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SUMMARY

Sediments of the Torridonian sequence of the Northwest Scottish Highlands contain a wide array of micro-

fossils, documenting life in a non-marine setting a billion years ago (1 Ga).1–4 Phosphate nodules from the

Diabaig Formation at Loch Torridon preservemicroorganismswith cellular-level fidelity,5,6 allowing for partial

reconstruction of the developmental stages of a new organism, Bicellum brasieri gen. et sp. nov. The mature

form of Bicellum consists of a solid, spherical ball of tightly packed cells (a stereoblast) of isodiametric cells

enclosed in a monolayer of elongated, sausage-shaped cells. However, two populations of naked stereo-

blasts show mixed cell shapes, which we infer to indicate incipient development of elongated cells that

were migrating to the periphery of the cell mass. These simple morphogenetic movements could be ex-

plained by differential cell-cell adhesion.7,8 In fact, the basic morphology of Bicellum is topologically similar

to that of experimentally produced cell masses that were shown to spontaneously segregate into two distinct

domains based on differential cadherin-based cell adhesion.9 The lack of rigid cell walls in the stereoblast

renders an algal affinity forBicellum unlikely: its overall morphology ismore consistent with a holozoan origin.

Unicellular holozoans are known today to form multicellular stages within complex life cycles,10–13 so the

occurrence of such simple levels of transient multicellularity seen here is consistent with a holozoan affinity.

Regardless of precise phylogenetic placement, these fossils demonstrate simple cell differentiation and

morphogenic processes that are similar to those seen in some metazoans today.

RESULTS

Butterfield14 has pointed out that multicellular organisms in pre-

Ediacaran age deposits were likely to have left behind ontoge-

netic stages in the fossil record. We have examined about 50

petrographic thin sections of phosphatic lenses in the Diabaig

Formation (ca. 1 Ga) that preserve populations of benthic and

planktic organisms trapped in former lake bottom sediments

(Figures 1A–1D). These include unicells and cell clusters of

various kinds, some of which have been documented previ-

ously.1,2,6,15 In several thin sections, we observed cell clusters

that are composed of aggregations of two distinct cell types,

indicating a condition that constitutes a step toward complex

multicellularity sensu Knoll.16 Further investigation revealed a

second set of cell clusters that appeared very similar in size

and form but that lacked the fully differentiated second cell

type. Here, we describe these interesting fossils and show inter-

mediate morphologies that are consistent with an ontogenetic

series driven by a differential cell-adhesion model.

The morphology of the new multicellular organism consists of

a spheroidal mass of mutually adpressed cells enclosed by a

peripheral layer of elongate, sausage-shaped cells. The interior

cell mass forms a stereoblast (Figures 2A–2C, 2F, 2H, 2J, and

S1–S3) of roughly isodiametric cells that average ~2.5 mm in

diameter (Table S1). Exceptional preservation in calcium phos-

phate (francolite) and authigenic clay minerals5 (Figure S3) re-

tains intracellular biological features that, in this case, consist

of a single dense, organic ‘‘spot’’ (Figures 2A and 2C, arrows).

In well-preserved specimens, such inclusions occur in about

half of the interior cells. These might represent preserved nuclei,

but we consider that, more likely, they are the condensed re-

mains of the entirety of the cytoplasmic cell content.6 The cells

of the stereoblast retain mutually compressed walls, so that

the original multicellular topology, including Y-shaped junc-

tions17 (Figures 2B and 2C, circles), is retained. There is no evi-

dence that these interior cells possessed rigid cell walls,

because the shape of each cell is established by mutual

compression with adjacent cells. This indicates the likelihood

that individual cells were bounded by just a cell membrane or a

thin, non-rigid cell wall. A carbon map of a specimen from an ul-

trathin section (Figures 2J and S3) also shows very thin interior

walls as compared with the exterior cell layer. Although it is not
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possible to completely rule out that each of the interior cells

possessed a thin, flexible cell wall, we found no examples of cells

that possessed interior membranes that might have pulled away

from any such cell wall. This is not the case for various other iso-

lated cells of different organisms found throughout the Diabaig

phosphates in which multiple concentric layers are apparent

and in which true cell walls are quite evident.6

The outermost cell layer consists of thicker walled, sausage-

shaped (elongate) cells, which form an enclosing layer that is

unmistakably distinct from the isodiametric cells found in the

interior stereoblast (Figures 2A, 2B, 2D–2K, and S1–S3). The

elongate cells that form the peripheral layer are around 1.5 to

2 mm in diameter and generally about 3 to 4 times that in length,

although, in some cases, they can be much longer (e.g., Fig-

ure 2K). The average width-to-length ratio for a set of 6 speci-

mens was 0.28 (Table S1). The elongate shape is best demon-

strated in surficial focus, as seen in Figures 2E–2G, 2I, and 2K

(see also Figures S1–S3). Here, these cells crowd together to

formwhat appears to be a rigid, outer spherical shell. The periph-

eral cells often occur in sets of 4 or more adjacent cells that

are positioned parallel to each other (Figures 2F, 2G, 2I, 2K,

and S1–S3), creating a tiled arrangement of sets of parallel cells,

or, in some cases, covering the entire surface of the stereoblast

in parallel-aligned, elongate cells (Figure 2K).

Figure 1. Location map and geological section at Lower Diabaig

(A) The location of studied materials mentioned in this report is indicated. LD, Lower Diabaig; CH, Cailleach Head; EF, Eilean Fladday; B, section near Balgy.

(B) View of Diabaig Formation type section along the north shore of Loch Diabaig at the village of Lower Diabaig. The arrow marks the sample site.

(C and D) View of dark shales (C) with lenticular, bedded phosphatic nodules in situ (D). Scale bar in (D), 5 cm.
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Figure 2. Bicellum Brasieri in mature form

All specimens were preserved in petrographic thin sections from the Diabaig Formation stratotype, Lower Diabaig, Scotland, UK. Scale bars in (A)–(J), 5 mm; scale

bar in (K), 10 mm.

(A) Bicellum brasieri n. g. n. sp. holotype specimen. Arrows indicate condensed, intracellular organic ‘‘spots’’ Sample TS09-1.

(B) Bicellum brasieri n. g. n. sp. paratype. Larger ellipsoidal specimen with incomplete preservation in the interior. Circle indicates an example of a Y-shaped

junction. Sample TS09-1.

(C) Enlargement of holotype specimen showing typical ‘‘Y’’ junctions (circle) and a condensed intra-cellular ‘‘spot.’’ Total field of view is 10 mm.

(D) Specimen in equatorial view in which the interior cells are only very faintly preserved. Sample TS09-2.

(E) Surface view of specimen in (D), showing the tiled sets of parallel-aligned elongate cells.

(F) Specimen in sub-equatorial optical section showing elongate exterior cells in surface view and the thinner walled isodiametric cells of the interior stereoblast.

Sample TS09-2.

(G) Surface view of specimen in (F), showing the tiled pattern of sets of elongate cells.

(H) Scanning electron microscopy (SEM) image of an in situ milled medial section through B. brasieri. Sample TOR11-108.

(I) SEM image of a milled tangential section of same specimen as in (H). Note that, here, the cells of the surface layer are quite elongate.

(legend continued on next page)
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Inmedial cross-section, the peripheral cell layer is shown to be

one cell in thickness (Figures 2A, 2B, 2D, 2H, 2J, and S1–S3). In

light microscopy (LM), the walls of these outer cells appear

darker than those of the stereoblast, indicating a thicker cell

wall, distinct from those of the interior cells. This is seen in the ho-

lotype (Figure 2A) and in many of the other illustrated specimens

(e.g., Figures 2D, 2H, 2J, S1, and S2). This is also somewhat

evident in the carbon map in Figure 2J, although in this spec-

imen, the carbon signal from the cells of the epidermal layer is

masked somewhat by the carbon signal from the enclosing fran-

colite (see also Figures S3E and S3F). The cells of the peripheral

layer never show an interior ‘‘spot’’ like many cells of the stereo-

blast, indicating a persistent taphonomic difference in the two

cell types, or perhaps loss of the protoplast at maturity in the

epidermal cells, as, under LM, their interiors are more trans-

parent that those of the interior stereoblast. Many specimens

show some degree of cell loss within the stereoblast as a whole.

This can be seen in medial sections of Figures 2B and 2D, where

parts of the interior are missing well-preserved cells (see also

Figure S1). Overall, this arrangement of two distinct cell types

forming a spherical organism has not been previously described

in the fossil record and is formalized here as Bicellum brasieri

Strother & Wellman gen. et sp. nov.

The structural details used to describe Bicellum exist because

of the unique qualities of cellular and sub-cellular preservation

provided by phosphate and authigenic clay mineralization.5,6

The taxonomic richness that characterizes the Torridonian lake

Figure 3. Examples of the distributed (paly-

nological) form

All figured specimens are from sample TOR11-9,

Eilean Fladday, Scotland, UK. Scale bar, 10 mm for

all images.

(A) Spherical form characterized by circular cross

sections in an epidermal layer (arrows).

(B) Typical specimen without clearly demarked cell

outlines.

(C) Spherical specimen showing circular cross-

sections in the epidermal layer (arrows).

(D) Somewhat larger ellipsoidal specimen. Here,

arrows indicate more elongated cells of the

epidermal layer. Note that the right-hand margin

indicates epidermal cells in circular cross-section.

(E) Oblate specimen without clear cellular structural

interior.

See also related size data in Table S2.

deposits, however, is recorded primarily in

palynological preparations of fine-grained

siliciclastic rocks that yield organic-walled

microfossils (OWMs).1 An OWM compara-

ble to Bicellum was also recovered in

palynological strew mounts, but, as docu-

mented in Figure 3, its appearance as a flat-

tened, dispersed OWM is somewhat different than its 3D form.

Here, the wall is characterized by marginal circular structures (ar-

rows in Figures 3A, 3C, and 3D), which correspond to cross-

sectional views of the elongated cell peripheral layer. The average

diameter (28.5 mm; Table S2) and ovoid (Figures 3D and 3E) to cir-

cular (Figures 3A–3C) shape are similar to the 3-dimensional form,

but the interior stereoblast is not structurally preserved in the

dispersed form, nor is the cellular nature of the peripheral

layer readily apparent. In spite of these preservational differences,

Bicellum, in its dispersed form, has now been recognized from

11 sample localities found throughout the Torridonian sequence

(Table S2).

Tightly bound, spherical cell clusters found in association with

B. brasieri fall outside the prescribed complex morphology for

the species as presented here. These multicellular cell clusters

consist of naked stereoblasts without an enclosing wall or cell

layer. They are most commonly quite spherical (Figures 4A–

4E), although some larger, ellipsoidal specimens have also

been found (Figure 4F). The cells that compose each mass are

tightly adpressed without intervening spaces; indeed, many

exhibit straight lines of contact and clear 120� (Y-shaped) junc-

tions where three cells meet. They are generally isodiametric,

with diameters of 2 to 3 mm. The closeness of the cells indicates

the originally cohesive nature of these cell masses; they appear

as if they were tightly pressed together in life. The lack of inter-

vening space also indicates that, in life, these cells did not

possess rigid cell walls; if present, the cell walls clearly had a

(J) B. brasieri transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) elemental map of carbon revealing the thicker walled outer

layer of sausage-shaped cells compared with the interior cells that have thin to partially absent membranes. Sample TOR11-108.

(K) Larger, fragmented specimen ofB. brasieri showing surficial cells in transverse and tangential sections. Note the elongate nature of the tangential cells and the

lack of clearly delineated interior cells. Sample TS09-1, Diabaig Formation stratotype, Lower Diabaig, Scotland, UK.

See also Figures S1–S3 for additional examples and Table S1 for related cell size data.
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degree of plasticity. The adjoining cell walls are thin, never thick-

ened like those in the peripherical cell layer of B. brasieri.

These free, spherical cell masses (Figures 4A and 4B) are indis-

tinguishable from the stereoblasts that characterize the interior

cells of B. brasieri. After examination, it became apparent that

someof thesemasses occasionally included elongate cells, unlike

the enclosed stereoblasts described earlier. The incomplete cell

mass in Figure 4C contains only one such elongate cell (indicated

by an arrow) in the midst of what are generally isodiametric cells.

Figure 4D illustrates another example photographed in median

optical section. Here, embedded among generally isodiametric

cells, is a single row of elongate cells (between arrows). This spec-

imen also contains a few additional isolated, individual, elongate

cells scattered through the cell mass. Another specimen photo-

graphed in median section (Figure 4E), shows at least four elon-

gate cells (indicated by arrows), which are now located at the

Figure 4. Naked stereoblasts

Except where noted, all specimens are from sample

TOR11-108, Diabaig Formation stratotype, Lower

Diabaig, Scotland, UK. Scale bar, 10 mm.

(A) Naked stereoblast of mutually adpressed isodi-

ametric cells. Note the lack of a discrete outer layer

of cells.

(B) Another example of a simple ball of isodiametric

cells amassed together to form a naked stereoblast.

Sample TS09-1, Diabaig Formation stratotype,

Lower Diabaig, Scotland, UK.

(C) This somewhat smaller specimen shows a single

elongate cell (arrow) in the midst of a solid mass of

isodiametric cells. Sample TS09-2, Diabaig Forma-

tion stratotype, Lower Diabaig, Scotland, UK.

(D) Naked stereoblast with an admixture of elongate

and isodiametric cells. There is a row of adjacent

elongate cells (between arrows) in the middle of the

cell mass, but cells at the margin are isodiametric in

shape.

(E) Here, some elongate cells (arrows) now appear at

the periphery of the cell mass, although a clearly

distinct epidermal layer has yet to become estab-

lished. Note that there is no apparent distinction

between the cell walls of either cell type.

(F) This ellipsoidal specimen, which is cut in a sub-

tangential section, shows substantial alignment of

sausage-shaped cell types (arrows).

periphery of the largely isodiametric cell

mass. Here, these elongate cells appear to

constitute part of a single circumferential

layer, one cell in thickness, that surrounds

the cell mass; however, the individual cells

that make up this layer have thinner walls,

matching those of all the interior cells of

the stereoblast, and not thickened as seen

in the peripheral layer of B. brasieri. The

cell mass in Figure 4F appears somewhat

even more organized, with several rows of

nascent elongate cells preserved (indicated

by arrows).

Although these cell clusters are nearly

perfectly spherical in overall shape, the po-

sitions of individual cells within the clusters

does not appear determinate: these cells do not appear to have

retained a geometry based on fixed patterns of cell divisions.

Cells capable of moving relative to each other, exhibiting

liquid-like behavior, will spontaneously form spheres in response

to minimizing overall surface tension.18 Thus, on strictly morpho-

logical grounds, we infer that these fossils were originally aggre-

gates of somewhat cohesive cells exhibiting liquid-like

behavior.19,20 Living cells aggregated in this way form the under-

lying basis of the differential adhesion hypothesis (DAH), which

posits that cohesive cell aggregates are capable of self-differen-

tiation when cell-cell cohesion varies between sets of cells.8

DISCUSSION

In spite of its simple morphology, the characterization of the

Bicellum stereoblast, combined with an understanding of its
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dynamic assembly into a differentiated condition of two distinct

cell aggregations, provides clues as to its systematic placement.

It seems reasonable to assume that Bicellum falls within one of

the lineages leading to one of the six clades that possess com-

plex multicellularity today: animals, plants, florideophyte algae,

brown algae, ascomycete fungi, and basidiomycete fungi.16

The precise dynamics of howBicellum attained its initial multicel-

lular state has yet to be determined. In broad terms, this would

have been through palintomy, aggregative assembly, or cellula-

rization of a coenobium (syncytium). If the initial multicellular con-

dition of Bicellum occurred through successive mitotic divisions,

then we would expect to find cell clusters of similar overall size,

exhibiting combinations of 2n cells, as is the case, for example, in

the embryo-like fossils of the Doushantuo phosphates. Although

it is the case that many different kinds of cell clusters have been

found in the same thin sections that contain Bicellum, no such

palintomic sequence has yet been recognized. This indicates

that the multicellular condition in Bicellum more likely occurred

either through cell aggregation or through the cellularization of

either a syncytium or a coenobium. Since these non-palintomic

forms of multicellularity are also somewhat limited in their distri-

bution within extant protist groups, they provide a means of

limiting the potential placement of Bicellum. Other than in the

opisthokonts, aggregative multicellularity occurs in the amoebo-

zan, Dictyostelium, three SAR supergroup genera (Sorogena,

Sorodiplophrys, andGuttulinopsis),21 and also some labyrinthul-

ids22 and the Excavate Acrasis,22 none of which are a morpho-

logical match with Bicellum. Formation of syncytia and/or

coenobia occurs in the Archaeplastida and in all holozoan

groups, with the exception of the choanoflagellates13,22 and

the Filasterea, which do show aggregative multicellularity.23

However, the multicellular condition, as exhibited in the Bicellum

stereoblast—that is, Y-shaped cell junctions and lack of fixed, or

determinate, cell placement—indicates that these cells probably

lacked rigid cell walls. This eliminates both cyanobacteria and

the eukaryotic chlorophyte algae as likely homologs, because

multicellular form in these taxa is strongly influenced by their

possession of rigid cell walls.17 This is also the case for compar-

ison with the florideophyte red algae, which possess cellulosic

cell walls and are fundamentally of filamentous or pseudoparen-

chymatous thallus organization. In addition, the red algae are

predominantly marine in their habitat distribution,24 as are the

laminarian brown algae.25 Y-shaped junctions in fossilized cell

masses have most often been associated with tissue-grade

multicellularity that is found in animals,17,26–28 and this condition

has been argued as a reason for considering many of the em-

bryo-like fossils of the Doushantuo Formation to be related to an-

imal (Holozoan) lineages rather than Archeoplastida.17 Thus, in

terms of its multicellular condition, B. brasieri seems to be

most closely associated with early-branching holozoan groups,

especially Ichthyosporea and the Pluriformea (Corallochytrea)

clade.13,29 These groups are all unicellular protists with a multi-

cellular stage in their life cycle, typically occurring in the form

of a spherical cell mass.30

The Precambrian occurrence of holozoans is documented in

the well-known ‘‘embryo-like’’ fossils of the Doushantuo Forma-

tion, in spite of uncertainty as to their exact phylogenetic place-

ment with respect to the Metazoa.31–33 The Doushantuo fossils

are found in considerably younger (ca. 600 Ma) deposits that

are entirely marine in origin as compared with the billion-year-

old lacustrine settings of the Torridonian.34 Early-branching

holozoan clades are not exclusively marine, however. Phylo-

types of Ichthyosporea are found in freshwater and terrestrial

settings today,35 and the recently described filasterean,Pigorap-

tor, was isolated from nonmarine settings, as was Syssomonas,

one of two genera in the recently proposed holozoan clade,

Pluriformea.13 Other Ichthyosporea and Filasterea, including

species previously considered to be exclusively marine, have

been detected in freshwater fluvial settings using environmental

metabarcoding.36 As to their antiquity, the existence of fossil

holozoans by 1.0 Ga is perhaps not unexpected, given a reason-

able estimate of the branch point between an ichthyosporean

plus filasterean clade and the rest of the holozoan lineage at

around 1,100 Ma,37 although there is considerable uncertainty

as to this date, based on molecular clock data.38

Phylogenomic investigations of metazoan origins have begun

to assemble a picture of protistan gene regulatory networks that

were later re-purposed during the evolution of the first Meta-

zoa.12,39,40 Intriguingly, various genes associated with cell-cell

adhesion appear to be quite ancient, including the discovery

that three cadherin families, (lefftyrin, coherin, and hedgling)

were present in the last common ancestor between the choano-

flagellates and the Metazoa.41 Some core components of the in-

tegrin-mediated complex may predate even the initial evolu-

tionary divergence in the Opisthokonta.42

Steinberg’s differential adhesion hypothesis proposes that, for

cases in which cell aggregates display liquid-like behavior, it is

the strength of cell-cell adhesions that determines the overall

form of the structure.7,8 The dynamics of cell-cell segregation

seen in Bicellum are compatible with that of a differential adhe-

sion model in which the isodiametric cells adhere more strongly

to each other than they adhere to the nascent elongate cells. This

difference in cell-cell adhesion strengths is expected to give rise

to a structure with an inner ball of isodiametric cells surrounded

by a layer of elongated cells.9,43,44 This mature stage then func-

tioned as a cyst, which manifests as the more widely distributed

form seen in Figure 3.

Although we are uncertain as to the molecular structure of the

cell attachment apparatus inBicellum, the reasons for differential

adhesion are potentially simple. Foty and Steinberg9 manipu-

lated cadherin levels in cultured cells, showing that changing

the expression level of that single protein was able to produce

structures with an inner cell ball of strongly adhering cells sur-

rounded by a cortex of more weakly adhering ones. However,

even without a change in protein expression, an increase in

surface area of the elongate cells, compared with that of the

isodiametric cells, would reduce the surface density of adhesion

molecules, leading to weaker adhesion between elongate and

isodiametric cells. Whatever the mechanism, Bicellum does

show that differentiation and morphogenesis occurred in the

life cycles of freshwater protists as long as a billion years ago.

This early example of complex multicellularity adds to a nascent

body of evidence indicating the importance of selection in

terrestrial settings during late Mesoproterozoic to early Neopro-

terozoic time.4,45–47 Indeed, if Bicellum does belong to the clade

Holozoa, as we suspect, it would provide support for recent

models proposing Mesoproterozoic eukaryotic crown group or-

igins,48,49 and it could prove to be a key fossil clue in an ongoing
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debate on the importance of oxygen in the origin and rise of

animals.50
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36. Arroyo, A.S., López-Escardó, D., Kim, E., Ruiz-Trillo, I., and Najle, S.R.

(2018). Novel diversity of deeply branching Holomycota and unicellular

holozoans revealed by metabarcoding in Middle Paraná River,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for access to prepared slides and thin sections should be directed to and will be fulfilled by the Lead

Contact, Charles Wellman (c.wellman@sheffield.ac.uk).

Materials availability

This study did not generate new unique reagents. Thin sections, including the holotype, along with prepared strew slides, are curated

in the palynology collections at the University of Sheffield.

Data and code availability

Data associated with Figures 2H–2J and S3B–S3F are stored in the UWA research repository archive. No codes were generated by

this research.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Information about the specimens

All the specimens of Bicellum brasieri mature form (Figure 2) and the variants (Figure 4) illustrated in this report are found

embedded in rock thin sections of phosphatic nodules collected by PKS and CHW in 2009 (TS09-1, TS09-2) and in 2011

(TOR11-108) from the Diabaig Formation at the stratotype section at Lower Diabaig, Scotland, UK (Figures 1A–1D). These

thin sections are housed in the Palynological Collections at the University of Sheffield, Department of Animal and Plant Sci-

ences, The University of Sheffield, UK. The palynomorphs illustrated in Figure 3 were collected by PKS, CHW and Christopher

T. Baldwin from a section of the Diabaig Formation that is exposed on Eilean Fladday immediately opposite the short causeway

that when exposed at low tide, gives access to the island from the Isle of Raasay. The sample, TOR11-09 is located 11 m above

the base of the section exposure. This material is curated in the Palynological Collections at the University of Sheffield, Depart-

ment of Animal and Plant Sciences, Sheffield, UK.

METHOD DETAILS

Systematics

A formal systematic description of the taxon, Bicellum brasieri Strother & Wellman, gen. et sp. nov. can be found in Data S1,

Systematics.

Electron image and elemental map acquisition

Images in Figures 2H, 2I, S3B, and S3Cwere acquired using a FEI Helios NanoLab G3 CX dual beam FIB-SEM instrument using an in

lens back-scattered electron detector. The image in Figure S3D was acquired using a FEI Titan G2 80-200 TEM/STEM in high angle

annular dark field (HAADF) mode. Minor image corrections (brightness/contrast) were performed using the open source ImageJ

software.

The elemental maps presented in Figures 2J, S3E, and S3F were acquired using a FEI Titan G2 80-200 TEM/STEM

with ChemiSTEM Technology (Super-X EDX system) operating at 200 kV. Data were acquired from sample wafers of 100-

150 nm that were prepared using a FEI Helios NanoLab G3 CX dual beam instrument and attached to Omniprobe copper

TEM holders using platinum connector strips. Multicolored image overlays were performed using the Gatan Digital Micrograph

software.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Bicellum brasieri holotype and syntype specimens This paper TS09-1

other B. brasieri figured specimens This paper TS09-2, TOR11-108

dispersed variants of B. brasieri This paper TOR11-9

milled specimens of B. brasieri This paper TOR11-108

Software and Algorithms

Adobe Photoshop Adobe Systems CS6
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Cell size measurements

Cell size measurements in Tables S1 and S2 were made using the Ruler tool in Photoshop using a scale calibration based on an

optical micrometer slide ruled in 10mm intervals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Descriptive statistical data presented in Tables S1 and S2 were calculated in Microsoft Excel based on the size data extracted in

Photoshop.
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