
This is a repository copy of A comparative study of using pre-trained language models for 
toxic comment classification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173371/

Version: Accepted Version

Proceedings Paper:
Zhao, Z., Zhang, Z. and Hopfgartner, F. orcid.org/0000-0003-0380-6088 (2021) A 
comparative study of using pre-trained language models for toxic comment classification. 
In: Leskovec, J., Grobelnik, M., Najork, M., Tang, J. and Zia, L., (eds.) Companion 
Proceedings of the Web Conference 2021 (WWW ’21 Companion). SocialNLP 2021 : The 
9th International Workshop on Natural Language Processing for Social Media, 19 Apr 
2021, Virtual conference. ACM Digital Library , pp. 500-507. ISBN 9781450383134 

https://doi.org/10.1145/3442442.3452313

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Comparative Study of Using Pre-trained Language Models for
Toxic Comment Classification

Zhixue Zhao
zhixue.zhao@sheffield.ac.uk

University of Sheffield
Sheffield, UK

Ziqi Zhang
ziqi.zhang@sheffield.ac.uk
University of Sheffield

Sheffield, UK

Frank Hopfgartner
f.hopfgartner@sheffield.ac.uk

University of Sheffield
Sheffield, UK

ABSTRACT

As user-generated contents thrive, so does the spread of toxic com-

ment. Therefore, detecting toxic comment becomes an active re-

search area, and it is often handled as a text classification task. As

recent popular methods for text classification tasks, pre-trained lan-

guage model-based methods are at the forefront of natural language

processing, achieving state-of-the-art performance on various NLP

tasks. However, there is a paucity in studies using such methods

on toxic comment classification. In this work, we study how to

best make use of pre-trained language model-based methods for

toxic comment classification and the performances of different pre-

trained language models on these tasks. Our results show that, Out

of the three most popular language models, i.e. BERT, RoBERTa,

and XLM, BERT and RoBERTa generally outperform XLM on toxic

comment classification. We also prove that using a basic linear

downstream structure outperforms complex ones such as CNN

and BiLSTM. What is more, we find that further fine-tuning a pre-

trained language model with light hyper-parameter settings brings

improvements to the downstream toxic comment classification task,

especially when the task has a relatively small dataset.

CCS CONCEPTS

·Computingmethodologies→Neural networks; · Social and

professional topics→ User characteristics.

KEYWORDS

toxic comment, hate speech, neural networks, language model,

fine-tuning, pre-training, BERT, RoBERTa, XLM

ACM Reference Format:

Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner. 2021. A Comparative

Study of Using Pre-trained Language Models for Toxic Comment Classifi-

cation. In Companion Proceedings of the Web Conference 2021 (WWW ’21

Companion), April 19ś23, 2021, Ljubljana, Slovenia. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3442442.3452313

1 INTRODUCTION

Detection of toxic comments online has been a fast-growing re-

search area [31, 39]. Toxic comment classification (TCC) is usually

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’21 Companion, April 19ś23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8313-4/21/04.
https://doi.org/10.1145/3442442.3452313

treated as a text classification problem, mainly dealt with by ma-

chine learning methods. [1, 9, 30]. The recent trend for text classi-

fication tasks uses language models (LMs) that are pre-trained on

large unlabeled corpora. The basic idea is to extract the pre-trained

neural network layers from the language model (LM) and add new

neural network layers on top of them to tailor for the downstream

task [18]. In other words, features from the pre-trained LM are

transferred to new neural network layers to build a model for the

target classification task.

Within the area of TCC research, only a few studies have used

pre-trained LMs to TCC, and little work has been done to explore

how to best make use of such LMs for TCC. Moreover, previous

studies have used different LMs and different TCC datasets and

tasks, whichmake their results difficult to compare. Further, existing

widely-used pre-trained LMs are trained on formal languages from

books and news rather than colloquial online speech where toxic

comment can often be found. Therefore, it is unclear to what extent

these existing pre-trained LMs offer real value for TCC tasks.

In this work, we explore strategies of utilising pre-trained LMs

with the aim to understand their impact on the downstream TCC

tasks, and to compare different LMs. In short, we look into the

impact of downstream neural-network architectures, continued

pre-training of LMs with a further exploration of light-weight train-

ing parameters and the performance differences between current

widely-used pre-trained LMs.

Our results first confirm that using a simple linear neural net-

work as the downstream structure atop of pre-trained LMs for

TCC tasks works better than using sophisticated structures such

as CNN and Bi-LSTM, which contain more parameters. Secondly,

continued pre-training of a LM is beneficial to the downstream

TCC, especially when the dataset is relatively small. The benefits

are also noticeable even with low hyper-parameter settings that

make the overall model much more efficient compared to those pre-

viously reported. It also makes our method more accessible to users

with limited computational resources. Thirdly, the performance

of different pre-trained LMs varies. BERT and RoBERTa generally

outperform XLM on a wide range of TCC tasks, while XLM benefits

more from continued pre-training of LMs.

The remainder of this paper is structured as follows. Section

2 reviews related work. Section 3 explains our approach to use

LMs on TCC tasks. Section 4 presents our experiments and results.

Section 5 concludes the work and discusses future work.

2 RELATED WORK

This section begins with an overview of how TCC tasks are defined

in the literature. It will then go on to review the research on pre-

trained LM-based methods for text classification. This is because



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner

TCC is essentially a text classification task, and limited research has

been done on using pre-trained LM-based methods on TCC tasks,

while it is becoming popular for text classification tasks. The last

part of this section discusses existing studies on TCC tasks using

pre-trained LMs and existing research gaps in this area.

2.1 Definition of toxic comment classification
tasks

Toxic comment generally refers to different types of unhealthy

and negative user-generated content, which includes hate speech,

abusive language, cyberbullying, etc [4, 5, 22].

Toxic comment classification is a text classification task. In earlier

studies, the majority of research handle TCC as a binary classifica-

tion problem that separates one particular type of toxic comment

from all the others [13]. Later studies frame toxic comment classi-

fication as multi-class classification tasks where a comment will

be assigned into one of the multiple types of toxic comment, or

multi-label tasks where a comment could be assigned into none or

at least one (could be multiple) type of toxic comment. For an ex-

ample of multi-class tasks, [32] and [40] categorize comments into

three groups, where each comment belongs to łnonež or łracismž

or łsexismž. Fewer studies on toxic comment classification consider

multi-label problems. In their research, [37] studies toxic comment

classification in both multi-class and multi-label fashion. In their

multi-label task, one comment can be assignedwith zero to six labels

including łobscenež, łthreatž, and so on. Multi-class and multi-label

classifications make the learning harder by nature, and different

types of toxic comments could have some intersectionality, hence

increasing the complexity of the problem. However, they are closer

to the real-world scenarios [12, 26, 37].

2.2 Pre-trained LM-based methods for text
classification

Traditionally, text classification has used statistical machine learn-

ing methods such as Support Vector Machines, Naïve Bayes and

Decision Trees [35]. Since 2010 research has shifted towards deep

neural networks (DNN)-based models such as Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), Bi-directional

Long Short-Term Memory network (Bi-LSTM) and hybrid neural

networks which combine different DNN configurations [10, 35, 43].

Since the introduction of transformer-based structures, the use of

pre-trained LMs in downstream text classification has become the

mainstream [11]. The basic process is to add task-specific layers

for the downstream task atop of the pre-trained LM and then train

the new model where only the task-specific layers are trained from

scratch [11, 23, 27]. Commonly-used pre-trained LMs include BERT,

RoBERTa, XLM, etc. [11, 23, 27]. These models were pre-trained

on extraordinarily large corpora, such as those containing over 3

billion words for BERT [11].

Typically, the output layers (the last/bottom few layers following

hidden layers) in a pre-trained LM are replaced with task-specific

layers and then the new model will be trained in a supervised

fashion on the target text classification. Two strategies are widely

used for improving pre-trained LMs performance on downstream

text classification tasks: the design of downstream neural network

structure and the continued, in-domain pre-training of LMs [3, 7,

18, 24].

Downstream network architecture A basic downstream net-

work architecture for classification tasks is a linear transformation

layer [11]. For example, [29] and [28] use a basic downstream ar-

chitecture on BERT for sentiment classification and hate speech

detection. [7] extend the basic downstream architecture by adding

an extra LSTM layer with self-attention between the linear clas-

sifier layer and the pre-trained LM. [3] have added two layers of

Bi-LSTM on top of BERT. All these different networks, e.g., LSTM

with attention, CNN, are added on top of the pre-trained LM and are

then fed into a classifier layer. There are many other studies using

a method of similar fashion. We do not cover them in details and

point interested readers to the work of [15, 36]. However, current

studies on downstream neural network architectures are mainly

based on BERT, and not yet applied to the more recent LMs such

as RoBERTa and XLM.

Continued pre-training of language models Some research

explores continued pre-training of the LM using a large in-domain

corpus and then transferring the newly fine-tuned LM to the target

classification tasks. As a result, training of a classifier model is ini-

tialized with weights from a further fine-tuned LM. This approach

is also referred as łcontinued pre-training in domain" [18].

SciBERT [3] and BioBERT [24] are two examples of łcontinued

pre-training in domainž, which both fine-tuned BERT using large

domain corpora and require significant computing resources and

time [18]. To address this, [18] propose task-adaptive pre-training

(TAPT) which use unlabeled training data from downstream target

task to further fine-tune RoBERTa. Hence, the data size for further

fine-tuning LMs in domains has been largely reduced. However,

in their proposed TAPT, significant computing resources are still

required due to the high settings of hyper-parameters, particularly

due to the batch size and the epoch.

Although TAPT is a method of continued pre-training of LMs

in domain, in the remainder of this paper, we use łcontinued pre-

training/fine-tuning in domain" to refer to continued fine-tuning

the LM using a large unlabeled in-domain corpus that is not the

same as the unlabeled training data from the target task. TAPT on

the other hand, will be used to refer to the more specific type of

continued pre-training in domain using the unlabeled training data

from the target task.

2.3 Pre-trained LM-based methods for tasks
toxic comment classification

Despite increasing research on TCC and pre-trained LM-based text

classification, few studies are addressing the intersection of both.

As a sub-task of text classification, TCC follows a similar trend shift

from traditional machine learning methods to DNN-based meth-

ods, and to pre-trained LM-based methods. A few studies on TCC

explored pre-trained LMs and strategies on how to transfer them ef-

ficiently. [28] transfer BERT to different downstream architectures

on two hate speech classification tasks. In the shared task on ag-

gressive content detection, TRAC-2, a few papers utilise pre-trained

LMs but with a focus on improving the model performance on one

specific TCC task rather than generalising their methods to multi-

ple TCC tasks or pre-trained LM models [20]. Furthermore, Most



A Comparative Study of Using Pre-trained Language Models for Toxic Comment Classification WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

of them use BERT directly without complex downstream neural-

network or continued fine-tuning [2, 16, 25, 34]. To the best of our

knowledge, only one paper applies a straightforward RoBERTa (a

linear layer atop), and no research has yet been conducted on utiliz-

ing XLM on TCC tasks [2]. It is unclear how other pre-trained LMs,

such as RoBERTa and XLM, perform and how generalisable they

are on a wide range of TCC tasks. Additionally, a few studies utilize

BERT on TCC tasks but only one of them studied different trans-

ferring strategies, e.g. downstream architectures [2, 16, 25, 28, 34].

In summary, there remains scope for us to further exploit all

benefits of pre-trained LM-based methods for TCC tasks. First,

how do different pre-trained LMs perform on different downstream

TCC tasks, especially multi-class and multi-label classification tasks

which are harder than binary tasks? Second, how do different down-

stream neural network structures impact on the performance on

TCC? Third, can continued pre-training in domain improve the

performance on downstream TCC tasks and if so, can we further

improve the efficiency of the training process while maintaining

the performance?

3 METHODOLOGY

We focus on pre-trained LM-based methods for TCC and investi-

gate two strategies of transferring pre-trained LMs to TCC tasks.

First, we analyse the impact of the complexity of the downstream

network architectures; Second, we study the impact of continued

pre-training LMs following the TAPTmethod but using much lower

hyper-parameters to further reduce the computational require-

ments. We refer to this as ‘TAPT-light’ [18]. Third, we compare the

performance difference between pre-trained LMs.

In short, each model takes a pre-trained LM and add a down-

stream network architecture on top of it and then all parameters

are jointly trained on a given supervised TCC task. The differences

between models are based on: the pre-trained LM used (Section

3.1), the downstream architecture (Section 3.2), the continued fine-

tuning method of the pre-trained LM (whether fine-tuned or how

many epochs for the fine-tuning, Section 3.3). Additionally, we

evaluate our strategies using a comprehensive set of TCC datasets,

including ten different classes and both multi-class and multi-label

classification tasks. Details of these will be given in Section 4.1.

3.1 Pre-trained language models

To investigate the performance of different pre-trained LMs, we

choose three of the most cited pre-trained LMs to study the gener-

alizability of our strategies applied to TCC tasks. These are BERT,

RoBERTa and XLM, representing the current state-of-the-art in a

wide range of tasks [11, 23, 27]. Another reason we select RoBERTa

and XLM is that, as mentioned in Section 2.3, very few studies

have used them on TCC but they have been shown to gain good

performance on other related classification tasks when compared

to BERT.

3.2 Downstream network architectures

In terms of the downstream layers, we compare three architec-

tures: linear classification layer, CNN + linear classification layer,

Bi-LSTM + linear classification layer [11, 28]. We choose these for

the following reasons. First, Bi-LSTM and CNN are frequently used

in text classification tasks [6, 19]. Second, the linear classifier is the

simplest structure and allows us to compare with other complex

downstream architectures and their effects on transfer learning

performance on TCC tasks.

Figure 1 illustrates the three BERT models with different down-

stream neural network architectures, as an example of a pre-trained

model set. RoBERTa and XLM follow the same methods, each one is

tested on three different downstream neural network architectures.

Linear classification layer: In the linear layer, the output of

the first token (i.e., the output of [CLS]) from the final hidden state

of the LM is used in the final classification. The output of a default

dimension of given LM is fed to a linear layer and transformed to a

dimension equal to the number of labels. A dropout of 0.1 is applied

before the linear transformation [11].

CNN + Linear classification layer: The second architecture

is built on the first one but with convolutional layers between

the linear layer and the LM. The outputs of each layer of the LM

(excluding the language modelling head) are fed to a 3-layers con-

volutional network. This CNN configuration is the same as that

proposed by [19] which includes three filter window sizes of 3, 4

and 5, respectively. Each size has 100 feature maps. The outputs

from each convolutional layers are passed to a max-pooling layer

and then concatenated together before feeding to the final linear

classification layer, which is the same as mentioned above.

Bi-LSTM + Linear classification layer: This architecture is

similar to the CNN-based structure but the three CNN layers are

replaced with a bi-directional LSTM layer [17]. In short, the outputs

of each layer of the LM are fed to a Bi-LSTM neural network and

the final two hidden states of the output are then concatenated

before feeding them to the final linear classification layer.

3.3 Continued pre-training in domain:
TAPT-light

In this part, we explore the performance of continued pre-training

in domain using minimum computing resources on TCC tasks. We

build our methods on the work of TAPT and reduce the hyper-

parameter settings of TAPT to further minimise the computational

resources required, which we refer to as TAPT-light [18]. To be

more specific, the batch size is reduced to 16, compared to 2048

in the original TAPT. Second, we experiment with different epoch

values respectively: 1, 5, 10, 20, 50, 100, compared to 100 in the

original TAPT.

In summary, for each TAPT-light model, the training process is

divided into two stages. In the first stage, as highlighted in red in

Figure 2, the pre-trained LM is fine-tuned on unlabelled training

corpus which is created from the downstream task (Section 4.1).

Models are trained for different epochs, respectively, for accessing

the impact of epochs later. In the second stage, as highlighted in

blue in Figure 2, the output layer of the LM is replaced with a linear

classification layer and then the new classification model is trained

in a supervised fashion on a TCC task, where all parameters are

trained jointly. Only the linear classification layers are trained from

scratch.



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner

Figure 1: An example of utilizing BERT with different downstream architectures atop.

Figure 2: The training process of a TAPT-light model.

4 EXPERIMENTS

4.1 Datasets

Four TCC tasks are selected to assess the two strategies of trans-

ferring pre-trained LMs. We aim to cover different social media

platforms, dataset sizes and classification types when selecting

TCC tasks. The four selected datasets contain between range from

15,000 to 159,571 comments1 and cover three different social me-

dia platforms with different classification types (multi-class and

multi-label). Table 1 lists the details of the four datasets.

1The original version of Dataset Founta [14] included more than 80,000 tweets with
tweets IDs published.We have successfully retrieved 50,425 valid tweets. The remaining
missing tweets failed to be retrieved due to their deletion.

4.2 Baseline model

We create a baseline model for each pre-trained LM with the sim-

plest components possible. Therefore, each baseline model takes a

pre-trained LM without continued pre-training, and a linear classi-

fier architecture is added on top of it, as shown by žBaseline Modelž

noted in Figure 1.

We select the version for each pre-trained LM that is of a pa-

rameter number ranging from 110 millions to 144 millions. This

way, the three models are of a similar size. Plus, these sizes are

smaller than most of their peer versions so that their training is

faster. We use the following versions of BERT, RoBERTa and XLM:

łbert-base-casedž (12 layers, 768 hidden dimensions, 12 heads, 110

million parameters); łroberta-basež (12 layers, 768 hidden dimen-

sions, 12 heads, 125 million parameters); łxlm-mlm-enfr-1024ž (6

layers, 1024 hidden dimensions, 8 heads, 144 million parameters).



A Comparative Study of Using Pre-trained Language Models for Toxic Comment Classification WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

Dataset Data Source Data Numbers Labels Classification Tasks

Kumar [21] Facebook 14,998 non-aggressive (42%), overtly aggressive (35%), covertly aggressive (23%) multi-class

Waseem[38] Twitter 18,625 racism (11%), sexism (20%), both (69%), neither multi-class

Founta [14] Twitter 50,425 abusive (8%), hateful (3%), normal (73%), spam (16%) multi-class

Wiki [8] Wikipedia 159,571 toxic (10%), severe toxic (1%), obscene (5%), threat (0.3%), insult (5%), identity hate (1%) multi-label

Table 1: Summary of the four toxic comment classification tasks.

4.3 Implementation

Pre-processingWe constrain the maximum length of each input

instance (i.e., a piece of comment) to be 100 tokens, following the

standard practice found in literature [43]. In this way, we truncate

the longer comment and pad the shorter messages with zero values.

Hyperparameters For all supervised learning in this work, i.e.

the TCC tasks, we train the model for 3 epochs using a batch size of

16. For all unsupervised learning, i.e. the first stage of TAPT-light,

we train the model for different epochs as stated in Section 3.3,

using a batch size of 16. All training processes use Adam optimizer

and a learning rate of 5e-5. These settings are recommended as

łpossible values to work wellž in downstream task-specific training

by [11].

Hardware and ImplementationWe used a single Tesla V100-

PCIE-32GB GPU for all experiments. Compared with LM domain

fine-tuning described in [3] (a single TPU v3 with 8 cores) and

[18] (Google Cloud v3-8 TPU), our hardware requirements are less

powerful. This makes the reproduction of our results easier.

Our implementation uses the HuggingFace transformers 3.0.0

library [41] and PyTorch 1.5.1. All multi-class classification tasks

use Softmax as the final activation function and the multi-label

classification tasks use Sigmoid instead.

4.4 Results: impact of downstream network
architectures

Table 2 shows the results comparing the different downstream net-

work architectures. łBERTž, łRoBERTaž and łXLMž represent the

baseline model (as shown by žBaseline Modelž in Figure 1) for each

pre-trained LM, while łBERT-CNNž, as an example, represents the

pre-trained BERT LM with a CNN structure on top as the down-

stream network architecture.

We first compare macro F1 of each model as it highlights how

well a model handles minority classes on a unbalance dataset, com-

pared to micro F1 [42]. Most of the TCC tasks typically handle

highly unbalanced data, and as a result of that, model performance

on minority classes (i.e. toxic comments) is often overshadowed by

the majority classes when only looking at micro F1 [42]. As shown

in Table 2, the macro F1 results indicate that the baseline models

consistently perform much better than their łcomplexž counter-

parts where CNN or Bi-LSTM is used as the downstream network

architecture.

In terms of micro F1, the baseline models obtained the highest

F1 across all datasets, with the exception of XLM on the Founta

dataset. The biggest difference compared to the CNN and Bi-LSTM

downstream network architectures were noticed on the smaller

datasets, i.e., Kumar and Waseem, and the multi-label classification

task (Wiki). For example, the micro F1 of RoBERTa-CNN is reduced

by 0.0465 and 0.0354, compared to the baseline model on the multi-

label classification task (Wiki) and the smallest dataset (Kumar)

respectively, and reduced by 0.0133 on Founta, whose dataset is

multi-class and three times bigger than Kumar. Similar patterns are

observed on results of BERT groups and XLM groups.

Comparing CNN and Bi-LSTM as the downstream structure for

the pre-trained LM, there is no consistent pattern indicating which

one is better.

The results above suggest that transferring a pre-trained LM

to complex downstream network architectures does not offer any

benefits over a simple linear structure in the context of TCC tasks.

One possible reason for this is that the complex DNNmight dilute or

cannot interpret well the general representations that LMs learned

from pre-training on extremely large corpora.

4.5 Results: impact of continued pre-training
in domain

In summary, we have tested in-domain fine-tuning on four TCC

tasks using three public pre-trained LMs for six different epoch

settings. In total, 72 models have been reported in Table 3.

Firstly, as shown in table 2, continued pre-training on the tar-

get task often leads to further performance gain compared to the

baseline models, with exceptions noted on the Founta dataset and

Wiki dataset when using BERT and RoBERTa. Particularly on the

smaller datasets, Kumar and Waseem, the performance improve-

ments gained from TAPT-lights are noticeable. For example, the

macro F1 on Waseem has increased by 0.1994, 0.2046 and 0.1427 for

BERT, RoBERTa and XLM respectively, when further pre-training

the LM for 50 epochs using the unlabeled downstream data. The

higher increase of than micro F1 also suggests that continued pre-

training particularly benefits small classes in the datasets, and these

are often classes of the toxic comment rather than the non-toxic

comment. While for Wiki, the biggest dataset among the four, the

baseline models of BERT and RoBERTa achieved a strong perfor-

mance and continued pre-training in domain demonstrates a detri-

mental impact on its classification performance. The only exception

is XLM. The three continued pre-trained LMs give no noticeable

advantages or disadvantages over the Founta task.

Another finding is that there is no consistent pattern in terms of

which epoch setting is the best across the four tasks. However, for

multi-class classification tasks (i.e. Kumar, Waseem and Founta),

models fine-tuned for 10 or 20 epochs achieve the highest F1 scores

or comparable results to their counterparts that use a higher epoch

value. For the multi-label classification task (i.e. Wiki), as mentioned

above, continued fine-tuning in domain does not show noticeable

benefits on this task. The dataset of this task is at least three times

bigger than the other three.



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner

Kumar (15k) Waseem (18.6k) Founta (50.4k) Wiki (159.6k)

Model micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1

BERT 0.5904 0.5805 0.8738 0.6196 0.7957 0.6071 0.7816 0.6372

BERT-CNN 0.5796 0.5665 0.8480 0.5971 0.7888 0.5929 0.7388 0.4800

BERT-BiLSTM 0.5750 0.5611 0.8469 0.5921 0.7929 0.5959 0.7504 0.5945

RoBERTa 0.5667 0.5441 0.8673 0.6159 0.8025 0.6315 0.7822 0.6510

RoBERTa-CNN 0.5313 0.4819 0.8491 0.5902 0.7892 0.5367 0.7357 0.4658

RoBERTa-BiLSTM 0.5450 0.5013 0.8426 0.5828 0.7769 0.5563 0.7405 0.5431

XLM 0.5646 0.5503 0.8464 0.5957 0.7989 0.6149 0.7594 0.5122

XLM-CNN 0.5525 0.5345 0.8362 0.5860 0.8023 0.6015 0.7233 0.4642

XLM-BiLSTM 0.5600 0.5409 0.8346 0.5794 0.7987 0.5751 0.7519 0.4690

Table 2: Comparing F1 (micro andmacro) obtained by transferring different languagemodels (BERT, RoBERTa, XLM) to differ-

ent downstream network architectures. The best performance for each pre-trained LM on each task is boldfaced. The dataset

sizes are in the brackets after the datasets and łkž means a thousand or thousands.

Kumar (15k) Waseem (18.6k) Founta (50.4k) Wiki (159.6k)

Model micro F1 macro F1 micro F1 macro F1 micro F1 macro F1 micro F1 macro F1

BERT 0.5904 0.5805 0.8738 0.6196 0.7957 0.6071 0.7816 0.6372

BERT-e1 0.6050 0.5938 0.8737 0.6196 0.7981 0.6096 0.7422 0.5462

BERT-e5 0.6004 0.5899 0.8781 0.6198 0.7965 0.6185 0.7475 0.5648

BERT-e10 0.6029 0.5894 0.8824 0.7538 0.7957 0.6076 0.7804 0.6539

BERT-e20 0.6058 0.5926 0.8743 0.8176 0.7959 0.6079 0.7404 0.6206

BERT-e50 0.6092 0.5972 0.8727 0.8190 0.7914 0.6025 0.7426 0.5581

BERT-e100 0.6046 0.5898 0.8765 0.7479 0.7906 0.6046 0.7395 0.5196

RoBERTa 0.5667 0.5441 0.8673 0.6159 0.8025 0.6315 0.7822 0.6510

RoBERTa-e1 0.6075 0.5924 0.8690 0.6160 0.8106 0.6382 0.7393 0.5067

RoBERTa-e5 0.6075 0.5961 0.8808 0.6277 0.8019 0.6391 0.7606 0.5650

RoBERTa-e10 0.6146 0.6051 0.8711 0.6174 0.8060 0.6368 0.7530 0.5606

RoBERTa-e20 0.6063 0.5922 0.8711 0.6134 0.8011 0.6275 0.7736 0.5875

RoBERTa-e50 0.6146 0.6045 0.8759 0.8205 0.7997 0.6163 0.7711 0.6503

RoBERTa-e100 0.6167 0.6043 0.8743 0.7439 0.8027 0.6242 0.7683 0.6209

XLM 0.5646 0.5503 0.8464 0.5957 0.7989 0.6149 0.7594 0.5122

XLM-e1 0.5754 0.5566 0.8593 0.6063 0.8044 0.6248 0.7548 0.6247

XLM-e5 0.5883 0.5762 0.8593 0.6057 0.7987 0.6184 0.7600 0.5837

XLM-e10 0.6000 0.5896 0.8636 0.7364 0.8003 0.6170 0.7661 0.5952

XLM-e20 0.5988 0.5891 0.8695 0.7826 0.7987 0.6184 0.7712 0.6006

XLM-e50 0.6158 0.6091 0.8690 0.7384 0.7999 0.6178 0.7707 0.6427

XLM-e100 0.6196 0.6097 0.8727 0.7883 0.7985 0.6155 0.7748 0.6233
Table 3: Comparing F1 (micro and macro) of the baseline models and their continued domain fine-tuning language model

counterparts. łBERT-e1ž refers to fine-tuning the BERT language model for 1 epoch and then transfer it to the target TCC

tasks. The best performance for each pre-trained LM on each task is boldfaced. The model whose result is worse than its

baseline model is italicized.

To summarise, our results suggest that the continued fine-tuning

in domain is beneficial to TCC tasks on relatively small datasets.

This may be because a large dataset could have already supplied

adequate information for the model to learn; thus, features from

pre-trained LM offer less value to the learning. Additionally, for

TCC tasks, more training epochs do not necessarily lead to per-

formance benefits. Also, under these circumstances, a small batch

size, e.g. 16, is workable. One possible explanation is that a large



A Comparative Study of Using Pre-trained Language Models for Toxic Comment Classification WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia

number of epochs could have led to catastrophic forgetting that

useful features gained from the massive LM pre-training could be

erased during the later fine-tuning and thus lead to a decrease of

model performance [33]. Although we did not directly compare

against TAPT, we believe our findings are still encouraging for

future researchers since a identical reproduction of TAPT is very

resource demanding that is not accessible to most people in realistic

situations. Our results suggest that even with very low hyperpa-

rameter settings, continued fine-tuning in-domain still contributes

to TCC task especially when the training dataset of the TCC is

relatively small and unbalanced.

4.6 Results: impact of different pre-trained
language models

As shown in Table 2, BERT generally outperforms RoBERTa and

XLM when an identical downstream structure is applied. This pat-

tern is clearer when comparing their macro F1 and particularly on

small datasets like Kumar. For example, BERT-CNN gains a macro

F1 of 0.5665 on Kumar, noticeably higher than RoBERTa (0.4819)

and XLM (0.5345).

With continued pre-training in domain (results in Table 3), RoBERTa

generally outperforms BERT and XLM, especially when comparing

their best TAPT-light models and baseline models on each TCC

tasks with regard to macro F1. Moreover, TAPT-light benefits XLM

more than RoBERTa and BERT, particularly on TCC tasks with with

relatively small datasets. This can be observed as that all TAPT-light

XLM models outperform its XLM baseline in terms of macro F1.

One possible reason behind the above patterns is that XLM han-

dles long sentences or documents (4000 tokens composed of sen-

tences) during its pre-training, while TCC usually tackles short

sentences and texts [23]. TAPT-light uses in-domain data to fine-

tune LMs, and therefore, could have helped XLM to ‘learn’ short

texts. On the other hand, BERT and RoBERTa were pre-trained on

corpora whose maximum sequence length is 512 tokens which is

similar to many TCC datasets [11, 27]. This could have explained

why they generally outperform XLM and that they benefit less from

TAPT-light.

4.7 Limitations

Being limited to computational resources, this study lacks a set

of experiments with identical parameter settings to TAPT which

might give further information on how TAPT-light compares to the

original TAPT on TCC tasks. Also, due to the unavailability of the

original datasets2 used in TAPT, wewere unable to directly compare

our TAPT-light against TAPT on identical datasets. Another unex-

plored factor is that each LM and sophisticated architectures such as

CNN and Bi-LSTM could have its own favourable hyper-parameter

settings. However, those hyper-parameter settings are unified in

our study according to the common settings in previous studies

but not further refined. Also, to what extent those hyper-parameter

settings impact on the performance is unknown.

2Here we refer to the two datasets in the REVIEW domain which is a relatively similar
domain to TCC.

5 CONCLUSION

This paper studied transferring pre-trained LMs to TCC tasks. We

focused on the impact of different pre-trained LMs, downstream

network structures, and using the dataset of the downstream task

to continue fine-tuning the LM before transferring them to down-

stream TCC tasks, as well as the impact of lowering some of their

training hyper-parameters.

Our results suggest that in the context of TCC tasks, BERT and

RoBERTa generally perform better than XLM. Second, using a sim-

ple downstream network architecture is a better choice over a

complex one, such as CNN and Bi-LSTM. Third, we also find that

our approach TAPT-light shows advantages to downstream TCC

tasks when the dataset size of the downstream tasks is relatively

small. What is more, with TAPT-light, all other variables being

equal, a low epoch setting will suffice to obtain the best achiev-

able results of a model in most cases. This potentially makes the

TAPT-based methods more accessible and easier to train.

Our future work will explore several directions. For example, we

will explore these studies in a different aspect of downstream tasks

to see if our findings generalise well on them; we will develop and

test systematic methods of unfreezing and freezing certain layers’

parameters in the pre-trained LM.

REFERENCES
[1] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva Varma. 2017.

Deep learning for hate speech detection in tweets. In Proceedings of the 26th
International Conference on World Wide Web Companion. International World
Wide Web Conferences Steering Committee, 759ś760.

[2] Arup Baruah, Kaushik Das, Ferdous Barbhuiya, and Kuntal Dey. 2020. Aggression
identification in english, hindi and bangla text using bert, roberta and svm. In
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying.
76ś82.

[3] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019).

[4] Pete Burnap, Omer F Rana, Nick Avis, MatthewWilliams, William Housley, Adam
Edwards, Jeffrey Morgan, and Luke Sloan. 2015. Detecting tension in online
communities with computational Twitter analysis. Technological Forecasting and
Social Change 95 (2015), 96ś108.

[5] Vikas S Chavan and SS Shylaja. 2015. Machine learning approach for detection
of cyber-aggressive comments by peers on social media network. In 2015 Inter-
national Conference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE, 2354ś2358.

[6] Jason PCChiu and Eric Nichols. 2016. Named entity recognitionwith bidirectional
LSTM-CNNs. Transactions of the Association for Computational Linguistics 4
(2016), 357ś370.

[7] Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potamianos. 2019.
An embarrassingly simple approach for transfer learning from pretrained lan-
guage models. arXiv preprint arXiv:1902.10547 (2019).

[8] ConversationAI. 2017. Toxic Comment Classification Challenge: Identify and clas-
sify toxic online comments. https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

[9] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017.
Automated hate speech detection and the problem of offensive language. In
Eleventh international aaai conference on web and social media.

[10] Fabio Del Vigna12, Andrea Cimino23, Felice Dell’Orletta, Marinella Petrocchi, and
Maurizio Tesconi. 2017. Hate me, hate me not: Hate speech detection on facebook.
In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17). 86ś95.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Yuchun Fang, Zhengyan Ma, Zhaoxiang Zhang, Xu-Yao Zhang, Xiang Bai, et al.
2017. Dynamic Multi-Task Learning with Convolutional Neural Network.. In
IJCAI. 1668ś1674.

[13] Paula Fortuna and Sérgio Nunes. 2018. A survey on automatic detection of hate
speech in text. ACM Computing Surveys (CSUR) 51, 4 (2018), 85.

[14] Antigoni Maria Founta, Constantinos Djouvas, Despoina Chatzakou, Ilias Leon-
tiadis, Jeremy Blackburn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. 2018. Large scale crowdsourcing and characterization of



WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia Zhixue Zhao, Ziqi Zhang, and Frank Hopfgartner

twitter abusive behavior. In Twelfth International AAAI Conference on Web and
Social Media.

[15] Zhengjie Gao, Ao Feng, Xinyu Song, and Xi Wu. 2019. Target-dependent senti-
ment classification with BERT. IEEE Access 7 (2019), 154290ś154299.

[16] Denis Gordeev and Olga Lykova. 2020. BERT of all trades, master of some. In
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying.
93ś98.

[17] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602ś610.

[18] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A Smith. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. arXiv preprint arXiv:2004.10964 (2020).

[19] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[20] Ritesh Kumar, Atul Kr Ojha, Bornini Lahiri, Marcos Zampieri, Shervin Malmasi,
Vanessa Murdock, and Daniel Kadar. 2020. Proceedings of the Second Workshop
on Trolling, Aggression and Cyberbullying. In Proceedings of the SecondWorkshop
on Trolling, Aggression and Cyberbullying.

[21] Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari.
2018. Aggression-annotated Corpus of Hindi-English Code-mixed Data. In Pro-
ceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Nicoletta Calzolari (Conference chair), Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk,
Stelios Piperidis, and Takenobu Tokunaga (Eds.). European Language Resources
Association (ELRA), Miyazaki, Japan.

[22] Irene Kwok and Yuzhou Wang. 2013. Locate the hate: Detecting tweets against
blacks. In Twenty-seventh AAAI conference on artificial intelligence.

[23] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model
pretraining. arXiv preprint arXiv:1901.07291 (2019).

[24] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36, 4 (2020),
1234ś1240.

[25] Han Liu, Peter Burnap, Wafa Alorainy, and Matthew Williams. 2020. Scmhl5 at
trac-2 shared task on aggression identification: Bert based ensemble learning
approach. (2020).

[26] Han Liu, Pete Burnap, Wafa Alorainy, and Matthew L Williams. 2019. Fuzzy
Multi-task Learning for Hate Speech Type Identification. In The World Wide Web
Conference. ACM, 3006ś3012.

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[28] Marzieh Mozafari, Reza Farahbakhsh, and Noël Crespi. 2019. A BERT-based
transfer learning approach for hate speech detection in online social media. In
International Conference on Complex Networks and Their Applications. Springer,
928ś940.

[29] Manish Munikar, Sushil Shakya, and Aakash Shrestha. 2019. Fine-grained sen-
timent classification using bert. In 2019 Artificial Intelligence for Transforming
Business and Society (AITB), Vol. 1. IEEE, 1ś5.

[30] Vinita Nahar, Sanad Al-Maskari, Xue Li, and Chaoyi Pang. 2014. Semi-supervised
learning for cyberbullying detection in social networks. In Australasian Database
Conference. Springer, 160ś171.

[31] Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang.
2016. Abusive language detection in online user content. In Proceedings of the
25th international conference on world wide web. International World Wide Web
Conferences Steering Committee, 145ś153.

[32] Ji Ho Park and Pascale Fung. 2017. One-step and two-step classification for
abusive language detection on twitter. arXiv preprint arXiv:1706.01206 (2017).

[33] Sebastian Ruder. 2019. Neural Transfer Learning for Natural Language Processing.
Ph.D. Dissertation. NATIONAL UNIVERSITY OF IRELAND, GALWAY.

[34] Niloofar Safi Samghabadi, Parth Patwa, PYKL Srinivas, Prerana Mukherjee, Ami-
tava Das, and Thamar Solorio. 2020. Aggression and misogyny detection using
BERT: A multi-task approach. In Proceedings of the Second Workshop on Trolling,
Aggression and Cyberbullying. 126ś131.

[35] Anna Schmidt and Michael Wiegand. 2017. A survey on hate speech detec-
tion using natural language processing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for Social Media. 1ś10.

[36] Matthew Tang, Priyanka Gandhi, Md Ahsanul Kabir, Christopher Zou, Jordyn
Blakey, and Xiao Luo. 2019. Progress notes classification and keyword extrac-
tion using attention-based deep learning models with BERT. arXiv preprint
arXiv:1910.05786 (2019).

[37] Betty van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. 2018. Challenges
for toxic comment classification: An in-depth error analysis. arXiv preprint
arXiv:1809.07572 (2018).

[38] Zeerak Waseem. 2016. Are You a Racist or Am I Seeing Things? Annotator Influ-
ence on Hate Speech Detection on Twitter. In Proceedings of the First Workshop on
NLP and Computational Social Science. Association for Computational Linguistics,
Austin, Texas, 138ś142. http://aclweb.org/anthology/W16-5618

[39] Zeerak Waseem, Thomas Davidson, Dana Warmsley, and Ingmar Weber. 2017.
Understanding abuse: A typology of abusive language detection subtasks. arXiv
preprint arXiv:1705.09899 (2017).

[40] Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols or hateful people? predic-
tive features for hate speech detection on twitter. In Proceedings of the NAACL
student research workshop. 88ś93.

[41] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
AnthonyMoi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. ArXiv abs/1910.03771 (2019).

[42] Ziqi Zhang and Lei Luo. 2019. Hate speech detection: A solved problem? the
challenging case of long tail on twitter. Semantic Web 10, 5 (2019), 925ś945.

[43] Ziqi Zhang, David Robinson, and Jonathan Tepper. 2018. Detecting hate speech
on twitter using a convolution-gru based deep neural network. In European
semantic web conference. Springer, 745ś760.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Definition of toxic comment classification tasks
	2.2 Pre-trained LM-based methods for text classification
	2.3 Pre-trained LM-based methods for tasks toxic comment classification

	3 Methodology
	3.1 Pre-trained language models
	3.2 Downstream network architectures
	3.3 Continued pre-training in domain: TAPT-light

	4 Experiments
	4.1 Datasets
	4.2 Baseline model
	4.3 Implementation
	4.4 Results: impact of downstream network architectures
	4.5 Results: impact of continued pre-training in domain
	4.6 Results: impact of different pre-trained language models
	4.7 Limitations

	5 Conclusion
	References

