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Trapped upper hybrid waves as eigenmodes of

non-monotonic background density profiles

M G Senstius1, S K Nielsen1, R G L Vann2

1Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs.

Lyngby, Denmark
2York Plasma Institute, Department of Physics, University of York, York YO10 5DD,

United Kingdom

Abstract. Non-monotonic plasma density structures such as blobs and magnetic

islands give rise to trapped upper hybrid (UH) waves. Trapped UH waves which

satisfy Bohr-Sommerfeld quantization can be thought of as eigenmodes of a cavity.

Using fully kinetic particle-in-cell (PIC) simulations, we verify the existence of

these UH eigenmodes and demonstrate their significance as only eigenfrequencies

become unstable to three-wave interactions. The eigenmodes can be excited through

parametric decay instabilities (PDIs) of an X-mode pump wave at approximately twice

the UH frequency, as could be the case for a gyrotron beam traversing a blob in a

magnetically confined fusion plasma. We derive a closed expression for the wavenumber

of UH waves, which is accurate both close to the UH layer and to the electron cyclotron

resonance. This allows for fast analysis of eigenmodes in a non-monotonic structure.

An expression for the amplification of PDI daughter waves in an inhomogeneous plasma

is extended to a decay region where the first several derivatives vanish. From the

amplification in a convective PDI, we estimate the growth rate of the absolute PDI

involving the trapped waves. We show that the excitation of eigenmodes through PDIs

in our simulations are indeed absolute rather than convective due to the trapping of

the daughter waves. Additionally, we show that only eigenmodes get excited through

the PDIs, and that we are able to predict the growth rates of the daughter waves

and how they scale with the pump wave intensity. This is evidence supporting a

fundamental assumption of analytical theory describing low threshold strong scattering

observed in magnetically confined fusion experiments during second harmonic electron

cyclotron resonance heating (ECRH). Such low threshold instabilities can degrade

ECRH performance but also offer novel uses for ion heating or as diagnostics.

Submitted to: Plasma Phys. Control. Fusion
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Trapped UH eigenmodes 2

1. Introduction

Unstable nonlinear three-wave interactions known as parametric decay instabilities

(PDIs) occur typically when a strong pump wave is injected into a nonlinear medium.

The pump wave can interact with and transfer energy to a pair of thermally excited

daughter waves if certain selection rules are satisfied. PDIs are known to occur in many

physical systems, including in nonlinear optics[1] and in fluids[2, 3]. In fusion plasma

physics, early works[4, 5, 6, 7, 8, 9] showed that PDIs in inhomogeneous fusion plasmas,

where daughter waves were convected out of the interaction region, were of little concern

to electron cyclotron resonance heating (ECRH) schemes as the heating beam sources

were simply not able to provide power levels above the high pump power thresholds.

Known exceptions were at certain resonances such as the upper hybrid (UH) layer[10],

where wave amplification[11] could lead to sufficient wave power density to overcome PDI

thresholds, which is how PDIs were first observed in tokamaks[12] and stellarators[13].

The UH layer is not easily accessible for externally launched microwaves, so PDIs have

generally been of little concern when using ECRH schemes, particularly for heating at

the second harmonic electron cyclotron (EC) resonance.

In the last decades, the output of high power gyrotrons has reached a

level where signatures of PDIs are being observed[14, 15] during second harmonic

ECRH experiments. This happens even though traditional thresholds for PDI in

inhomogeneous plasmas suggest that the gyrotron beams are still by far not strong

enough to become unstable. The observed signatures have therefore sometimes been

referred to as anomalous scattering. Analytical models[16, 17, 18, 19, 20, 21, 22, 23] were

formulated to explain the scattering as the result of many consecutive PDIs involving

trapped UH waves in non-monotonic density structures. While the majority of the

implicated waves are found near the UH frequency, the pump wave that starts the

cascades is instead near the second harmonic UH frequency. A 2nd harmonic ECRH

beam injected from the low field side will always have to pass the 2nd harmonic UH

layer first and is therefore at risk of these cascades of PDIs if the UH daughter waves

are trapped. UH waves can be trapped in non-monotonic density structures when they

are surrounded by an UH layer. The trapping leads to eigenmodes as some waves

interfere constructively with themselves when they have performed a roundtrip in the

non-monotonic density structure, acting as a cavity for the waves. The trapping of

daughter waves means that the PDIs can become absolute rather than convective.

Eigenmodes are therefore fundamental to the analytical theory describing low threshold

PDIs in non-monotonic structures. It is believed that the experimentally observed

scattering is not generated directly but results from subsequent PDIs where the trapped

UH waves interact with ion waves and then recombine into escaping waves near the

2nd harmonic UH frequency. The PDI absorption of an ECRH beam passing through

the structure may be highly dynamical due to the many different instabilities feeding

off of each other. As a result of the many PDIs, the heating power intended for an

entirely different region of the plasma will deteriorate. Analytical estimates for plasma
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Trapped UH eigenmodes 3

parameters taken from the TEXTOR tokamak predict that 60% 2nd harmonic ECRH

power[22] was converted into undesired waves in unintended regions due to PDIs near the

2nd harmonic UH layer. Experiments in the linear device Granit[24] have shown a 45%

absorption rate due to PDIs. It is also possible that models can explain unpredictable

power deposition profiles[25], as well as observations of hot ions during ECRH[26, 27],

since some daughter waves may accelerate ions. Excitation of trapped UH waves, i.e.

slow X-mode and electron Bernstein waves (EBWs), in non-monotonic density profiles

have previously been studied using fully kinetic simulations[28] but eigenmodes were not

appreciated as being important, leaving the possibility open that the observations were

simply the result of convective PDIs in inhomogeneous plasma density profiles, which

did not actually need the trapping for instabilities to occur.

In this article, we investigate the anatomy of UH eigenmodes in non-monotonic

plasma density structures and how they affect the excitation of waves inside the structure

through PDIs. This is relevant to 2nd harmonic ECRH, in particular if the ECRH beam

passes such a non-monotonic structure near the 2nd harmonic UH layer. The main goal

is to provide evidence of UH eigenmodes and their significance in the low threshold PDIs

described in analytical models such as [16, 17, 18, 19, 20, 21, 22, 23]. The evidence is in

the form of fully kinetic simulations with minimal assumptions about how the plasma

behaves. In section 2, we introduce the UH eigenmodes and derive a dispersion relation

to describe them. We analyze the eigenmodes in a 1D super-Gaussian density profile as

well as the frequencies that can be excited through PDIs at the fairly homogeneous top

of the density profile. The analytical theory describing convective PDI is extended to

accommodate the vanishing derivatives at the top of the density profile. A convective

PDI occurs when the instability is limited to a finite decay region which a pump wave

passes through a limited number of times. This produces a finite amplification of the

PDI daughter waves. An absolute PDI, on the other hand, is an instability where the

daughter waves grow exponentially in time such as in a homogeneous medium where the

waves never leave the decay region. Estimates of convective versus absolute PDI show

that convective PDI will produce barely noticeable amplification whereas excitation of

eigenmodes will result in an instability with a growth rate comparable to that of the

corresponding homogeneous instability. In section 3, we use a fully kinetic particle-in-

cell (PIC) code to investigate the eigenmodes numerically. The PIC simulations are

entirely independent of the analytical derivations and serve as a numerical validation of

them. First, the eigenmode spectrum of a super-Gaussian is compared to the predictions

from section 2. Then, an X-mode pump wave is added to show that the predicted PDI

daughter wave frequencies can be excited. The X-mode pump wave is close the to 2nd

harmonic UH frequency and is able to propagate throughout the domain, whereas the

eigenmodes are of lower frequency and are trapped between multiple UH layers. Next,

the width of the density profile is varied to demonstrate that PDI daughter waves are

only excited when they both coincide with eigenfrequencies of the cavity and that the

amplification is much greater than a convective PDI would produce. Lastly, a scan of

pump wave intensities is compared to the predicted scaling.
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Trapped UH eigenmodes 4

2. Theory on wave interactions and eigenmode anatomy

2.1. Parametric decay instabilities

PDIs can occur in media with a quadratic nonlinearity such a plasma described by the

Boltzmann or fluid equations. The three-wave interactions causing PDIs require energy

and momentum to be conserved, leading to the selection rules

ω0 = ω1 + ω2, (1)

k0 = k1 + k2, (2)

where ωj is the angular frequency of the jth wave and kj is its wave vector, with index

0 referring to a strong pump wave and indices 1 and 2 to its PDI daughter waves. In

a homogeneous medium, PDIs that satisfy the selection rules can become absolutely

unstable and grow exponentially in time if the interaction rate exceeds the losses of the

daughter waves. In an inhomogeneous and monotonic medium, the daughter waves will

experience a finite amplification as they traverse a decay region where the selection rules

are approximately satisfied, also called a convective instability.

2.2. Dispersion relations

In this investigation, an electromagnetic X-mode wave is injected into a 1D plasma

and interacts with electrostatic plasma modes near the 2nd harmonic UH layer. A

simple cold description is used for the pump wave whereas the daughter waves require a

more complicated treatment. Their description is obtained by merging two asymptotic

expressions. This section is split into several parts dealing with each step.

The pump wave is described as a cold X-mode wave

For the pump wave, the cold plasma description of an electromagnetic X-mode wave

will suffice. Its wavenumber is given by

k0 =
ω0

c

√

1−
ω2
pe

ω2
0

ω2
0 − ω2

pe

ω2
0 − ω2

UH

, (3)

where ω2
pe ≡ e2ne/(ε0me), ωce ≡ eB/me, ω

2
UH ≡ ω2

pe + ω2
ce, c is the speed of light in

vacuum, e is the elementary charge, ε0 is the vacuum permittivity, me is the electron

mass, ne is the electron density and B is the magnetic field.

Small wavenumber approximation for UH waves

For the UH waves, things are more complicated. First, an expression valid for small

wavenumbers must be found. For this low-dimensionality study, we describe the UH

waves using the warm electrostatic dispersion relation. Neglecting the ion response and

collisional damping, the electrostatic dispersion relation for EBWs is given in [29] by

k2
j − 2k2

j

e−λe

λe

∞
∑

n=1

In(λe)
n2ω2

pe

ω2
j − n2ω2

ce

= 0, (4)
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Trapped UH eigenmodes 5

where λe ≡ k2
jρ

2
Le/2 is an expansion parameter to be used, ρ2Le ≡ 2meTe/(e

2B2) is the

electron Larmor radius, Te is the electron temperature in units of energy and In is the

modified Bessel function of the first kind. Whilst equation (4) describes EBWs well,

it is computationally slow to solve numerically for a large range of parameters and we

therefore seek to simplify it. For most applications, it suffices to expand the second

term to second order in λe, i.e. the factor of k2
j and then a first order expansion in

λe of the rest of the term. However, we will need a better approximation closer to the

electron cyclotron resonances where kj → ∞ in order to calculate the eigenfrequencies

with a better precision. The approach will be to combine a higher order expansion with

an asymptotic relation. We start by expanding the expression to fourth order in λe. To

achieve this, we recall the definition In(λe) =
∑∞

m=0(λe/2)
2m+n/(m!(m+n!)) for integer

n. This means that we can use the expansions I1(λe) ≈ λe

2
+ λ3

e

16
, I2(λe) ≈ λ2

e

8
+ λ4

e

96
,

I3(λe) ≈ λ3
e

48
, I4(λe) ≈ λ4

e

384
, In(λe) ≈ 0 for n > 4, and e−λe ≈ 1− λe +

λ2
e

2
− λ3

e

6
to obtain

ℓ6Te,3k
8
j + ℓ4Te,2k

6
j + ℓ2Te,1k

4
j + Sk2

j = 0, (5)

where S ≡ 1− ω2
pe

ω2
j−ω2

ce
and the length scales ℓTe,n have been defined as

ℓ2nTe,n ≡ −
2ω2

pe

ω2
ceρ

2
Le

n+1
∏

n′=1

(2n′ − 1)ω2
ceρ

2
Le

2(ω2
j − n′2ω2

ce)
. (6)

We see that ℓTe,0 = S − 1 but the exponent breaks the series as ℓ2·0Te,0 = 1, of course.

A different definition of the coefficients is possible but this notation is chosen to keep

in line with related literature where ℓTe,1 is often used. The original dispersion relation

in equation (4) is based on an electrostatic approximation which is not valid for small

λe. We want a solution that connects to X-mode for small λe and behaves as the cold

plasma X-mode far from the UH layer so as argued in[23], we add to our dispersion

relation a zeroth order term of −ω2
j

c2
(S2−D2) where D ≡ ωceω

2
pe/[ωj(ω

2
j −ω2

ce)] to obtain

the resulting dispersion relation

D ≡ ℓ6Te,3k
8
j + ℓ4Te,2k

6
j + ℓ2Te,1k

4
j + Sk2

j −
ω2
j

c2
(S2 −D2) = 0. (7)

This result may also be obtained by starting with the full hot plasma dispersion relation

from [29] instead of equation (4). In that case, there is no need to add the cold X-mode

contribution but the calculations are longer because a lot of small terms have to be

neglected in order to ultimately get the fairly compact expression above. The obtained

dispersion relation is biquartic in kj and can be solved for k2
j using Ferrari’s method.

Whereas a quadratic equation has a rather simple solution familiar to many people, the

solution to a quartic equation is much more extensive, so we introduce the following

quantities in order to be able to write the solutions more compactly

α1 ≡
8ℓ6Te,3ℓ

2
Te,1 − 3ℓ8Te,2

8ℓ12Te,3,
(8)

α2 ≡
ℓ12Te,2 − 4ℓ6Te,3ℓ

4
Te,2ℓ

2
Te,1 + 8ℓ12Te,3S

8ℓ18Te,3

, (9)
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Trapped UH eigenmodes 6

∆0 ≡ ℓ4Te,1 − 3Sℓ4Te,2 − 12ℓ6Te,3

ω2

c2
(S2 −D2), (10)

∆1 ≡ 2ℓ6Te,1 − 9Sℓ4Te,2ℓ
2
Te,1 − 27ℓ8Te,2

ω2

c2
(S2 −D2) + 27ℓ6Te,3S

2 + 72ℓ6Te,3ℓ
2
Te,1

ω2

c2
(S2 −D2), (11)

C ≡
[

∆1 +
√

∆2
1 − 4∆3

0

2

]1/3

, (12)

Q ≡ 1

2

√

−2

3
α1 +

1

3ℓ6Te,3

[

C +
∆0

C

]

. (13)

With this, Ferrari’s method[30, 31] gives the four solutions to the squared wave number

as

k2
⊥,±1,±2

= −
ℓ4Te,2

4ℓ6Te,3

∓2 Q±1
1

2

√

−4Q2 − 2α1 ±2
α2

Q
, (14)

where ±1 and ±2 are two signs that can be chosen in a total of 4 diffent ways, and

∓2 = −±2. For each of these 4 choices of signs there are 2 solutions, i.e. ±k⊥,±1,±2

which differ only by their direction of propagation. The solutions are rather extensive

expressions so to check that they are indeed solutions to equation (7), we expand the

factorized polynomial

ℓ6Te,3(k
2
j − k2

⊥,+,+)(k
2
j − k2

⊥,+,−)(k
2
j − k2

⊥,−,+)(k
2
j − k2

⊥,−,−) = 0, (15)

which must be identical to equation (7) if kj,±1,±2
have been determined correctly. We use

the mathematical software Maple to verify that the initial coefficients can be recovered

by inserting the found solutions

−ℓ6Te,3

∑

µ

k2
⊥,µ = ℓ4Te,2, (16)

ℓ6Te,3

∑

µ,ν

k2
⊥,µk

2
⊥,ν = ℓ2Te,1, (17)

−ℓ6Te,3

∑

µ,ν,η

k2
⊥,µk

2
⊥,νk

2
⊥,η = S, (18)

ℓ6Te,3k
2
⊥,+,+k

2
⊥,+,−k

2
⊥,−,+k

2
⊥,−,− = −

ω2
j

c2
(S2 −D2), (19)

where the sums are over products of the found solutions, never using the same solution

for more than one index and counting all identical products only once. Maple is unable

to reduce the last identity symbolically - likely because of the immense length of the

left hand side - but Maple is able to verify it numerically.

The four positive solutions in equation (7) are shown in figure 1 around the first

three EC harmonics when they are real. Parameters are chosen such that ωUH < 2ωce, as

will be the case in this study. The analytical interpretation of the solutions in equation

(14) is difficult and, as can be seen in figure 1, the four solutions come together to

form the X-mode and EBW dispersion curves in an intricate way, not a single solution

accounting for any of them by itself. The part of the figure below 80 GHz accounts for

the UH waves with the left part being slow X-mode and the right part is the first EBW
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Trapped UH eigenmodes 7
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Figure 1. The solutions k⊥,±1,±2
from equation (14) to the X-mode and EBW

dispersion relation shown in equation (7). The blue line is k⊥,+,+, the orange line

is k⊥,−,+, the green line is k⊥,+,− and the red line is k⊥,−,−. The horizontal black

dotted lines mark the first three harmonics of ωce/(2π), and the vertical black dashed

line marks unity of the expansion parameter, i.e. λe = 1. Together, the solutions

behave correctly when λe < 1 but X-mode and EBWs are not represented by a single

one of the solutions. The behavior for λe > 1 is incorrect and motivates the need for

an asymptotic expression for λe → ∞. Plasma parameters for this plot are B = 2.2 T,

Te = 112 eV and ne = 2×1019 m−3, which can be realized in a device like Wendelstein

7-X[32] and will be used for the analysis of fully kinetic simulations in later sections.

branch. The point where they meet is the UH layer. Starting from around 80 GHz and

up, a steep curve can be appears. This is the fast X-mode branch and it emerges from

the R-cutoff. At harmonic of the electron cyclotron resonance, a more horizontal line

appears which are the higher EBW branches which are valid until around the horizontal

dashed line. Although each line is composed of several of the 4 solutions indicated by

different colors, characterizing the different modes numerically is more straightforward;

we calculate all four solutions and order them so that the smaller real solution is the

X-mode solution, the second smallest real solution is the EBW solution that connects to

X-mode at the UH layer, and any remaining complex or larger kj solution is discarded.

We denote the EBW solution k+
j,expansion and the X-mode solution k−

j to be in line with

related literature.

Large wavenumber approximation for UH waves

Even though our dispersion relation is a higher order expansion, it still assumes λe ≪ 1.

Near harmonics of the electron cyclotron resonances, we expect that λe → ∞ but figure

1 shows that the solutions in equation (1) do not display this behavior properly. To

get the correct asymptotic behavior near the electron cyclotron resonances, we return

to equation (4) and use the asymptotic expansion[30] for λe → ∞
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Trapped UH eigenmodes 8

In(λe) ≈
eλe

√
2πλe

∞
∑

j=1

(−1)j

j!

∏

0<j′≤j

4n2 − (2j′ − 1)2

8λe

, (20)

to obtain the equation

ω2
ce

2ω2
pe

≈
∞
∑

n=1

1
√

2πλ3
e

n2ω2
ce

ω2 − n2ω2
ce

∞
∑

j=0

(−1)j

j!

∏

0<j′≤j

4n2 − (2j′ − 1)2

8λe

. (21)

Assuming that the frequency is close to the nth electron cyclotron resonance, we neglect

the contribution from all other resonances and keep only the λ−1
e term to obtain

ω2
ce

2ω2
pe

≈ 1
√

2πλ3
e

n2ω2
ce

ω2 − n2ω2
ce

, (22)

which may be rearrange to yield an asymptotic expression for the wavenumber

kj,asym ≈ 1

ρLe

[√
πωce

2n

ω − nωce

ω2
pe

]−1/3

. (23)

Completely opposite to equation (14), this solution only describes EBWs close to the

cyclotron resonances and is not accurate near the UH layer.

Merging the two limiting UH wave dispersion relations

In this study, we want a dispersion relation for the UH waves that is precise immediately

at the UH layer but also closer to the cyclotron resonances without having to numerically

invert the full hot plasma dispersion relation. The final step is therefore to formulate a

function that has the behavior of equation (14) for small λe and the behavior of equation

(23) for large λe. We will be looking at a situation where ωUH < 2ωce so we set n = 1

in equation (23) and go for the form

k+
j = k+

j,expansion

[

1− µ

(

ω − ωmix

ωchar

)]

+ kj,asymµ

(

ω − ωmix

ωchar

)

, (24)

where µ(ω) = [1 − tanh(ω)]/2 is our choice of a sigmoid function that connects the

two limiting dispersion relations and ωmix, ωchar are characteristic frequencies which

ensure that the two limiting forms are tied together properly. The mixing occurs over

a frequency band of ωUH − ωce, so we choose a smaller characteristic frequency band of

ωchar = (ωUH − ωce)/5. The frequency that really separates the two solutions is when

λe = 1 but this is not straightforward to determine so we instead pick a frequency in

between the UH frequency and the cyclotron resonance, ωmix = (ωUH − ωce)/3 + ωce.

As can be seen in figure 2, the obtained dispersion relation is a good estimate for the

full dispersion relation over many orders. It is likely that a more optimal choice of ωchar

and ωmix exists as our choice was a simple estimate to favor the asymptotic expansion

only close to the EC resonance. With this dispersion relation, the computation is faster

and more stable than solving equation (4) inversely using e.g. Scipy’s root or even an

optimized solver. Whilst solving the full hot plasma dispersion relation is quick when it

only has to be done for a few frequencies and plasma parameters, this study will need

to solve it extensively. Consequently, the analysis presented in the article is rendered
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Trapped UH eigenmodes 9

10−3 10−2 10−1 100 101

λe

10−2

10−1

100

(ω
−
ω

ce
)/(
ω

UH
−
ω

ce
)

2nd order
Mix using 4th order
Full hot plasma dispersion relation

Figure 2. A comparison of UH dispersion relations over different orders of the

expansion parameter λe = (kjρLe)
2/2. The y-axis is the frequency shifted and

normalized such that zero is the EC frequency and unity is the UH frequency. The

Full hot plasma dispersion relation can be found in [29]. The 2nd order line is an often

employed dispersion relation, corresponding to equation (7) up to the k4j term. Lastly,

Mix using 4th order is our dispersion relation in equation (24).

not only possible but actually computationally rather cheap using a dispersion relation

like equation (24).

2.3. Eigenmodes

A non-monotonic density profile will lead to multiple UH layers for UH waves in

a specific frequency range. With linear conversion between X-mode and EBWs[33]

as well as a change of direction of propagation, multiple UH layers trap UH waves

between them; see figure 3. Waves that interfere constructively with themselves after a

roundtrip in the non-monotonic region can be thought of as Bohr-Sommerfeld quantized

eigenmodes[18, 34, 35] of a cavity. In 1D and within the WKB approximation, the

quantization condition is
∫ xr

xl

|k+
m| − |k−

m|dx = (2m+ 1)π, (25)

where xl, xr are the left and right turning points, i.e. the UH layers, of the trapped

wave, m is the mode number which is a non-negative integer for eigenmodes only, and

k±
m is the wavenumber of the associated eigenmode with + for EBW and - for X-mode.

We denote the angular frequency that satisfies the quantization condition for the mth

mode by Ωm. Note that in this investigation, we consider an electromagnetic X-mode

pump wave that interacts with two UH daughter waves near the 2nd harmonic UH layer.

Because of this, the trapping mentioned here only applies to the daughter waves and

not to the pump wave, which does not reach its UH layer.
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X-m
ode

E
B
W

Plasmadensity

UH UH UH

Figure 3. An illustration showing how an arbitrary non-monotonic plasma density

profile can lead to trapped UH waves. The trapping mechanism is linear conversion

between X-mode and EBWs at the UH layers. The non-monotonic region can act as a

cavity for waves that gain an integer times 2π phase difference after a roundtrip. Term

adding to the quantization condition in equation (25) are shown.

The eigenmodes are not evenly spaced in frequency and the distribution is a

characteristic of the plasma parameters and spatial size of the cavity. Assuming for

simplicity that the plasma parameters do not have several peaks in the cavity region,

the fundamental mode is placed closest to the UH layer at its highest frequency because

the integrand of equation (25) vanishes at the UH layer. Frequencies above the UH

frequency do not propagate so the remaining modes are found at lower frequency.

The EBW wavenumber increases towards the EC resonance where it diverges, causing

the integrand in equation (25) to also diverge, which means that the eigenfrequency

separation vanishes. These observations are presented in figure 4.

The eigenmodes can be excited through PDIs of an injected electromagnetic wave

into two UH waves, also referred to as two-plasmon decay (TPD)[36]. For this to happen,

ω and k of the eigenmodes must sum up to that of the electromagnetic pump wave. We

denote the absolute difference between the possibly non-integer mode number of the jth

daughter wave, mj, and its closest integer by

∆mj ≡ |mj − ⌊mj + 0.5⌋| , (26)

where ⌊mj⌋ is the floor operation or ”rounding down”. The sum of the differences,

σm ≡ ∑

j ∆mj, is a measure of the phase mismatch after a roundtrip and should be

minimized in order for daughter waves to experience smaller losses and thus a greater

growth rate. Similarly, the angular frequency difference of daughter wave j and its

closest eigenfrequency, Ω⌊mj⌉, is denoted by

∆ωmj
≡ |ωj − Ω⌊mj⌉|. (27)

We define the sum of angular frequency differences as σω ≡∑j ∆ωmj
. Although we can

Page 10 of 28AUTHOR SUBMITTED MANUSCRIPT - PPCF-103185.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Trapped UH eigenmodes 11
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X
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o
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Smallest di erence 

Smallest mode numbers
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Greatest mode separation

Greatest di erence 

Greatest mode numbers

Figure 4. Characteristics of the distribution of eigenfrequencies explained through

the X-mode and EBW dispersion relations. The horizontal green lines illustrate how

eigenfrequencies could be distributed, note that the frequency separation is smaller

near the UH and EC frequencies. The quantity m is the mode number. Plasma

parameters for this plots are B = 2.2 T, Te = 112 eV and ne = 2 × 1019 m−3, which

are relevant to later simulations.

expect σω to display the same local extrema as σm does, σω is also going to depend on

the eigenfrequency separation which is characteristic of the cavity and is not constant

throughout the eigenfrequency spectrum.

2.4. TPD and eigenmodes in a super-Gaussian cavity

We now focus specifically on a 1D cavity with a homogeneous background magnetic

field and a super-Gaussian density profile given by

ne = n0 exp(−[x/ℓcav]
4), (28)

where n0 is the peak density, and ℓcav is a characteristic length scale and measure of

the width of the cavity. The choice of a super-Gaussian profile is down to its compact

shape and tails that fall off quickly, which is favorable in the numerical simulation we

will present in the next section. The super-Gaussian profile is not a necessity for this

investigation and eigenmodes can also be observed in other density profiles, such as

Gaussians. A 1D profile is chosen because EBWs with a nonzero k‖ are highly damped,

rendering them less important than those of k‖ → 0, and the second perpendicular

direction mainly obscures the analysis by adding many more eigenfrequencies and PDIs

that can take place. This will make it challenging to investigate the significance of

eigenfrequencies in the PIC simulations of section 3.

The super-Gaussian density profile has an almost homogeneous region in the center.

PDIs that satisfy the selection rules in the center will have a long decay region compared

to other PDIs and are therefore expected to have the highest growth rate; see figure
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−1.0 −0.5 0.0 0.5 1.0
x/ℓcav
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0.6

0.8

1.0 ne/n0
(k0− k1)/(105 m−1)
k2/(105 m−1)

Figure 5. Demonstration of a super-Gaussian non-monotonic background density

profile which supports decay of an electromagnetic ω0/(2π) = 140 GHz pump wave

into two trapped EBWs which are trapped. The selection rules are satisfied where

the solid orange and green lines overlap. The daughter waves propagate in opposite

direction; k2 > 0 while k1 < 0. The plasma parameters are ne = n0 exp(−[x/ℓcav]
4),

n0 = 2× 1019 m−3, B = 2.2 T and Te = 112 eV. Selection rules for TPD into trapped

EBWs of ω1/(2π) = 70.141 GHz and ω2/(2π) = 69.859 GHz are satisfied at x = 0 mm.

1.0 1.2 1.4 1.6 1.8 2.0
ℓcav [mm]

0.0

0.2

0.4

0.6

0.8

1.0

σ m

2nd order dispersion relation
Our dispersion relation

Figure 6. Sum of modenumber differences to closest integer of TPD daughter waves

at the density peak; 0 would mean that both TPD daughter waves coincide perfectly

with two eigenmodes; see equation (26). The envelope feature of the curve is not due

to under sampling.
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1.0 1.2 1.4 1.6 1.8 2.0
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σ ω
/(2
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]

2nd order dispersion relation
Our dispersion relation

Figure 7. Sum of daughter frequency differences to closest eigenmodes of TPD

daughter waves at the density peak; 0 would mean that both TPD daughter waves

coincide perfectly with two eigenmodes; see equation (27). Mode spacing decreases

as the cavity size is increased, causing the graph to generally decrease as the size is

increased. The envelope feature of the curve is not due to under sampling.

5. Whereas the PDI matching conditions depend only on local plasma parameters, the

distribution of eigenmodes depends on the parameters throughout their trapping regions

as well as the extend of the trapping region. Varying only the width of the super-

Gaussian cavity, the eigenfrequencies will change but the possible PDIs will not. While

changing the width of any cavity shape will allow us to control the eigenfrequencies,

the super-Gaussian profile allows us to neglect PDIs from anywhere but the center

of the profile due to the much shorter decay regions everywhere else. However, the

density profile does not need to be super-Gaussian in order for trapped waves to be

excited through PDIs as was shown in [28] where also Gaussian and 2D geometries

where considered. Plotting σm in figure 6 and σω in figure 7, we see that the quantities

are rather sensitive to both the cavity width as well as to the accuracy of the dispersion

relation for the specific parameters. Varying ℓcav to first order will determine wether σm

and σω are at a local minimum or maximum, i.e. wether the TPD daughter waves are

approximately eigenmodes or not. With this, we can investigate how the eigenmodes

affect the growth of PDI daughter waves. We note that choosing a precise dispersion

relation is important as the minima of the 2nd order dispersion relation turn into maxima

in some places and vice versa.

The zig-zag and envelope behavior in figures 6 and 7 are the shift and separation

of eigenmodes, which change as the size of the cavity is varied. Figure 8 shows the

separation of eigenfrequencies normalized to the frequency difference between the TPD

daughter waves in figure 5. In agreement with figure 4, figure 8 shows that the mode

separation decreases towards zero as m → ∞ where Ωm → ωce, and that the maximum
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Figure 8. Separation of adjacent eigenfrequencies, normalized to the frequency

difference of the TPD daughter waves in figure 5. With the normalization, greater

than unity (grey region) means that TPD into eigenmodes is not possible, whereas

much smaller than unity means that a quasi continuum of eigenfrequencies exists.

Unity is optimal for TPD into neighboring modes, provided the shift is right. Different

series refer to different cavity widths.

is generally not at the UH layer, i.e. at m = 1. Furthermore, narrower cavities have

greater mode separation and get close to the EC frequency at a lower modenumber.

When a point in figure 8 is at unity, the mode separation is perfect for TPD

into adjacent eigenmodes but there could be a frequency offset such that TPD into

eigenmodes still cannot occur. Figure 9 instead shows the eigenfrequencies near the TPD

daughter wave frequencies for cavity widths resulting in very similar mode separation.

Still, there is a situation where the overlap is good, i.e. the blue series, and a situation

where the overlap is poor, i.e. the purple series. The relative difference in cavity

widths is in percents and precision is therefore key in this parameter range. This will

be demonstrated in section 3. It is also possible for TPD to excite modes that are

not directly adjacent but instead are separated by one or more modes. This would be

the case in a larger cavity where the eigenfrequencies are closer. The slower periodic

envelope feature in figures 6 and 7 may be explained by this.

2.5. TPD daughter wave growth rate estimate

The growth of PDI daughter waves is greatest in a homogeneous medium. Following [23]

but neglecting linear damping, the homogeneous growth rate, γ0, of the TPD instability

is given by

γ2
0 = |ν12ν∗

21||E0|2, (29)

where E0 is the pump wave electric field amplitude and ν12, ν
∗
21 are interaction coefficients

which are given by lengthy expressions that can be found in chapter 4 of [23]. The
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Figure 9. Eigenfrequencies near the frequencies of the TPD daughter waves in figure

5. Different series show the eigenfrequencies of cavities of slightly different sizes, where

the blue line shows a situation where σm ≪ 1, i.e. a good overlap between daughter

waves and eigenfrequencies, and the purple line instead σm ≈ 1, i.e. a poor overlap.

derivation of these coefficients is based on cold fluid equations even though the daughter

waves are EBWs which are kinetic phenomena. We are going to modify the calculation

by replacing the cold fluid electron mobility tensor Mej, i.e. the linear electron fluid

response satisfying Vej,l = − e
me

Mej, with the one derived from kinetic theory in chapter

5 of [29]. As the frequencies ωj are in the EC range in this article, we neglect the ion

contribution to the linear plasma current and find

Mej ≈ −i
ωj

ω2
pe

[Kj − 1] , (30)

where Kj is the hot dielectric tensor for wave j and 1 is the identity matrix. Assuming

that all waves propagate parallel to the x-direction, the hot dielectric tensor has the

elements Kj,xx = Kj,1, Kj,xy = −Kj,yx = Kj,2 and Kj,yy = Kj,1 +Kj,0 to be determined.

We assume that all waves are polarized perpendicularly to the magnetic field, which in

[23, 29] is pointing in the z-direction, so none of the z-components of the tensor will be

needed The necessary elements in the limit of kz → 0 are found to be

Kj,0 = −2
ω2
pee

−λe

ωj

∞
∑

n=−∞

λe
In(λe)− I ′n(λe)

ωj + nωce

(31)

Kj,1 = 1−
ω2
pee

−λe

ωj

∞
∑

n=−∞

n2

λe

In(λe)

ωj + nωce

(32)

Kj,2 = i
ω2
pee

−λe

ωj

∞
∑

n=−∞

n
In(λe)− I ′n(λe)

ωj + nωce

. (33)

The wave polarizations are also needed to calculate the interaction coefficients. For

this, we again use the cold X-mode description and assume that the EBWs are fully
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Trapped UH eigenmodes 16

longitudinal. Gyrotrons installed at devices like Wendelstein 7-X are able to produce a

power output of around 1 MW. Assuming a beam width of 30 mm, the average pump

intensity in the center of the beam is on the order of 1 kW/mm2. For a pump wave

intensity of Ipump = 1 kW/mm2, a homogeneous growth rate of γ0 = 0.241 ns−1 is

obtained. Using instead the cold mobility tensor as in [23], we get a slightly higher

γ0,cold = 0.310 ns−1.

In an inhomogeneous medium, a PDI is typically convective, leading to a finite

amplification of the daughter wave amplitudes, a1 and a2. The gain experienced by the

daughter waves, G ≡ ln(|a1,out|2/|a1,in|2), is usually estimated as that of homogeneous

PDI inside a finite decay region, where the selection rules are approximately satisfied[7,

8, 23]. This estimate relies on a first derivative of the total wavenumber mismatch,

i.e. ∆k ≡ k0 − k1 − k2. While the super-Gaussian we are using has favorable numerical

properties, its first three derivatives vanish at the top so the calculation must be adapted

to our system. Following again [23], we have

G = 2

∫ ∞

−∞

Re

(
√

γ2
0

vg,1vg,2
− [∆k]2

4

)

dx′, (34)

where vg,j is the group velocity of the jth daughter wave. The integrand is only

nonzero when |∆k| is small so a Taylor expansion of ∆k with respect to x up to

the first nonzero term is inserted in place of ∆k in the integrand. Assuming the

selection rules are satisfied at x = 0 and denoting the number of vanishing terms before

the first nonzero term of the expansion by N , the integration variable is changed to

ξ =
[

|∆k(N)|
∣

∣

x=0

√
vg,1vg,2/(N ! 2γ0)

]1/N
x, and the integral is calculated to give

GN = δN

[

γ2
0ℓ

2
d,N

vg,1vg,2

](N+1)/2N

. (35)

Here ℓd,N ≡ |∆k(N)|−1/(N+1)
∣

∣

x=0
is the new approximate size of the decay region, and

δN is a numerical prefactor which, through identities involving the beta function and

the gamma function, can be evaluated as

δN =
√
π
[

2N+1N !
]1/N Γ

(

2N+1
2N

)

Γ
(

3N+1
2N

) . (36)

In the case of N = 1, the plasma parameters are inhomogeneous, ∆k = 0 can be

satisfied but it does not occur in a local extremum of ∆k = 0. This would typically be

the case for inhomogeneous but monotonic plasma parameters, and equation (35) then

reduces to the well known Piliya-Rosenbluth amplification of G1 = 2πγ2
0ℓ

2
d,1/(vg,1vg,2),

where G1 ∝ Ipump. For N = 2, the selection rules are satisfied in an extremum of

∆k = 0 which could be the case for non-monotonic plasma parameters. In the case

of N ≫ 1, the plasma parameters are approximately homogeneous and we see that

GN≫1 ∝ γ0 ∝ I
1/2
pump. For PDI at the top of the super-Gaussian profile, N = 4 and

the numerical prefactor becomes δ4 ≈ 9.801. For the plasma parameters and daughter

waves in figure 5, the length of the decay region is ℓd,4 = 0.432ℓcav. We choose a cavity

size of ℓcav = 1.142 mm, corresponding to good overlap between TPD daughter waves
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Trapped UH eigenmodes 17

and eigenmodes but ignore the trapping momentarily. The gain of the daughter waves of

the TPD instability in figure 5 is then G4 = 1.20, using again a pump wave intensity of

Ipump = 1 kW/mm2. This means that the amplitudes of thermally excited waves would

amplify by a factor |a1,out| = 1.82|a1,in| after a single pass through the decay region.

Without trapping, this amplification would not produce any significant effect on waves

at the level of thermal noise. We note that evaluating the integral in equation (34)

numerically but without inserting the Taylor expansion offers a small 3% correction to

G4 for these parameters.

With a cavity size of ℓcav = 1.142 mm, we expect the TPD daughter waves to be

trapped leading to an absolute instability. As a very simple model, we assume that the

TPD instability couples perfectly to two eigenmodes and that the eigenmodes amplify as

they would in a convective instability but do so once every roundtrip. This leads to the

growth rate of γj = G/τj, where τj is the time it takes the jth daughter waves to perform

a roundtrip. The bounce times are calculated as τj =
∫ xr

xl
|∂k+

j /∂ωj| + |∂k−
j /∂ωj|dx,

which is evaluated numerically assuming a grid spacing of ∆x = 6.25× 10−3 mm as will

be the case for the simulations in section 3. For the parameters used up until this point,

the two TPD daughter waves have growth rates of γ1 = 0.328 ns−1 and γ2 = 0.347 ns−1,

which are slighter larger than the homogeneous growth rate. Using again the cold fluid

mobility tensor, even greater growth rates of γ1,cold = 0.449 ns−1 and γ2,cold = 0.475 ns−1

are obtained.

It can be argued that the super-Gaussian is an artificial density profile and that the

expression in equation (35) is unnecessary to extend to arbitrary N when considering

physical plasmas. Still, if a non-monotonic density structures can trap UH waves, then

it will have a point where the first derivative of ∆k vanishes and less idealized profiles

could have inflection points where the first two derivatives vanish. We also note that

γj ∝ GN/τj is in agreement with earlier studies using PIC simulations of PDIs involving

trapped UH waves[28]. In the cited article, the daughter waves were confined to an

essentially homogeneous region and their growth rates scaled as the square root of the

pump wave intensity. By having γj ∝ GN/τj, we notice that decay into a pair of EBWs

will have a higher growth rate than for decay into one or two X-mode waves. This is

because EBWs are usually slower than X-mode waves and GN ∝ (vg,1vg,2)
−(N+1)/2N ,

still, both perform the roundtrip as an X-mode wave one way and as an EBW the other

so τj and losses are independent of the daughter wave type. This could explain why

decay into EBWs was seen to grow faster in the same study [28].

Lastly, we note that the non-monotonic density structures considered in this article

are quite small compared to e.g. blobs found in ASDEX Upgrade which can be almost a

factor 10 wider. For the same plasma parameters but for a width of ℓcav ≈ 8 mm, which

is a common blob size in ASDEX Upgrade H-mode plasmas[37], even the local maximum

of the frequency mismatch is maxℓcav≈8 mm

(

σω

2π

)

≈ 0.04 GHz. This is comparable to some

of the local minima for the smaller structures in figure 7 because the eigenfrequencies

are separated by a smaller frequency shift. Furthermore, losses due to tunneling at

the turning points decrease exponentially with the Budden parameter[38, 39], i.e. the
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Trapped UH eigenmodes 18

normalized tunneling distance, and the decay regions are larger. As a consequence,

a pair of eigenmodes is more likely to be excited in larger structures. The reason for

choosing comparably small ℓcav is that we intend to provide evidence that the eigenmodes

exist and that the threshold for exciting trapped waves is greatly reduced if they are

eigenmodes. Furthermore, choosing larger cavity sizes would make the simulations in

the next section computationally much more expensive as they would require both larger

domains but also longer simulations in order to get an adequate frequency resolution.

3. Particle-in-cell simulations of eigenmodes and PDI

3.1. Setup

We use the particle-in-cell (PIC) code EPOCH[40, 41, 28, 42] to simulate TPD into

UH waves which are trapped in a 1D non-monotonic background density bump. Several

simulations are performed with all plasma parameters kept constant except for the width

of the density bump. This allows us to investigate the importance of the eigenmode

structure when exciting trapped daughter waves inside a cavity. In particular we want

to see if σm and σω in figures 6 and 7 are reflected in the excited spectra. The density

profiles are all super-Gaussians on the form of equation (28), with a peak density of

n0 = 2 × 1019 m−3. The plasma consists of electrons and deuterons, both with the

same initial super-Gaussian density profile. The electron and ion temperature are both

Te = Ti = 100 eV, which is slightly lower than the figures in the previous section.

This is because the wave spectra obtained in EPOCH suggest that the temperature is

slightly higher than what EPOCH evaluates the temperature to be. The temperature

adjustment will be argued for in figure 11. The background magnetic field is chosen

to be B = By = 2.2 T and the pump frequency is ω0/(2π) = 140 GHz. For these

parameters, half frequency waves are above the EC frequency, ωce/(2π) = 61.57 GHz,

and the electron plasma frequency, ωpe/(2π) = 40.16 GHz, while being close to yet

below the UH frequency, ωUH/(2π) = 73.51 GHz. These parameters do not model

particular experimental values but could be achieved in a device like the Wendelstein

7-X[32]. The exact choice of density, magnetic field and temperature profiles is not

vitally important as long as the pump wave is below the 2nd harmonic UH layer and

can decay into two trapped daughter waves. Here, the trapping is achieved solely

through an inhomogeneous density profile but it could also be achieved by varying

the magnetic field or the temperature as they affect the UH layer. From a numerical

point of view, a low temperature is undesirable as the wavenumbers of the EBWs are

larger, making the simulations more costly and an inhomogeneous background magnetic

field is not possible in 1D EPOCH simulations. For all simulations, we use a grid with

−1.5 mm ≤ x ≤ 1.5 mm and nx = 480 grid points in order to have sufficient spatial

resolution for the EBWs in the vicinity of ω0/2. We use npart = 1000nx superparticles

for each of two particle species. Because the superparticles are picked randomly from

a Maxwellian distribution, the initial temperature is not completely uniform and may
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Trapped UH eigenmodes 19

Figure 10. Spectrum immediately below the UH frequency. Rather than solid

dispersion lines, distinct peaks corresponding to frequencies where trapped waves

satisfy quantization conditions are clearly visible along the X-mode and EBW

dispersion curves. The size of the cavity is ℓcav = 1.142 and the FFT window is

−0.75 mm < x < 0.75 mm, 1 ns < t < 69 ns. The dotted blue line and dashed red line

are the X-mode and EBW dispersion relations from section 2 at Te = 112 eV.

further develop throughout the simulations due to collisional damping of the trapped

waves. This also leads to thermally excites waves. For the fields, open boundary

conditions are used. Particles exiting through the boundaries are replaced by thermally

distributed ones entering the domain. The pump wave is excited as X-mode at the left

x = −1.5 mm boundary and is not prescribed throughout the domain. The time step

is 0.95 of the longest step allowed by the Courant stability criterion[43], resulting in a

time step of ∆t ≈ 2× 10−5 ns.

3.2. Eigenmode spectrum without a pump wave

We run a simulation for 70 ns with the ℓcav = 1.142 mm but leave out the pump wave

for now. We apply an FFT to the longitudinal electric field over the spatial interval

−0.75 mm < x < 0.75 mm, and the temporal interval 1 ns < t < 69 ns. This produces

the spectrum near the UH layer shown in figure 10. The figure shows a number of

clearly separated peaks along the X-mode and EBW dispersion curves. The outer two

curves are the EBW dispersion curves for right and left propagating waves, the dashed

red line marks the left propagating wave. Transforming only into frequency at x = 0,

we take note of the first several eigenfrequencies and plot them in figure 11 against

our predictions using the geometry and our dispersion relations. The figure shows that

lower order dispersion relations accurately predict only eigenfrequencies near the UH

layer. Closer to the EC frequency, eigenfrequencies are off by several mode numbers

and the trend is wrong. As an example, the mode at m = 20 corresponds to mode 16
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Trapped UH eigenmodes 20
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Modes from simulations

Figure 11. Eigenfrequencies of the ℓcav = 1.142 mm cavity against mode number.

The predictions are made using the dispersion relations in figure 2 and two different

temperatures. All series agree at low mode numbers, where the wavenumbers are small

and the asymptotic behavior is unnecessary. Curiously, the temperature appears to be

a slightly elevated Te = 112 eV.

or 17 using the lower order dispersion relations, and the blue and orange series have not

started to flatten. The more accurate dispersion relation has the correct trend but is

off by a small shift which appears to be remedied by increasing the temperature from

100 eV to 112 eV. Whilst this is not a great difference, EPOCH’s outputted electron

temperature remains much closer to the 100 eV used for the initial conditions. It is

not possible to change the temperature for the lower order dispersion relation to obtain

a better fit as the high mode number trend is incorrect. We will continue to use the

Te = 112 eV results from section 2 as the objective is to investigate TPD into eigenmodes

and for this, we need to be able to predict the eigenmodes of a given cavity with good

precision. We note that if these frequencies were observed in an experiment, either

due to tunneling or recombination with a gyrotron[22], the characteristics of the cavity

that traps them could in principle be determined by a fitting scheme similar to the

temperature adjustment made based on figure 11.

3.3. Two plasmon decay instability

Having established that an eigenmode spectrum is present even without a pump wave,

we pick an ℓcav such that σm ≈ 0 by inspecting figure 6. Running a simulation both with

and without the pump wave, the spectra in figure 12 are obtained. With the pump wave,

two large peaks are found at the frequencies of the expected TPD daughter waves, i.e.

at ω1/(2π) = 70.141 GHz and ω2/(2π) = 69.859 GHz. Comparing with the background

level, i.e. without the pump wave, the peaks corresponding to the TPD daughter waves

are far greater but the pump also lifts the general level of spectrum. To show that this
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Figure 12. Example of a density profile where TPD daughter waves are close to

eigenfrequencies at the center. In particular two peaks near 70 GHz are excited above

the background level. The width of the density profile is ℓcav = 1.142 mm. The blue

line is without a pump wave and the orange line has an Ipump = 1 kW/mm2 pump

wave. The FFT window is 30 ns < t < 69 ns. Note that the plot is semi logarithmic.

In transformed space, the magnitude of the total pump wave is |Ẽ0|2 ≈ 3×15 (Vs/m)2

and a longitudinal component of |Ẽ0x|2 ≈ 7× 12 (Vs/m)2 for comparison.

is not just a regular inhomogeneous PDI but that TPD into eigenmodes is essential, we

now pick an ℓcav where σm ≈ 0.5, which should result in a poor coupling to eigenmodes.

The resulting spectra are shown in figure 13, and it is clear that the same TPD daughter

waves are not present, which was the desired result. Comparing with the background

spectrum, we see that the spectra are very similar with peaks at the same frequencies

and of similar magnitudes. Some peaks in the background spectrum are slightly greater

than the spectrum with the pump wave. We take from this that the spectra produced

by EPOCH are stochastic to some degree.

Whilst we could have chosen ℓcav such that σm ≈ 1, the twist in figure 13 is that this

corresponds to a local minimum in σm using a lower order dispersion relation; see figure

6. Likewise, figure 12, in which the daughter waves are clearly visible, corresponds to a

poor match using the lower order dispersion relation, which exemplifies the importance

of precision when exciting the eigenmodes.

3.4. Structure size scan - growth rate and spectra

In the rest of this section, we scan ℓcav. As was argued in section 2, the eigenfrequency

spectrum is uniquely determined by the plasma parameters and size of the non-

monotonic density structure. By varying only the size of the cavity, i.e. the parameter

ℓcav, we change the exact eigenfrequencies but not the selection rules for PDI at the

center of the cavity. We expect the minima of σm and of σω in figures 6 and 7 will be
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Figure 13. Example of a density profile where TPD daughter waves are far from

eigenfrequencies at the center. No peaks are excited significantly above the background

level. The width of the density profile with ℓcav = 1.164 mm. The blue line is without

a pump wave and the orange line has an Ipump = 1 kW/mm2 pump wave. The

FFT window is 30 ns < t < 69 ns. Note that the plot is semi logarithmic. In

transformed space, the magnitude of the total pump wave is |Ẽ0|2 ≈ 3 × 15 (Vs/m)2

and a longitudinal component of |Ẽ0x|2 ≈ 7× 12 (Vs/m)2 for comparison.

optimal for exciting TPD daughter waves whereas the maxima will not. For each choice

of ℓcav, we run a simulation both with and without an X-mode pump wave of intensity

Ipump = 1 kW/mm2, corresponding roughly to the intensity in the center of a 1 MW

gyrotron beam. We integrate the spectral power density from 69.5 GHz < ω/(2π) <

70.5 GHz, which includes the TPD daughter wave frequencies as well as some of the

surrounding spectrum. The integral is dominated by the spectral peaks and should

therefore give an indication of the intensity of the modes closest to ω0/2. This is used

to determine the intensity of TPD daughter waves and the integrated spectral density

from simulations without a pump is used as a measure of the error.

Figure 14 shows the result of the cavity size scan and it is clear that the TPD

daughter wave population increases significantly near the the minima of σm. Near the

maxima of σm, the integral drops to the level of the background noise. The overall

shape is robust when changing the frequency integration range but the noise level

is increased when more modes are included. The figure remains largely unaffected

when using instead the maximum of the spectral power density in the same frequency

range. The amplification of the background level for a convective PDI would correspond

to Gobs = 8.27 for ℓcav = 1.142 mm at the central red dotted line in figure 14.

The convective amplification for a single pass at Ipump = 1 kW/mm2 was found to

be just G4 = 1.20. By inverting the expression for the amplification in equation

(35), we find that the necessary pump electric field for a given amplification would

be |Enecessary|2 = [GN/δN ]
2N/(N+1)vg,1vg,2/(|ν12ν∗

21|ℓ2d,N). Using the parameters of the
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Figure 14. Integrated spectral density around TPD daughter frequencies for varying

cavity size. The FFT window is 30 ns < t < 69 ns and the integration range is 69.5

GHz < ω/(2π) < 70.5 GHz. The vertical red dashed lines mark sizes where σm has a

local minimum and TPD would then couple well into eigenmodes. The vertical blue

dotted lines are local maxima of σm and the coupling to eigenmodes is poor. The pump

wave intensity is Ipump = 1 kW/mm2. There is good agreement with the predicted

strong response only near the red dotted lines.

simulation, the corresponding intensity would be Inecessary = 22 kW/mm2, which is

much greater than the input pump intensity. It is therefore clear that such amplification

cannot simply be due to a convective PDI which amplifies the daughter waves during

just one pass through the decay region.

The peaks in figure 14 tend to be found next the predicted peaks and the largest

peak is the rightmost one in the figure even though the central peak takes the smallest

value of σm. Perhaps the increasing size of the decay region and smaller mode separation

with greater ℓcav makes up for the slightly larger σm. In principle the PDI may also

not be taking place exactly in the center of the cavity. This would mean that the

selection rules instead are satisfied in two places, each with a smaller decay region.

However, the sum of two smaller decay region could add up to a larger total decay

region. Still, the results from the parameter scan agree very well with the prediction.

Lastly, by comparing the central peak in figure 14 to σω in figure 7, we find that the TPD

daughter waves experience amplification to a level much greater than the background

level when σω/(2π) < (0.06±0.03) GHz. With this requirement on σω, the example of a

larger ℓcav ≈ 8 mm structure similar to blob sizes in ASDEX Upgrade would see growth

in most cases as σω/(2π) . 0.04 GHz. However, the σω tolerance is likely to depend on

the spatial profile of the plasma parameters.

Next, we evaluate the growth rates by setting up a moving FFT window of length

20 ns, starting at 1 ns and moving in steps of 6.7 ns. We integrate the same frequency

interval of 69.5 GHz < ω/(2π) < 70.5 GHz for all of the resulting spectral power densities
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Figure 15. TPD daughter wave growth rates from simulations in figure 14. Data

points are removed when a growth rate could not be established with a simple

exponential fit, e.g. because the growth due to TPD is too weak compared to the

background noise. The vertical dashed red lines correspond to minima in σm whereas

the vertical dotted blue lines are maxima. The horizontal dashed and dotted black

lines mark the predicted PDI growth rates γ1 and γ2 respectively, as calculated in

section 2. The pump wave intensity is Ipump = 1 kW/mm2. The peak growth rates

are comparable to the predicted growth rates.

and fit a function of the form φ(t) = φ0 exp(γt) + φbackground to the time evolution of

the integrated spectra in the initial exponential growth phase. We perform the same

treatment on the simulations without a pump and subtract the found growth rates from

those of the simulations with a pump wave. The spectral level drops off in the absence of

a pump wave. This is likely because the waves that are excited in the initialization of the

simulations experience losses such as tunneling out of the cavity. Figure 15 shows the

fitted γ as a function of the cavity size ℓcav. Again, we see growth when σm is small and

the features of the three peaks are mostly similar to figure 14. The growth rates obtained

in the simulations are smaller than the estimated growth rates γ1 and γ2 marked by the

horizontal dashed and dotted lines. Still, the growth rates are comparable to the peak

values near σm is small and the model applies best. The prediction can perhaps be

improved using only kinetic theory, such as in [44], instead of the part kinetic and part

cold fluid result presented in section 2. It is also possible that a better agreement can be

found by changing the FFT window size and perhaps even more so if the parameters were

chosen such that growth rates were smaller and simulations were longer. Nevertheless,

we note that using the mobility tensor derived from kinetic theory did improve the

estimate over that using the cold fluid mobility tensor. Furthermore, with a gain of

merely G4 = 1.20 at a single pass, which takes on the order of 1 ns for the daughter

waves to complete, the exponential growth cannot be explained as simply a convective

PDI in an inhomogeneous medium without the trapping. The points found near the
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Figure 16. TPD daughter wave growth rate against pump wave intensity for a cavity

size of ℓcav = 1.142 mm. Growth rates are estimated by integrating the longitudinal

spectral density over the range 69.5 GHz < ω/(2π) < 70.5 GHz and fitting an

exponential function. The vertical orange dashed line is an I
5/8
pump trend line and the

horizontal black dashed line is the level of the negative growth rate of the simulation

without a pump wave, which has been subtracted from all points. The black line is

essentially the threshold for the instability. Note that both axes are logarithmic.

vertical blue dotted lines fluctuate around zero because the growth rates are similar

to that of the simulations without a pump wave. Although, the growth rate estimate

presented in 2 is a reasonable starting point, there are certainly ways to improve it.

In particular, the model does not include any self-interaction that could explain why

only eigenmodes survive several round trips. Including self-interaction may alter the

growth rate, but theory developed for optical cavities[45] using the Ginzburg-Landau

equation or the nonlinear Schrödinger equation usually rely on homogeneous media

bounded by mirrors, which is difficult to apply to the case of trapped UH waves. Still,

the found growth rates are on the order of the predicted growth rates, which is a strong

indication that an absolute PDI is taking place. We note that doubling the number of

superparticles for the simulation does not significantly affect the obtained growth rate

for ℓcav = 1.142 mm, suggesting that the small discrepancy in growth rates is not due

to under sampling of the electron distribution function.

Lastly, we investigate how the growth rate scales with the pump intensity. Using

the same FFT windows of length 20 ns, starting at 1 ns and in steps of 6.7 ns, we run

simulations of ℓcav = 1.142 mm with different pump intensities. The result is shown

in figure 16 along with a G4/τj ∝ I
5/8
pump trend indicated by the orange dashed line.

This particular trend comes from equation (35). The black dashed line is the instability

threshold as it marks the level of the negative growth of the simulations without a

pump. Above this threshold, the trend is close to the prediction. Below the threshold,

the trend appears to follow a slightly higher power of Ipump, i.e. it is not closer to the
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homogeneous I
1/2
pump trend. The main contributing mechanisms to this threshold are loss

of the eigenmodes due to tunneling and damping. In particular the small cavity size and

steep density gradients mean that the conversion at the turning points is not complete.

Although we can estimate a growth rate for the simulations below the threshold by

comparing them to the background simulation, we note that they are rather noisy and

difficult to fit an exponential trend to at times. The highest intensity simulations, on

the other hand, grow rather quickly compared to FFT windows, which means that the

growth rate in even higher intensity simulations would be hard to determine using this

method.

The primary daughter waves do not continue to growth forever following the rates

in figures 15 and 16. For the ℓcav = 1.142 mm and Ipump = 1 kW/mm2 simulation,

the primary daughter wave populations saturate after approximately 70 ns. From this

point, the populations of other eigenmodes increase and scattering at frequencies shifted

from the pump by approximately the lower hybrid frequency is increased by orders of

magnitude, a feature resembling observations in [14, 15]. This is expected to be caused

by subsequent PDIs, which drain the primary daughter waves instead of the injected

wave at ω0.

The growth rates presented in figures 15 and 16 are higher than one would expect

from a blob of similar size in a tokamak fusion plasma as only a direction perpendicular

to the magnetic field is included here. One of the main loss mechanism of the trapped

UH eigenmodes in plasma experiments is along the magnetic field lines due to diffraction.

4. Discussion and Conclusion

Using a fully kinetic PIC code, we have demonstrated that non-monotonic plasma

density structures can act as cavities and give rise to trapped UH waves which form

eigenmodes that satisfy a quantization condition. Our simulations show that the

eigenmodes of such cavities can be excited through PDIs of an electromagnetic X-mode

pump wave passing through the cavity. This could be the case of an ECRH gyrotron

beam passing through a density perturbation such as a blob or a magnetic island in a

magnetically confined fusion plasma. More importantly, we show that UH waves are

not excited through PDIs inside the cavity unless the PDI selection rules are satisfied

for decay into eigenmodes of the cavity.

We have derived a closed and numerically tractable expression for the X-mode and

EBW dispersion relation which approximates the full expression well, both near the UH

layer and near the EC resonance. The precision of the expression allows us to predict

the eigenfrequencies quickly and map out in which geometries we can expect to see

PDIs exciting eigenmodes. We furthermore generalized the expression for amplification

of daughter waves in a convective PDI to account for a decay region where the first

several derivatives of the plasma parameters vanish. This showed that the amplification

due to convective PDI for a single pass was insufficient to explain the observed growth

of certain eigenmodes. By applying an electron mobility tensor derived from kinetic
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theory, we were able to improve our estimated PDI growth rate which was comparable

to that of the simulations as well as the homogeneous PDI. This confirms that the

trapping mechanism provided by the non-monotonic structure gives rise to an absolute

instability.

The eigenfrequency separation is affected by several plasma parameters including

the geometry of the non-monotonic structure. Whilst the plasma parameters used here

could be realized in e.g. the tokamak ASDEX Upgrade or the stellarator Wendelstein

7-X, the cavity width is small compared to the typical blob size in those machines.

This means that the eigenfrequency separation can be expected to be smaller than in

our simulation and consequently, it is easier to satisfy selection rules for PDIs into

eigenmodes, both in small blobs and, of course, in large islands. Eigenmodes in the

small structures presented in this article suffer from comparably large losses due to

tunneling but nevertheless demonstrate how a non-monotonic plasma density structure

can facilitate absolute PDIs and significantly reduce PDI thresholds. When calculating

further decay cascades that would produce experimentally observable scattering escaping

the cavity, eigenmodes must be taken into account for each step of the cascade in the

same manner as was presented in this article for the primary decay.
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