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Abstract

Background: Sparse relative effectiveness evidence is a frequent problem in Health Technology Assessment (HTA).

Where evidence directly pertaining to the decision problem is sparse, it may be feasible to expand the evidence-base

to include studies that relate to the decision problem only indirectly: for instance, when there is no evidence on a

comparator, evidence on other treatments of the same molecular class could be used; similarly, a decision on children

may borrow-strength from evidence on adults. Usually, in HTA, such indirect evidence is either included by ignoring

any differences (‘lumping’) or not included at all (‘splitting’). However, a range of more sophisticated methods exists,

primarily in the biostatistics literature. The objective of this study is to identify and classify the breadth of the available

information-sharing methods.

Methods: Forwards and backwards citation-mining techniques were used on a set of seminal papers on the topic of

information-sharing. Papers were included if they specified (network) meta-analytic methods for combining

information from distinct populations, interventions, outcomes or study-designs.

Results: Overall, 89 papers were included. A plethora of evidence synthesis methods have been used for

information-sharing. Most papers (n = 79) described methods that shared information on relative treatment effects.

Amongst these, there was a strong emphasis on methods for information-sharing across multiple outcomes (n = 42)

and treatments (n = 25), with fewer papers focusing on study-designs (n = 23) or populations (n = 8). We categorise

and discuss the methods under four ’core’ relationships of information-sharing: functional, exchangeability-based,

prior-based and multivariate relationships, and explain the assumptions made within each of these core approaches.

Conclusions: This study highlights the range of information-sharing methods available. These methods often

impose more moderate assumptions than lumping or splitting. Hence, the degree of information-sharing that they

impose could potentially be considered more appropriate. Our identification of four ‘core’ methods of

information-sharing allows for an improved understanding of the assumptions underpinning the different methods.

Further research is required to understand how the methods differ in terms of the strength of sharing they impose

and the implications of this for health care decisions.
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Background
Health Technology Assessment (HTA) is the systematic

evaluation of the properties, effects and impact of health

technologies with a view to inform decision-making in

health care [1]. Regardless of whether or not a system

functions under explicit budget constraints, resources

spent could have always been used for alternative pur-

poses. Therefore, policy-makers are always faced with

difficult decisions about whether interventions should be

funded. This requires an assessment of whether the ben-

efits of an intervention are sufficient to justify the health

opportunity costs of funding it [2]. It follows that a set of

tools ought to be used so that policy-makers can rationally

and transparently decide about the adoption of a given

health technology [3].

Decision analysis provides a quantitative framework

that brings together all relevant evidence on the impact

of an intervention on health outcomes and costs, whilst

making explicit judgements about how different types

and sources of evidence are linked together (model struc-

ture) and which elements are relevant to decision-making

(reflecting social values). The outputs of a Decision Ana-

lyticModel (DAM) include incremental costs and benefits

and can be useful for decision-makers [4].

Each input within a DAM is a parameter and consti-

tutes a potential research question that can be informed

by evidence which is typically identified using litera-

ture reviews. To assist study selection when identify-

ing evidence for reviews, research questions are defined

using the PICOS framework, where P stands for Pop-

ulation, I for Intervention, C for Comparator, O for

Outcome, and S for Study-design [5]. Typically, review-

ers exclude studies deviating from the inclusion crite-

ria on any PICOS dimension; that is, they usually only

include studies providing direct evidence. Hence, direct

evidence on relative effectiveness comprises of one or

more randomised studies, evaluating the intervention(s)

under assessment, recruiting patients from the popula-

tion of interest, and measuring effects on all relevant

outcomes.

Where multiple studies exist to inform the same param-

eter, these can be synthesised to generate a single esti-

mate that represents the evidence-base. To synthesise the

evidence base and provide DAMs with relative effective-

ness inputs, standard Meta-Analysis (MA) and Network

Meta-Analysis (NMA)methods [6, 7] are commonly used.

Although synthesis is more common for Relative Treat-

ment Effects (RTEs), evidence synthesis methods can also

be applied for other DAM inputs such as costs andQuality

of Life (QoL).

However, in HTA, direct evidence may be sparse, het-

erogeneous, or limited in other ways and synthesis may

become problematic. Where evidence is sparse, it may

not be possible to obtain the required Relative Treatment

Effect (RTE) estimates, and even when they can be ob-

tained, they may be highly uncertain and may not be

robust due to assumptions imposed in the analysis [8, 9].

Evidence sparsity may also prevent appropriate explo-

ration of heterogeneity because small studies are at higher

risk of enrolling unrepresentative populations [10] and

provide less evidence to enable robust subgroup analyses.

A policy relevant alternative to limited or sparse data

may be to extend the evidence base beyond the direct

evidence. A topical example concerns paediatric indica-

tions for which the evidence-base is typically sparse due to

the regulatory restrictions on trials. To support decision-

making for this population, the Food and Drugs Admin-

istration (FDA) [11] and the European Medicines Agency

(EMA) now propose that “The evidence needed to address

the research questions that are important for marketing

authorisation of a given product in the target popula-

tion might be modified based on what is known for other

populations” [12]. Whilst in the aforementioned example

the evidence is extended to consider another population,

in principle, indirect evidence may relate to any other

dimension of PICOS (Fig. 1) —it may include studies

assessing a different, but related, treatment or pertaining

to a different study-design than what is specified in the

research question. Note that, in this context, NMA also

considers indirect evidence, pertaining to other treatment

comparisons i.e. indirect evidence on the ‘Intervention’

PICOS dimension, to inform the treatment effect(s) of

primary interest [13].

Within a decision-making context, the use of indirect

evidence, as long as it is judged relevant, contributes to

accountability by allowing for all relevant evidence to be

considered. Combining all relevant sources of evidence

may yield more precise estimates than the direct evidence

alone and allow better characterisation of heterogeneity

and uncertainty. However, when indirect evidence are not

sufficiently relevant or of high-quality, using indirect evi-

dence may also introduce bias and inflate heterogeneity

estimates.

The use of indirect evidence to support decision-

making is not exclusive to the aforementioned regulatory

context and has permeated HTA processes. Examples

can be found in Technology Appraisals (TAs) conducted

by the National Institute for Health and Care Excel-

lence (NICE) to inform routine use of technologies in the

National Health Service (NHS) in England andWales. For

instance, TA445 [14] considered adult studies to com-

plement a sparse paediatric evidence base. Also, relative

effectiveness has been generalised across subgroups of dif-

ferent Hepatitis C genotypes [15]. These two examples use

indirect evidence by considering both sources perfectly

generalisable (‘lumping’), as an alternative to being con-

sidered completely independent (‘splitting’). There are,

however, examples of appraisals which use indirect evi-
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Fig. 1 An illustration of the extended evidence base. The small pie in the middle, characterised by P0 , I0 , C0 ,O0 , S0 , represents only the directly

relevant information which usually comprise only a small part of the evidence that is relevant to a decision. The evidence outside the small pie

represent examples of indirectly relevant information for each of the PICOS dimensions

dence in more sophisticated ways. For instance, TA383

[16] used indirect evidence across interventions by assum-

ing a ‘class-effect‘ between treatments that function

through the same molecular pathway. TA139 [17] and

TA168 [18] simultaneously modelled two outcomes lever-

aging their correlation structure and TA244 [19] modelled

a network of interventions with multiple treatment com-

ponents assuming that the relative effect of an interven-

tion is the sum of the relative effects of its comprising

components.

Inevitably, a judgement on whether the indirect evi-

dence is relevant is always required. However, what is

often not made explicit is that, where both direct and

indirect evidence are considered, there should be appro-

priate consideration for the extent of information-sharing

permitted by different synthesis methods (i.e. the extent

to which the indirect evidence is allowed to affect the

estimates obtained by using only the direct evidence).

The objective of this review is to identify information-

sharing evidence synthesis methods that have been used

in the literature and improve understanding of these

methods by making explicit the fundamental assump-

tions underpinning them. We do so by identifying the

‘core’ relationships used to share information. This review

increases awareness around the breadth of available

information-sharing methods and aids transparency in

information-sharing methods choice. To our knowledge,

this topic has not been explored in the past with a clear

policy focus.

Methods
We conducted a literature search, that was systematic and

transparent in its methods and conduct, but was not com-

prehensive due to the challenges described ahead [20].

We, therefore, will refer to our methodology as a literature

review and not as a systematic review.

To inform the design and conduct of the literature

review, we initially conducted a scoping review (details

provided in Additional file 1). It’s aims were to clar-

ify working definitions, determine inclusion and exclu-

sion criteria, understand whether keyword-based meth-

ods [20] would generate a sensitive and specific search

strategy, obtain a comprehensive list of representative

seminal papers on information-sharing, and conceive how

the breadth of information-sharing methods could be cat-

egorised in a useful manner. We found that consistent

terminology was not used when referring to methods that

combined direct and indirect evidence. Therefore, for the

main literature review, we used citation-mining methods

[21] which are efficient [22] and have been used for sim-

ilar reviews [23]. The methods of the main review were

protocolled in advance.

Citation-mining involves two steps. The first encom-

passed the compilation of a list of seminal/influential

papers. All relevant papers identified in the scoping

review were considered and seminal papers were selected

to reflect breadth [22] by including different fields of

research:MA, NMA,multi-parameter evidence synthesis,

synthesis of multiple outcomes and the incorporation of
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evidence on historical controls in trial-design. Two exter-

nal evidence synthesis experts were consulted to validate

the list and provide additional references. The second,

and main, step of the citation-mining review was then

conducted in the Web of Science (WoS) on 20/Feb/2019

by identifying all the citations of the seven seminal papers

[8, 24–29], and then all articles that cited the seminal

papers — i.e. a forwards and backwards citation-mining.

Inclusion and exclusion criteria were pre-specified (see

Additional file 1). Articles were included if they formally

specified MA or NMA models (in mathematical notation

or computer code) that combined information pertain-

ing to multiple populations, interventions, outcomes or

study-designs, or if they utilised evidence from an exter-

nal source (such as a previous meta-analysis). Given the

aim of identifying a range of methods for the sharing

of information, papers that used only standard NMA

methods originally described by Lu et al. [7] (i.e. by pool-

ing evidence sets assuming perfect exchangeability) were

excluded.

Data extraction was pre-specified and included year of

publication, the synthesis challenge addressed, the spe-

cific method (relationship) imposed between the ‘direct’

and ‘indirect’ evidence to facilitate information-sharing,

the PICOS dimension(s) of indirectness, the ‘cores’

used, the parameter over which information-sharing was

imposed, and whether the paper fell into the field of MA

or NMA.When papers tackled multiple challenges simul-

taneously (e.g. [30–32]), the challenges they dealt with

were isolated and extracted separately. Further informa-

tion on the search strategy and inclusion and exclusion

criteria is provided in Additional file 1.

The search was conducted in Zotero version 5.0.69 and

a link to the included papers Zotero database, where the

papers have been grouped according to various tags, is

provided in the end of the manuscript. The PRISMA

checklist for systematic reviews is provided in Additional

file 2. The results of the search were reported descrip-

tively, by grouping the methods by the policy problem and

the PICOS dimension of indirectness. Methods were then

categorised according to the ‘core’ relationship they used

to enable information-sharing and the statistical methods

falling within each core were described.

Results
Characteristics of the included studies

The review identified 89 papers (Fig. 2) which are avail-

able in our online database (link provided in the end

of the manuscript). The majority (n = 79) described

methods that shared information on relative treatment

effects. Other studies used methods to share informa-

tion on comparison-specific meta-regression slopes (n =

4), comparison-specific between-studies heterogeneities

(n = 6), or study-specific baselines (n = 2). Overall, there

was a balance amongst papers that developed methods

within MA (n = 45) and NMA (n = 44). There was

a strong emphasis on methods for information-sharing

across multiple outcomes (42 papers) and treatments (25

papers), with fewer papers focusing on study-designs (23

papers) or populations (8 papers) (Table 1). Note that

some papers described methods sharing information on

several types of parameters and across more than one

PICOS dimension (e.g. [30–32]). A full list of the included

papers along with a description of how information was

shared within each paper can be found in Additional file 3.

We also identified the most common synthesis chal-

lenges addressed by the included papers. Amongst papers

sharing information across populations, 3 [14, 55, 56]

developed models to accommodate simultaneous synthe-

sis of adult and paediatric evidence, 1 [33] described mod-

els that allowed information-sharing between patients

subgroups, and 2 [34, 54] provided model extensions for

baseline risk adjustment. Amongst papers sharing infor-

mation across interventions, 7 [35, 44–46, 51–53] simul-

taneously synthesised multiple dosages of the same treat-

ment, 7 [32, 33, 36, 44, 46, 49, 50] shared information

across interventions that fall under the same ‘class’, 5 [30,

36, 37, 47, 48] dealt with complex interventions (i.e. treat-

ments that comprise multiple components), and 4 [38–41]

described models on comparison-specific non-relative

effect parameters such as between-studies variances or

meta-regression slopes . Amongst papers sharing infor-

mation across study-designs, 9 [8, 85–89, 100–102] com-

bined randomised and non-randomised studies and 13

[42, 50, 85, 90–99] dealt with studies’ internal or exter-

nal biases. Amongst papers that shared information across

outcomes, 2 [31, 57] considered structurally related out-

comes (for instance, when one outcome has to occur

before the other), 6 [30, 45, 58, 59, 61, 79] combined

evidence from studies that reported at multiple/different

follow-up periods, and 34 papers [8, 25, 26, 30, 31, 57,

60, 62–78, 80–84, 102–106] considered correlated out-

comes. Finally, 7 papers described how evidence from

previous meta-analyses (meta-epidemiological evidence)

[24, 90, 107–109] or expert elicitation [68, 110] can be

incorporated in analyses.

‘Core’ relationships for information-sharing

The methods identified were classified according to the

‘core’ relationship facilitating information-sharing. Four

‘core‘ methods were identified: 1) functional relation-

ships which include deterministic functions among model

parameters resulting in a reduced number of parame-

ters that need to be estimated; 2) exchangeability-based

relationships which assume that a set of parameters are

drawn from a common distribution that allows them to

be shrunk towards its mean; 3) prior-based relation-

ships which employ a Bayesian framework to ‘load’ the
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Fig. 2 PRISMA diagram for search results

indirect evidence in prior distributions and 4) multi-

variate methods which assume that model parameters

are correlated and enable information-sharing through

the covariance structure. Figure 3 provides a description

of the main assumption and mathematical relationship

imposed by each ‘core’ method.

Table 1 classifies papers according to the ‘core’ method

used and the PICOS dimension of indirectness. It shows

that some ‘core’ relationships are preferred when infor-

mation is shared across specific PICOS dimensions.

For instance, most of the identified papers sharing

information across interventions either use functional

or exchangeability-based relationships, and no example

using priors was found. Also, papers that use multivari-

ate relationships, do so to share information across related

outcomes, not across populations or study-designs. This

may be partly because the information required to

implement multivariate methods for multiple popula-

tions or study-designs is usually unavailable in the lit-

erature. For instance, to synthesise evidence on multi-

ple populations using multivariate methods, we would

need studies that enrol all relevant populations and

report separately for each, and such information is rarely

provided.

Functional relationships

The simplest functional relationship is lumping (i.e. com-

mon effects) where all data points inform a single param-

eter independently of whether the evidence is direct or

indirect. Examples include pooling RTEs across time-

points [32], (sub-)populations [14, 33], or interventions of

the same treatment class [30, 32, 35, 36], as well as pooling

between-trial heterogeneity parameters [36, 39, 40, 43] or

meta-regression slopes [34, 38, 41].

Another type of functional relationship is a constraint

where a strict inequality is imposed among parameters.

In a Bayesian framework, information-sharing is facili-

tated by preventing simulation samples that do not con-

form to the specified constraint. Such methods have

been used to relate RTEs across dosages, expressing that

higher dosages are expected to exhibit larger RTE [35, 44],

describe structurally-related outcomes [57], and specify
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Table 1 A categorisation of papers that shared information according to the ‘core’ relationship that they used and the PICOS

dimension that direct and indirect evidence differ in

PICOS dimension of indirectness ‘Core‘ relationship

Functional Exchangeability based Prior-based Multivariate

Intervention Lumping: [30, 32–43] RE: [34, 38–42] SIP: No refs B: [36]

C: [35, 39, 40, 44] RW: [35] MixP: No refs W: No refs

L: [30, 35–38, 42, 45–48] MLM: [32, 33, 35, 44, 46, 49, 50] PP: No refs BW: No refs

N-L: [35, 51–53] S: No refs

Population Lumping: [14, 33] RE: [34, 54] SIP: [55] B: No refs

C: No refs RW: No refs MixP: [56] W: No refs

L: [33] MLM: [55] PP: [55] BW: No refs

N-L: No refs S: No refs

Outcomes Lumping: [32] RE: No refs SIP: No refs B: [30, 31, 57–60]

C: [57] RW: [45, 61] MixP: No refs W: [62]

L: [31] MLM: [30] PP: No refs BW: [26, 63–78]

N-L: [61, 79] S: [80–84]

Designs Lumping: No refs RE: No refs SIP: [85–90] B: No refs

C: No refs RW: No refs MixP: No refs W: No refs

L: [42, 50, 90–99] MLM: [85, 86, 88, 100] PP: [101] BW: No refs

N-L: No refs S: No refs

The ‘PICOS dimension of indirectness’ denotes the PICOS part (i.e. Population, Intervention etc.) on which the direct evidence differ from the indirect in terms of the research

question they address.

C: Constraint, L: Linear relationship (e.g. meta-regression), N-L: Non-linear, RE: Random-Effect, RW: Random-Walk, MLM: Multi-level model, SIP: Standard Informative Prior, MixP:

Mixture prior, PP: Power-prior, B: Only between-studies correlation modelled, W: Only within-study correlation modelled, B&W: Both within-study and between-studies

correlations modelled separately, S: Within-study and between-studies correlations modelled simultaneously as one parameter

second-order consistency equations that impose a trian-

gle inequality on the comparison-specific between-trial

variances [39, 40].

Meta-regression-type methods have also been sug-

gested. In the examples found, the relationships were

usually linear -on the modelling scale- with one RTE com-

ponent independent and another RTE component depen-

dent on a particular study characteristic. The most com-

mon example in this category is bias-adjustmentmethods,

primarily used to synthesise studies of different designs.

Bias-adjustment methods broadly fall into two categories:

general frameworks that adjust the RTE for biases affect-

ing internal and external validity provided that the extent

of bias can be either estimated from empirical evidence

or elicited from experts [91, 92, 98, 99], and approaches

that adjust for bias due to particular study-level char-

acteristics (considered proxies for study quality such as

their size [42, 50, 94–96], publication year [97], or risk-

of-bias [90, 93]). Meta-regression-type relationships have

also been used for complex interventions. In their simplest

form, they model the RTE of a complex intervention as

the sum of RTEs of its treatment components [30, 36, 47,

48]. More sophisticated approaches allow for synergistic

or antagonistic relationships by suggesting functions that

also contain treatment interaction RTE components [37].

Other applications include approaches that model the

RTEs for two survival outcomes (e.g. time-to-mortality

and time-to-progression) by assuming that they only dif-

fer by a constant component which is invariant across

treatment comparisons [31], models that assume a linear

relationship between dosage and RTE [35, 46], methods

for baseline-risk adjustment [34], and models that relate

the relative effects of populations subgroups of differing

disease severity [33].

Finally, more complex, non-linear, relationships have

also been presented in the literature, namely those

enabling the synthesis of RTEs across a range of dosages

using the Emax model [51–53] commonly employed in

pharmacokinetics or other non-linear models [35] and

those enabling information-sharing across follow-up peri-

ods [61, 79].

Exchangeability-based relationships

The simplest exchangeability-based relationship uses a

random effect to relate a set of parameters; in this

way accounting for heterogeneity without explicitly mod-

elling its source(s). The random effect assumes that

all parameters are drawn from a distribution, imply-

ing that individual parameters are shrunken towards the

random effect mean; this can happen to a greater or
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Fig. 3 ‘Core’ categories of information-sharing

lesser extent, depending on the precision and discrep-

ancy of each individual estimate in relation to the random

effect mean. Examples of parameters to which random-

effects have been applied include: comparison-specific

meta-regression slopes [34, 38, 41, 42, 50], comparison-

specific between-trial variances [39, 40], and study-

specific baseline-risks [34, 54].

Random-walks are another form of exchangeability rela-

tionship. They assume that data points which are more

similar with respect to a particular characteristic are

expected to exhibit more similar RTEs. Examples include

approaches assuming that the RTE of a particular dosage

or follow-up period is drawn from a distribution centred

around the RTE of its adjacently lower or higher dosage

[35] or follow-up period [45, 61].

Multi-level models also use exchangeability, but apply

it to the hierarchical/clustered structure of the available

data. As such, exchangeability is applied at a first level

within specific groups of parameters (i.e. multiple ran-

dom effects are applied, each within groups of RTEs

from studies showing a particular characteristic) and at a

second level across the group-specific hyper-parameters.

This is shown in Fig. 4, where in the bottom level, stud-

ies are categorised according to a characteristic and a
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Fig. 4 An illustration of a multi-level model

different random effect is imposed within every category,

producing group-specific basic parameters and hetero-

geneities. Subsequently, in the top-level, exchangeability

is also assumed across the group-specific basic parame-

ters which are shrunk towards an overall, global, group-

independent, hyper-mean. Examples include ‘class-effect’

models where, on top of the classical Random-Effects (RE)

NMA models, the basic parameters of treatments that

function through the same mechanism are assumed to

be drawn from a common distribution with an overall

‘class’ mean and an across-treatments, within-class, het-

erogeneity [32, 33, 35, 44, 46, 49]. Class-effect approaches

have also been imposed across comparison-specific meta-

regression slopes [38, 50]. Multi-level models have been

suggested to combine adult and paediatric evidence [55],

RTEs measured at different time-points [30], and studies

of different designs [85, 86, 88, 100].

Prior-based relationships

Direct and indirect evidence can also be combined

through the use of prior distributions. The process usually

consists of two-steps where initially the indirect evidence

is analysed and subsequently the resulting distribution is

used as a prior in the analysis of the direct evidence. Of

note is that this approach is mathematically equivalent to

lumping, which was described under functional relation-

ships. Examples include the combination of adult and pae-

diatric evidence [55] or randomised and non-randomised

evidence [85–89]. The prior can additionally be adjusted

for bias or its precision decreased [85]. Alternative ways to

define the prior include the use of meta-epidemiological

evidence or expert elicitation. The former has been used

primarily for bias-adjustment [90], whilst both the former

[24, 107, 108] and the latter [110] have been used to define

prior a distribution for the between-trials heterogeneity.

More nuanced prior-based approaches such as mixtures

of priors have also been used. Here, the informative prior

(distribution representing the indirect evidence) is not

used at face value, but instead mixed with a vague prior

according to weights that may be specified by the analyst

or estimated within the synthesis model. The resulting

informative prior is typically heavy-tailed, and allows

for ‘adaptive’ information-sharing whereby information-

sharing is stronger when the direct and indirect evidence

are in agreement and weaker when they conflict [56]. Mix-

tures of priors have been used to combine evidence on

RTE and between-studies heterogeneity across adults and

children [56] and to analyse the study-specific baseline

parameters from studies that enrol populations with dif-

ferent baseline risks [34]. The use of mixtures of priors has

also been discussed for the synthesis of randomised and

non-randomised evidence [85].

Finally, a flexible method that has been proposed is

the power-prior [111]. In this method, the likelihood of

the indirect evidence is raised to a power scalar 0 �

a � 1 which reflects the perceived similarity between

the two sources of evidence. When a = 1 the results are

equivalent to ‘lumping’ and when a = 0 results are iden-

tical to ‘splitting’. The power parameter, a, needs to be

specified, and it has been proposed to be elicited [112]

or varied in sensitivity analysis [113]. Power priors have

been used to combine observational and randomised evi-

dence [101] and for the synthesis of adult and paediatric

evidence [55].

Multivariate relationships

Multi-variate relationships have primarily been used to

share information across multiple outcomes. Multivariate

meta-analysis correlates the various outcomes and may

separate within- and between-studies correlations [73]. At

the within-study level, the study-specific correlations arise

due to differences among the included patients and indi-

cate how the outcomes co-vary across individuals within

the study. For example, patients who, due to a baseline

characteristic that makes their disease more severe, show

high values for outcome A, are also more likely to yield

high values for outcome B. At the between-studies level,

correlations arise mainly due to study-level differences
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such as the distribution of the patient-level characteristics

across studies. For instance, studies that enrol more severe

cases and therefore may show high values for the mean

of outcome A, are also more likely to result in high val-

ues for the mean of outcome B, whilst studies enrolling

less severe cases may show lower mean values for both

outcomes. These models can potentially produce more

precise estimates [75] and mitigate outcome reporting

bias [103, 104].

Multivariate methods have been developed to con-

sider two [74, 83, 84], three or more correlated out-

comes [26, 78], accommodate the simultaneous analyses

of multiple treatments [63, 68, 80], and assess the rela-

tionship between surrogate and final outcomes [65, 67].

Given that within-trial correlations are commonly not

reported, authors have suggested the use of external data

to inform these parameters [64] or, when external data is

not available, methods that approximate the within-study

co-variances [77]. Further extensions have been developed

to handle missing data [70], assist the estimation of the

between-studies covariance matrix when only a few stud-

ies are available [71], model the within-studies covariance

structure using copulas [72], and allow modelling of het-

erogeneity and inconsistency using two separate variance

components [69].

To accommodate cases where the within-trials correla-

tions are unavailable and cannot be otherwise obtained,

alternative methods, which require the same data as a

univariate approach and do not separate within- and

between-trials correlations have been suggested for MA

[81, 82] and NMA [80]. Assuming that the overall cor-

relation is not very strong, these methods perform very

similarly to their counterpart, which separates the two

correlations, whilst preserving their benefits against the

univariate approach.

Finally, some methods only account for either the

within- or the between- studies correlations. For exam-

ple, to model mutually exclusive outcomes, it has been

suggested to only account for the within-trials negative

correlations which are induced by the competing risks

structure of the data (i.e. the more patients that reach an

outcome, the fewer the patients that reach another out-

come) [62]. Also, other approaches have onlymodelled the

between-studies covariance matrix to allow simultaneous

synthesis of multiple outcomes [30, 31, 57, 60], accom-

modate outcomes reported at several follow-up periods

[58, 59] and enable information-sharing across different

treatment components of complex interventions [36].

Discussion
The aim of this review was to identify and classify evi-

dence synthesis methods that have been used to combine

evidence from sources that relate directly and indirectly to

a particular research question. A wide range of methods

have been developed to share information between pop-

ulations, treatments, outcomes and study-designs. We

found that across the breadth of methods identified,

four ‘core’ relationships are used to facilitate information-

sharing. These are functional, exchangeability-based,

prior-based, and multivariate relationships and are illus-

trated in Fig. 3.

This review highlights the breadth of methodological

options that can facilitate information-sharing. Although,

typically, particular relationships are used preferentially

to share information on specific information-sharing con-

texts, it is likely that several methods are applicable and

analysts would need to choose which method is more

appropriate. This paper highlights that appropriate con-

siderations need to bemade when choosing ‘core’ relation-

ships and methods because choices are likely to influence

the degree of information-sharing. Specifically, method

selection may be informed by the following consider-

ations; the first is the plausibility of the assumptions

imposed by the methods in the context of interest. By

classifying methods according to the ‘core‘ relationship

that enables information-sharing, we hope to facilitate a

clearer discussion about the plausibility of these assump-

tions in the decision context of interest.

The second is the degree of information-sharing that

is imposed between direct and indirect evidence. Within

the literature, there is limited exploration of how much

different methods borrow-strength from indirect evi-

dence, though for multivariate methods, it has been noted

that information-sharing is ‘usually modest’ [26, 66] and,

sometimes, instead of ‘borrowing-strength’, multi-variate

methods may end up ‘borrowing-weakness’ [114]. The

few studies that have assessed the degree of information-

sharing typically consider only the degree of precision

gains [115] rather than also examining how the point

estimate - which is also important for decision making

- changes. Further research to understand the extent to

which different methods share information is warranted.

Finally, decision-makers may be interested in explor-

ing different levels of information-sharing. One way to do

that is by using prior-based methods that allow some con-

trol on the degree of information-sharing. For instance, an

informative prior may use either the posterior distribution

of the mean, or the predictive distribution of the indirect

evidence. The former is equivalent to lumping, whilst the

latter imposes less information-sharing. Similarly, mix-

ture priors can regulate the weight that is placed on the

informative component, and power-priors allow a range

of values to be used for α which determines the extent of

information-sharing.

Whilst our literature search was systematic in its methods

and conduct, it is unlikely to have been fully comprehen-

sive. The use of citation-mining techniques, while efficient

and necessary for this search, may have missed relevant
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methods. This is because the sensitivity of citation-mining

methods depends on the existence and identification of

seminal papers [22] and on papers citing the most impact-

ful references [116]. Due to time lags in citations, this

technique may not capture recent developments within

a field [117]. We have also excluded methods developed

outside of health research and did not specifically target

the grey literature. Since the search was conducted, we

found in the grey literature a relevant method using multi-

variate methods to simultaneously synthesise the relative

effects of patients treated at different lines of treatment

[118]. However, we do not believe that the conclusions of

a comprehensive search (had it been possible) would dif-

fer from those in this paper, namely regarding the core

relationships identified, and the focus of sharing being on

sharing across outcomes and treatments. We would also

like to highlight that it would be important that further

research considers methods developed for different pur-

poses that could be applied for information sharing. One

example is commensurate priors which have been used

to combine individual-patient data and aggregate-level

evidence [119].

This paper is the first to summarise and categorise the

existing literature by classifying methods according to the

‘core’ assumption that they use to facilitate information-

sharing. Further research could explore the following

questions: first, how can we determine whether indirect

evidence is relevant? Second, how can the appropriate-

ness of each information-sharing method be assessed for

the synthesis problem at hand? Finally, can the extent

of information-sharing be quantified to assist transparent

decision-making?

Conclusions
We conclude that a plethora of methods has been used to

facilitate information-sharing. These can be categorised

according to the main assumption they impose into

functional, exchangeability-based, prior-based, and mul-

tivariate relationships. Despite the wide range of avail-

able methods, these are often used preferentially without

ensuring that all options have been explored. Given that

methods may differ in the degree of information-sharing

they impose, the implication is that the chosen method

may impose stronger or weaker information-sharing that

what is considered appropriate by policy-makers. Further

research should investigate ways of judging the appro-

priateness of the degree of information-sharing imposed

by each method, and assess the impact of using different

methods on decisions.
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