),

where for each x : A → B we denote by x∗(i) the pullback of i along x. Now, since
�k×̂ – : E→ → E

→ is cocontinuous, we have that:

colimx : A→B
A∈A

(�k×̂(x∗(i))) ∼= �k×̂colimx : A→B
A∈A

x∗(i) ∼= �k×̂i.

Let us suppose that (2) holds, and that we have a diagram as in item (3). Then
for each generalised element x : A → B with A ∈ A, we have a square:

A +x∗(A) (I × x∗(A))

�k×̂x∗(i)
��

�x �� B +A (I × A) a ��

�k×̂i

��

X

f

��

I × A
I×x

��

�x∗(i)

��

I × B

�i

		

b
�� Y ,
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where the left square is the colimit inclusion corresponding to x : A → B . The
commutation of the respective triangle is obtained by the universal property of the
colimit.

Finally, if the square on the right factors through a squash square

�k×̂i
squashk (i)

�� 1B
(a∗,b∗)

�� f ,

then (by naturality) the outer square also factors through a squash square and
thus the lift �x∗(i) is degenerate with a∗�x as lifting degeneracy. This implies by the
uniqueness of the universal property, that also �i is degenerate with a∗ as lifting
degeneracy. �

Remark 7.5. To guide our intuition towards normal uniform fibrations, we can
compare the notions of normality for cloven isofibrations in groupoids and for
uniform fibrations in simplicial sets. For this, we consider the awfs of (normal)
uniform fibrations on simplicial sets constructed from the suitable topos structure
consisting of the 1-simplex as the interval object and the class Mall of all
monomorphisms as the class of generating monomorphisms. It is not hard to show
that the following are pullback squares:

NrmFib Ñ ��

��

��
NrmUniFib

��

ClFib Ñ ��

��

��
UniFib

��

Grd→
N

�� sSet→.

Here, the categories ClFib and NrmFib are those of cloven isofibrations and normal
cloven isofibrations in groupoids while the horizontal arrows are given by the nerve
functor and its respective lifts. This shows how the notion of uniform fibration
(respectively normal uniform fibration) is a generalisation to higher dimensions of
the notion of cloven isofibration (respectively normal cloven isofibrations).

The category of arrows of normal trivial cofibrations is defined to be the category
of NCt-maps with respect to the awfs of normal uniform fibrations (Theorem 7.2).
Alternatively, it is the left orthogonal category of arrows of NrmUniFib. We will
denote it by NrmTrivCof. Even if we do not know a complete characterisation
of normal trivial cofibrations, we have a general method for constructing normal
trivial cofibrations from a structure that is easier to handle. For this, let us recall
the categories SDR of strong deformation retractions and SE of strong homotopy
equivalences from Section 6 defined immediately before Lemma 6.6. In the next
proposition, we observe that every strong deformation retract has (uniformly) the
structure of a normal trivial cofibration. Normality is an essential ingredient in the
proof; in particular, a similar result would not hold for uniform fibrations.
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Proposition 7.6. There is a functor from the category strong deformation retracts
SDR to that of normal trivial cofibrations NrmTrivCof,

SDR Ψ �� NrmTrivCof.

Proof. Let (g, r, h) ∈ SDR which we assume to be 0-oriented (the other
case being analogous). We have to define Ψ(g, r, h) := (g,Ψh) with Ψh a left
NrmTrivCof-map structure for g. To do this, let us consider a normal uniform
fibration (f, φ) and a square (a, b) : g → f for which we will construct a lift
Ψhf : B → X as shown:

A

g

��

a �� X

f

��

B
b

��

Ψhf

��

Y .

We first consider the lift H : I × B → X , in the following square (which commutes
because the deformation retraction is 0-oriented), produced by the normal uniform
fibration structure of f :

B

�0×B
��

r �� A
a �� X

f

��

I × B

H

		

h
�� B

b
�� Y .

We define Ψhf : = H · (�1 × B). That is, the lift Ψhf is defined to be H on
restricted to the top of the cylinder I × B . The verification that f ◦ Ψhf = b is
straightforward.

We now need to check that Ψhf · g = a; for this we first observe the following
diagram:

A
g

��

�0×A
��

B
�0×B

��

r �� A
a �� X

f

��

I × A
I×g

��
H0

��

I × B

H

		

h
�� B

b
�� Y .

Here, the liftH0 is also defined by the uniform fibration structure of f, and moreover
the triangle created by the lifts commute, since the square on the left is a morphism
of left UniFib-maps.

We use that rg = 1a and the strength of the homotopy retraction tuple (g, r, h),
to replace the horizontal arrows in the previous diagram in order to obtain the
following one:

A

�0×A
��

A
a �� X

f

��

I × A
�1

��
H0

��

A

a

&&

g
�� B

b
�� Y ,
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where the lifts cohere by Proposition 7.4 using the squash square of ⊥A : ∅ → A.
With this in place,

Ψhf · g = H · (�1 × B) · g (by defn of Φhf)
= H · (I × g) · (�1 × A) (by naturality of �1× –)
= H0 · (�1 × A) (by construction of H0)
= a · �1 · (�1 × A) (by normality of (f, φ))
= a,

as required. �

§8. Type-theoretic awfs from normal uniform fibrations. In order to equip the
awfs (NCt,NF ) of normal uniform fibrations with the structure of a type-theoretic
awfs we require a functorial Frobenius structure and a stable functorial choice
of path objects. In this section, we show how to construct these. We focus first
with the construction of a stable functorial choice of path objects (sfpo for short),
cf. Definition 4.8. We work in the context of a suitable topos (E, I,M) that in
addition satisfies hypothesis (M5) from Proposition 6.8. Recall from the discussion
preceding Proposition 6.8 that a suitable topos has a canonical stable and functorial
factorisation of the diagonal, called PI , which is constructed via exponentiation by
the interval. Our objective is to lift this factorisation to an sfpo. That is, we need to
exhibit a lift of PI as in

NrmUniFib
PI �� NrmTrivCof ×C NrmUniFib.

We can split the problem in two. If we denote by r, � : E→ → E
→ the two legs of the

sfpo (i.e., by composing PI with the two projections from the pullback), then it is
sufficient to show that there are lifts of these functors as in the following diagram:

NrmUniFib r �� NrmTrivCof NrmUniFib
�

�� NrmUniFib .

The lift of r : E→ → E
→ can easily obtained by collecting some of the results

established so far.

Lemma 8.1. There is a lift of the functor r : E→ → E
→ as shown:

NrmUniFib r �� NrmTrivCof.

Proof. We construct the desired lift as the following composite:

NrmUniFib

��

�� UniFib �� SDR

��

Ψ �� NrmTrivCof

��

E
→

E
→

r
�� E

→
E
→ ,

where the lift in the leftmost square is the forgetful functor, that on the middle
square comes from Lemma 6.7 and the lift in the rightmost square is the one from
Proposition 7.6. �

https://doi.org/10.1017/jsl.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.39


278 NICOLA GAMBINO AND MARCO FEDERICO LARREA

Remark 8.2. The proof of Proposition 6.8, which shows that the functor
r : E→ → E

→ lifts to the category of left maps of the awfs of uniform fibrations, relied
crucially on the hypothesis (M6). This says that the image of r lands on the class M
of generating monomorphisms of the suitable topos. As noted in Remark 6.13,
hypothesis (M6) does not hold if we consider Mdec, the class of decidable monos in
the context of a presheaf topos. However notice that the proof of Lemma 8.1 does
not require hypothesis (M6). In other words, the extra ‘normality’ condition on the
category of uniform fibrations allows us to get rid of this requirement.

The construction of the lift for the other functor � : E→ → E
→ is not quite as

direct; we need to briefly recall the construction of the uniform fibration structure
produced by Lemma 6.6. Let us consider a map f : X → Y in E; recall (from
the discussion before Proposition 6.8) that the second leg of the factorisation
of the diagonal, �f : Pf → X ×Y X can also be obtained as a pullback of the
map ˆhom(i, f) where i : ∂I → I stands for the inclusion of the boundary of the
interval. Let us assume for now that (f, �) is a uniform fibration. We know that
right orthogonal categories of arrows are closed under pullbacks; thus to give a
uniform fibration structure to �f it is sufficient to give one to ˆhom(i, f). Now, in
order to construct a uniform fibration structure for ˆhom(i, f), let us consider a
lifting problem with respect to a morphism of the generating category of arrows I×̂
of uniform fibrations; i.e., a square of the form (U, b) : �k×̂j → ˆhom(i, f) where
j : A� B is in I, for which we show how to construct a lift. This is shown in the
left side of the following diagram:

B +A (I × A)

�k×̂j
��

U �� XI

ĥom(i,f)
��

dom(i×̂(�k×̂i))

i×̂(�k×̂j)
��

U �� X

f

��

I × B
b

��

��j

&&

YI ×Y∂I X ∂I I × (I × B)
b

��

��j

%%

X .

Transposing along the adjunction (i×̂ –) � ˆhom(i, –) we obtain a square as on
the right of the previous diagram. We use that the pushout-product construction is
symmetric and associative, and in particular we obtain that i×̂(�k×̂j) ∼= �k×̂(i×̂j).
By hypothesis (M5) of the category of generating cofibrations M we know that i×̂j
is a generating monomorphism, thus we find a lift for the square on the right of the
previous diagram, denoted by ��i . By transposing everything back we obtain the
desired lift for the original square. This construction produces a uniform fibration
structure for ˆhom(i, f) which we denote by ��.

Lemma 8.3. There is a lift of the functor from Lemma 6.6 as shown:

NrmUniFib
�

�� NrmUniFib .

Proof. Since the forgetful functor NrmUniFib → UniFib is fully faithful
(Lemma 7.3), and using that right orthogonal categories are closed under pullbacks,
it is sufficient to prove that given (f,�) a normal uniform fibration, the uniform
fibration structure �� of ˆhom(i, f), described in the foregoing discussion, is also
normal.
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By Proposition 7.4, we need to show that, for a generating monomorphism
j : A� B , the lifts in the diagram on the left of the following figure cohere:

B +A (I × A)

�k×̂j

��

sqk (j)
�� B

U∗
�� XI

ĥom(i,f)

��

dom(�k×̂(i×̂j))

�k×̂(i×̂j)
��

sqk (i×̂j)
�� I × B U∗

�� X

f

��

I × B
��j

��

�×B
�� B

b∗
��

U∗

''

YI ×Y∂I X ∂I I × (I × B)
�×(I×B)

��

��j

��

I × B
b∗

��

U∗

((

Y ,

by transposing the whole diagram along (i×̂ –) � ˆhom(i, –) and using the symmetry
and associativity of the pushout-product, we obtain the lifting problem as on the
right of the previous diagram, for which we need to show that the lifts cohere. The
lift ��j on the left (on either diagram) is, by construction, the lift obtained from
the uniform fibration structure �� on ˆhom(i, f). The result follows by applying
Lemma 7.1. �

Proposition 8.4. Consider a suitable topos (E, I,M) satisfying condition (M5).
Then the stable functorial factorisation of the diagonal PI lifts to a stable functorial
choice of path objects for the awfs of normal uniform fibrations, as shown in the
following diagram:

NrmUniFib

��

PI �� NrmTrivCof ×C NrmUniFib

��

E
→

PI
�� E

→ ×E E
→ .

Proof. This follows by applying Lemma 8.1 to lift the functor r : E→ → E
→ and

by applying Lemma 6.6 and Lemma 8.3 to lift the functor � : E→ → E
→. �

We turn our attention to the proof that the category of arrows of normal uniform
fibrations has a functorial Frobenius structure. The structure is given by adapting the
functorial Frobenius structure on uniform fibrations constructed in [14, Theorem
8.8]. Throughout this section, we will work on an arbitrary suitable topos (E, I,M).

Lemma 8.5. Let i : A� B be a monomorphism, and let f : X → B be any map.
Then the following holds:

(1) There is an isomorphism

�k×̂(f∗i) ∼= (I × f)∗(�k×̂i) .

(2) Pulling back the k-squash square of i along the square (I × f,f) produces the
k-squash square of f∗i ; concretely, for k ∈ {0, 1}, there is an isomorphism:

squashk(f
∗i) ∼= (I × f,f)∗(squashk(i)) .
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Proof. To show item (1), let us first consider the following cube:

f∗A

�k×f∗A

��

f∗i

$$��
���

���
���

� �� A

i

���
���

���
���

�

�k×A

��

X
f

��

�k×X

��

B

�k×B

��

I × (f∗A)
I×�

��

I×f∗i $$��
���

���
��

I × A
I×i

��

I × X
I×f

�� I × B .

Here, the square on the top is the pullback of i along f. It is straightforward to verify
that all squares pointing from left to right are Cartesian, and note that the squares
on the left and right are the outer squares used for defining the pushout-products
�k×̂(f∗i) and �k×̂i respectively. All of this implies that there is a comparison map
�k×̂(f∗i) → (I × f)∗(�k×̂i), which is an isomorphism because colimits in E are
universal. Item (2) follows directly form item (1). �

We recall a result about the squares �k×̂i : i → �k×̂i from [14, Lemma 4.3].

Lemma 8.6. For every i : A→ B , the square �k×̂i : i → �k×̂i below is Cartesian.

A

i

��

�� B +A (I × A)

�k×̂i
��

B
�1–k×B

�� I × B .

Proof. The proof uses once again the fact that colimits in E are universal. Let
us compute the pullback of �k×̂i along �1–k × B . By universality of colimits, this is
the same as pulling back the diagram defining B +A (I × A) and then calculating
the colimit.

We can observe in the following picture, the result of first pulling back the defining
diagram of B +A (I × A) which appears as the upper span of the right-most square
on the following cube:

∅

��

��
��

��
��

��
�� A

i

���
��

��
��

��
��

�k×A

��

∅

��

�� B

�k×B

��

A
�1–k×A

��

i
��
��

��
��

��
I × A

I×i

""

B
�1–k×B

�� I × B .
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Let us notice that the pullback of �k × B (respectively �k × A) along �1–k × B
(respectively �1–k × A) is empty since the interval has disjoint endpoints. We
conclude that the colimit of the upper span of the left-most square on the cube must
be equal to A and moreover, the universal arrow down to B has to be i : A→ B . �

Consider a generating monomorphism i : A� B and a uniform fibration
f : X → B , then there are two possible trivial uniform cofibration structures on
the map �k×̂(f∗i): the first one is the canonical one, i.e., the one given by the
fact that f∗i is also a generating monomorphism. The second one is the one
provided by the functorial Frobenius structure on uniform fibrations using the
isomorphism �k×̂(f∗i) ∼= (I × f)∗(�k×̂i) of Lemma 8.5. These two are actually
the same structure as we show in the following lemma.

Lemma 8.7. Consider i : A� B be a generating monomorphism and f : X → B
a uniform fibration. Then the two possible trivial uniform cofibration structures on
�k×̂(f∗i) coincide.

Proof. Let us denote by �1 and �2, respectively, the canonical trivial uniform
cofibration structure on �k×̂(f∗i) and the one obtained by applying the functorial
Frobenius structure. In order to prove they are the same, let us consider g : Z → Y
a uniform fibration and a square (a, b) : �k×̂(f∗i) → g. Without loss of generality,
let us denote by �1 and �2 the two fillers of this square given by the uniform trivial
cofibration structure with the same name. We have to show that �1 = �2. If we go
over the proof of [14, Proposition 8.8], just before the conclusion, a retract diagram
is used to transfer the structure of a trivial cofibration to the desired morphism
(since trivial cofibrations are closed under retracts). In our situation, this retract
diagram is given by the two left-most squares shown below:

·

�k×̂(f∗i)
��

�� ·

�k×̂�k×̂(f∗i)
��

�� ·

�k×̂(f∗i)
��

a �� Z

g

��

·
t

�� · �� ·
b

�� Y ,

where the left-most square is �k×̂�k×̂(f∗i). Notice that �k×̂�k×̂(f∗i) has a
canonical trivial cofibration structure and thus, the square �k×̂�k×̂(f∗i) → f has
a lift which we denote by �. By definition, the lift �2 is equal to � · t where t is the
horizontal arrow on the lower left part of the diagram.

On the other hand, the lift of the outer square of the previous diagram is �1. Thus
if we want to show that �1 = �2 it is sufficient to show that the square �k×̂�k×̂(f∗i)
is a morphism of trivial uniform cofibrations. To show this, we use that the pushout-
product is symmetric and associative, and thus �k×̂�k×̂(f∗i) ∼= �k×̂�k×̂(f∗i).
From this, we see that the square is a morphism of trivial uniform cofibrations
provided the square �k×̂(f∗i) is a morphism of generating monomorphisms, i.e.,
if it is Cartesian. But this is precisely the statement of Lemma 8.6. �

We wish to show that the functorial Frobenius structure on uniform fibrations
of [14, Theorem 8.8] can be extended to normal uniform fibrations. We start with a
proposition.
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Proposition 8.8. There is a lift of the pullback functor as shown:

In
×̂ ×E UniFib

��

PB �� NrmTrivCof

��

E
→ ×E E

→
PB

�� E
→ .

Proof. Object-wise, this follows directly from [14, Theorem 8.8]. To see this,
we notice that there are no more objects in the image of the category of arrows
In
×̂ than in the image of I×̂; thus we can apply the functorial Frobenius structure

for uniform fibrations. Then we use the functor TrivCof → NrmTrivCof, obtain by
functoriality of the left orthogonal functor �(–) applied to the forgetful functor
NrmUniFib → UniFib.

For the morphism case, we first notice that the only morphisms in In
×̂ that we

need to consider are the squash squares. Thus let us consider a cospan of squares as
in the following diagram:

·
sqk (i)

$$��
���

���
�

�k×̂i

��

B

X ′ f′
��

m
���

��
��

��
I × B

�×B ""��
���

���

X
f

�� B ,

such that the vertical square is the squash square of a generating monomorphism
i : A� B and the horizontal square is a morphism of uniform fibrations (m, � ×
B) : f′ → f. We need to verify that pulling back the squash square along the
morphism of uniform fibrations is a morphism of normal trivial cofibrations.

The first thing we do is to split this cospan of squares into two, by factoring
through the pullback square of f along � × B . That is we obtain the following
diagrams:

·
sqk (i)

""�
���

���
�

�k×̂i

��

·

���
���

���

���
���

���

�k×̂i

��

B ·

�k×̂i

��

I × X
I×f

��

��

�×X
���

���
���

I × B

�×B
���

���
���

X ′
f′

��

m∗ ��

I × B

���
���

�

���
���

�

X
f

�� B I × X
I×f

�� I × B ,

where the dotted arrow m∗ : X ′ → (I × X ) is obtain by universal property. Notice
that composing the two cospans of squares along their common face produces the
original one. Notice also that the two horizontal squares are morphisms of uniform
fibrations.
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Let us focus first on the cospan of the right. The identity morphism 1: (�k×̂i) →
(�k×̂i) is a morphism of trivial uniform cofibrations, thus if we pull-back this
along the morphism of uniform fibrations (f′, I × f) : m∗ → 1�k×̂i we obtain a
morphism of trivial uniform cofibrations by [14, Theorem 8.8] to which we can
apply the functor TrivCof → NrmTrivCof to obtain a morphism of normal trivial
cofibrations.

With this we have reduced the situation to the cospan of squares on the left of
the previous diagram. Using item (2) of Lemma 8.5 we see that the pullback of
the squash square of i : A� B along the square (I × f,f) : � × X → � × B is the
squash square of f∗i : f∗A� X . This square is a morphism in In

×̂ provided that

the canonical trivial normal cofibration structure of �k×̂(f∗i) is the same as that
obtained from the functorial Frobenius structure, but this follows from Lemma 8.7.

�

Proposition 8.9. Let (E, I,M) be a suitable topos. Then the awfs (NCt,NF ) of
normal uniform fibrations has a functorial Frobenius structure.

Proof. Using the lift of Proposition 8.8 and the forgetful functor NrmUniFib →
UniFib, we find a lift of the pullback functor as one shown:

In
×̂ ×E NrmUniFib

��

PB �� NrmTrivCof

��

E
→ ×E E

→
PB

�� E
→ .

The fact that we can extend this structure from In
×̂ to the whole category

NrmTrivCofi follows from [14, Proposition 6.8]. �

Theorem 8.10. Consider a suitable topos (E, I,M) satisfying condition (M5).
Then the awfs (NCt,NF ) of normal uniform fibrations has the structure of a type-
theoretic awfs.

Proof. The claim follows from Proposition 8.4 and Proposition 8.9. �

Appendix A. Some technical definitions. Let (C, �, �) be a comprehension
category. For n ∈ N, the category DTn(�, �) of dependent n-tuples over (C, �, �)
is defined as follows. Objects are tuples (Γ, A1, ... , An) where Γ is an element in the
base category, A1 is in the fibre of � over Γ, and, for i > 1, Ai is in the fiber over
Γ.A1. ··· .Ai–1. An arrow (Δ, B1, ... , Bn) → (Γ, A1, ... , An) consists of a tuple of the
form (u, f1, ... , fn) where f1 : B1 → A1 is over u : Δ → Γ and for i > 1 we have

Bi
fi �� Ai

Δ.B1. ... .Bi–1
fi–1 �� Γ.A1. ... .Ai–1.

Composition and identities are given component-wise by the structure of the
fibration �. We say that an arrow of dependent tuples is Cartesian if every composing
arrow (except the one of the base category) is Cartesian with respect to �.
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Appendix A.1. Σ-types and Π-types. A choice of Σ-types for (C, �, �) consists of
an operation that assigns to each dependent tuple (Γ, A, B) ∈ DT2(�, �) a tuple
(ΣAB, pairA,B , spA,B) consisting of the following data:

(1) ΣAB is an object of E over Γ.
(2) pairA,B is an arrow over �A as shown:

Γ.A.B
pairA,B

��

�B

��

Γ.ΣAB

�ΣAB

��

Γ.A
�A

�� Γ.

(3) spA,B is an operation that takes a dependent tuple (Γ,ΣAB,C ) ∈ DT2(�, �)
and a section t of C over pairA,B , as in the following solid arrowed diagram:

Γ.ΣAB.C

��

Γ.A.B pairA,B
��

t

		�������������
Γ.ΣAB

spA,B (C,t)

))

to a section spA,B(C, t) of C, shown in the above diagram as the dotted arrow.
(4) The above data are subject to the condition that, for any section t of C over

pairA,B , spA,B(C, t) ◦ pairA,B = t. Thus says that the triangle in the diagram
of item (3) involving the dotted arrow commutes.

A choice of Π-types for (C, �, �) consists of an operation that assigns to each
dependent tuple (Γ, A, B) ∈ DT2(�, �) a tuple (ΠAB, �A,B , appA,B) consisting of
the following data:

(1) ΠAB is an object of E over Γ.
(2) �A,B is an operation that takes a section t : Γ.A→ Γ.A.B of �B to a section
�A,B(t) : Γ → ΠAB of �ΠAB , as shown in the following diagram:

Γ.A.B

��

Γ.ΠAB

��

Γ.A

t

�����������
Γ.A

�→

Γ

�A,B (t)
�����������

Γ.

(3) appA,B is an arrow in the slice over Γ.A, as shown:

Γ.A.ΠAB
appA,B

��

�ΠAB

��

Γ.A.B

�B

��

Γ.A Γ.A,

where Γ.A.ΠAB is (the comprehension of) any reindexing of ΠAB along
�A. Notice that the choice of appA,B determines uniquely any other choice
with respect to a different Cartesian reindexing of ΠAB ; this follows by the
universal property of Cartesian arrows.
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(4) These data must be subject to the condition that, for any section t : Γ.A→
Γ.A.B of�B , appA,B ◦ (�(t)[�A]) = t, where �(t)[�A] is the result of reindexing
�(t) along �A.

Appendix A.2. Strict stability. Let (C, �, �) be a split comprehension category.
A choice of Σ-types (Σ, pair, sp) for (C, �, �) is said to be strictly stable if

for every morphism � : Δ → Γ in the base category and for any dependent tuple
(Γ, A, B) ∈ DT2(�, �), the following conditions are satisfied:

(1) ΣA[�]B[�] = (ΣAB)[�].
(2) The following diagram commutes:

Δ.A[�].B[�] �∗∗ ��

pairA[�],B[�]

��

Γ.A.B

pairA,B

��

Δ.ΣA[�]B[�]
�∗

�� Γ.ΣAB ,

where the horizontal arrows are obtained by the split reindexing along �.
(3) For any dependent tuple (Γ,ΣAB,C ) inDT2(�, �), and any section t of C over

pairA,B there is a corresponding dependent tuple (Δ,ΣA[�]B[�], C [�]) and a
section t[�] of C over pairA[�],B[�] obtained by reindexing. The following
diagram is required to commute:

Δ.ΣA[�]B[�] �∗ ��

sp(C [�],t[�])

��

Γ.ΣAB

sp(C,t)

��

Δ.ΣA[�]B[�].C [�]
�∗∗

�� Γ.ΣAB.C ,

where the horizontal arrows are obtained by the split reindexing along �.

A choice of Π-types (Π, �, app) for (C, �, �) is said to be strictly stable if for every
morphism � : Δ → Γ in the base category and for any dependent tuple (Γ, A, B) ∈
DT2(�, �), the following conditions are satisfied:

(1) ΠA[�]B[�] = (ΠAB)[�].
(2) For any section t of �B there is a corresponding section t[�] of �B[�] obtained

by reindexing. This two sections must be related by the following commutative
diagram:

Δ � ��

�A[�],B[�](t[�])

��

Γ

�A,B (t)

��

Δ.ΠA[�]B[�]
�∗

�� Γ.ΠAB ,

where the lower horizontal arrow is obtained by the split reindexing along �.
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(3) The following diagram commutes:

Δ.A[�].ΠA[�]B[�] �∗∗ ��

appA[�],B[�]

��

Γ.A.ΠAB

appA,B

��

Δ.A[�].B[�]
�∗∗

�� Γ.A.B ,

where the horizontal arrows are obtained by split reindexing along �.

Appendix A.3. Pseudostability. Let (C, �, �) be a comprehension category.
A choice of Σ-types (Σ, pair, sp) for (C, �, �) is said to be pseudo-stable if for

every Cartesian arrow (�,f, g) : (Δ, A′, B ′) → (Γ, A, B) of dependent tuples, the
following conditions are satisfied:

(1) There is a Cartesian arrow Σfg : ΣA′B ′ → ΣAB over � and the assignment:

(�,f, g) �→ (�,Σfg)

is functorial, i.e., Σ1A1B = 1ΣAB and Σ(f′◦f)(g ′ ◦ g) = Σf′g ′ ◦ Σfg.
(2) The following diagram commutes:

Δ.A′.B ′ g
��

pairA′ ,B′
��

Γ.A.B

pairA,B
��

Δ.ΣA′B ′
Σfg

�� Γ.ΣAB .

(3) For any Cartesian arrow h : C ′ → C above Σfg : ΣA′B ′ → ΣAB and for
any section t of C over pairA,B there is a corresponding section t′ of C ′

over pairA′,B′ obtained by reindexing. The following diagram is required to
commute:

Δ.ΣA′ .B ′ Σfg
��

sp(C ′,t′)
��

Γ.ΣAB

sp(C,t)

��

Δ.ΣA′B ′.C ′
h

�� Γ.ΣAB.C .

A choice of Π-types (Π, �, app) for (C, �, �) is said to be pseudo-stable if for
every Cartesian arrow (�,f, g) : (Δ, A′, B ′) → (Γ, A, B) of dependent tuples, the
following conditions are satisfied:

(1) There is a Cartesian arrow Πfg : ΠA′B ′ → ΠAB over � and the assignment:

(�,f, g) �→ (�,Πfg)

is functorial, i.e., Π1A1B = 1ΠAB and Π(f′◦f)(g ′ ◦ g) = Πf′g ′ ◦ Πfg.
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(2) For any section t : Γ.A→ Γ.A.B of B there is a corresponding section t′ :
Δ.A′ → Δ.A′.B ′ of B ′ obtained by reindexing along f : Δ.A′ → Γ.A. Then,
the following diagram commutes:

Δ � ��

�A′ ,B′ (t′)
��

Γ

�A,B (t)
��

Δ.ΠA′B ′
Πfg

�� Γ.ΠAB .

(3) The following diagram commutes:

Δ.A′.ΠA′B ′ Πfg
��

appA′ ,B′
��

Γ.A.ΠAB

appA,B
��

Δ.A′.B ′
g

�� Γ.A.B .
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[7] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, Cubical type theory: A constructive
interpretation of the univalence axiom, 21st International Conference on Types for Proofs and Programs
(TYPES 2015) (T. Uustalu, editor), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2018,
pp. 5:1–5:34.

https://doi.org/10.1017/jsl.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.39


288 NICOLA GAMBINO AND MARCO FEDERICO LARREA
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