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ABSTRACT

Uncertainty in the critical amplification factor (Ncr) of the eN transition model is used to ap-

proximate uncertainty in surface and flow quality of natural laminar flow (NLF) aerofoils.

Uncertainty in Ncr is represented by a negative half-normal probability distribution that de-

scends from the largest Ncr achievable with ideal surface and flow quality. The uncertainty

in various aerodynamic coefficients due to uncertainty in Ncr is quantified using the weighted

mean and standard deviation of flow solutions run at different Ncr values. Uncertainty in aero-

foil performance is assessed using this methodology. It is found that the standard deviation

of aerofoil performance due to uncertainty in Ncr is largest when transition location is most

sensitive to changes in lift coefficient at the ideal Ncr. Robust shape optimization is also car-

ried out to improve mean performance and reduce the standard deviation of performance with

uncertainty in Ncr. This is found to be effective at producing aerofoils with a larger amount

of laminar flow that are less sensitivity to uncertainty in Ncr. A trade-off is observed between

mean performance and the standard deviation of performance. It is also found that reducing

the standard deviation of performance at one Mach number or lift coefficient design point can

cause an increase in standard deviation off-design.

Received DD MM YYYY; revised DD MM YYYY; accepted DD MM YYYY.
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NOMENCLATURE

C(u) Class function

S (u) Shape function

u Chord length position

AR Class shape transformation coefficients

n Bernstein polynomial power

zo/zp Original/perturbed z coordinate

Ncr Critical N-factor

Ni Ideal critical N-factor

Nσ Standard deviation of critical N-factor

F Output variable function

P(Ncr) Probability density function

W Summation of weights

kr Number of Ncr samples

Tru Upper surface transition location

Trl Lower surface transition location

Greek Symbol

∆zte
Trailing edge thickness

µ Mean

σ Standard deviation

1.0 Introduction

The passive extension of laminar flow over an aerodynamic surface, referred to as Natural

Laminar Flow (NLF), is seen as a promising approach for the reduction of aircraft drag (1).

Obtaining NLF requires the suppression of boundary layer instabilities which are the cause of

flow transition. This is achieved during NLF aerofoil design via the tailoring of the aerofoils

pressure distribution. However, the sensitivity of transition location to surface and flow quality

makes effective implementation of NLF challenging. Early transition of the flow can occur for

a number of reasons. These include contamination of the leading edge from insects, icing or

debris (2,3), as well as in the presence of steps and gaps between panels or other irregularities

in surface finish and roughness (4,5).

Manufacturing aerodynamic surfaces without steps, gaps and other irregularities is difficult

and costly. Methods for protecting the wing from contamination have also been proposed (6).

However, these are often complex and not able to guarantee contamination is avoided. An

alternative to this is to obtain a NLF design that is insensitive to variations in surface and

flow quality. This is achieved using the Robust Design, an approach pioneered by Genichi

Taguchi (7). Robust design tries to improve mean performance while reducing the standard

deviation of performance in the presence of uncertainty. To some degree, it can be consid-

ered an extension of multi-point design which tries to improve net performance at a range of

conditions and has also been applied to the design of NLF aerofoils (8,9).

There has been extensive research on the robustness of fully turbulent aerofoils to uncer-

tainty in Mach and Reynolds number (10–19), but less applied to NLF design. Zhao et al. (20)

carried out shape optimisation of a NLF aerofoil to improve the robustness of maximum lift
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coefficient (Cl,max) to uncertainty in transition location. Zhao et al. (21) then carried out shape

optimisation of a NLF aerofoil to improve the robustness of drag to uncertainty in Mach

number. Jing et al. (22) also performed shape optimization of an NLF aerofoil to improve the

robustness of drag to uncertainty in Mach and lift coefficient. While these studies consider

the robustness of NLF performance to uncertainty in flight conditions or transition location

itself, research on the robustness of NLF aerofoils to uncertainty in surface and flow qual-

ity has been limited. Salahudeen and Baeder (23) analysed the sensitivity of an aerofoil with

free transition to uncertainty in flow quality by varying free stream turbulent intensity in the

transport equation-based γ − Reθ transition model.

Modelling instability growth within the boundary layer is done using linear stability theory.

The eN transition model makes use of this by prescribing transition at the point at which an

instability wave first exceeds some critical amplification factor. This is typically referred to

as the critical N-factor (Ncr). Transition occurs at a lower Ncr value and so further upstream

if surface or flow quality is reduced. It is therefore possible to approximate the effects of

uncertainty in surface and flow quality by applying uncertainty to the value of Ncr within the

eN transition model. Some work has been done using this relationship. Deng and Qiao (24)

used an inverse design approach to obtain a NLF aerofoil with an Ncr envelope that sees little

change in transition location as Ncr is reduced. Han et al. (25) optimized a NLF wing using Ncr

values lower than expected to account for uncertainty in real flight conditions. Rashad and

Zingg (9) analysed this approach and found that optimizing for a reduced Ncr was no guarantee

of performance at higher Ncr given that extended laminar flow can increase the risk of flow

separation. They then carried out multi-point optimization over three Ncr values to ensure

aerofoil performance is maintained at off-design conditions.

There are two main objectives to this study. The first is to investigate the sensitivity of

aerofoil performance to uncertainty in Ncr. The second objective is to carry out robust shape

optimisation with the goal of improving the robustness of aerofoils to uncertainty in Ncr. In

both cases, uncertainty in Ncr is used to qualitatively account for uncertainty in surface and

flow variability. While the direct modelling of surface and flow quality effects on transition

is beyond the scope of this study, it is assumed these unknowns may be crudely incorporated

through a reduced Ncr criterion.

2.0 Analysis Methodology

2.1 Uncertainty Distribution

Uncertainty in Ncr is modelled using a probability distribution, which is assumed to take a

similar form to the uncertainty that would be seen in surface and flow quality. As there is little

information available on this within the literature, a distribution of heuristic form is used.

The heuristic form is selected using an intuitive assessment of the uncertainty in free-stream

turbulence, surface finish, wear and contamination.

Free-stream turbulence is an environmental condition so its uncertainty would best be de-

scribed using a normal probability distribution. Machining accuracy is more likely to produce

surface imperfections than a better-than-expected finish, and surface wear and contamination

only act to degrade surface quality further. A negative half-normal probability distribution

would therefore be suitable for describing the uncertainty in each. As free-stream turbulence

is low during flight, surface finish, wear and contamination are assumed to be the dominant

sources of uncertainty. Therefore, a negative half-normal probability distribution is used dur-
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ing this study as a heuristic representation of uncertainty in Ncr. Figure 1 shows three example

negative half-normal Ncr probability distributions. Each has the same ideal Ncr (Ni) but dif-

ferent standard deviations of Ncr (Nσ). The negative half-normal distribution is represented

by the probability density function P(Ncr) shown in Equation 1.

P(Ncr) =

√
2

Nσ
√
π

exp

(

−
(Ncr − Ni)

2

2N2
σ

)

; Ncr ≤ Ni . . . (1)

It should be noted that it may not always be appropriate to ignore the probability of Ncr

increasing. Rashad and Zingg (9) found that operating an aerofoil at a higher Ncr than it was

designed for could result in laminar separation of the flow and a significant drop in perfor-

mance. Thus, a skewed distribution may be more appropriate if the probability of Ncr > Ni is

significant. However, as the intuitive analysis of the uncertainty sources carried out by these

authors suggests that the probability of Ncr > Ni is very low, this has not been used for this

study.
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Figure 1. Examples of negative half-normal Ncr probability distributions with the same ideal Ncr but different

standard deviations in Ncr (Nσ).

2.2 Uncertainty Propagation and Quantification

A sampling based approach has been used to propagate uncertainty in Ncr through the aero-

dynamic model. Aerofoil designs are evaluated with different Ncr values sampled at regular

intervals over the range of possible values. The results of each evaluation are weighted by the

probability of that Ncr value occurring. Uncertainty in the results are then quantified by taking

the standard deviation of these weighted values.

The standard deviation Fσ of an output variable F(Ncr) is calculated using Equation 2,

where kr is the number of Ncr samples used, Fµ is the weighted mean of the output variable

F(Ncr) calculated using Equation 3 and W is the sum of the probability weights found using

Equation 4. P(Ncr) is the probability weighting calculated using Equation 1. The term Fσ is

therefore a measure of how much some output variable F(Ncr) varies with uncertainty in Ncr.

Reducing Fσ thus improves the robustness of the output variable to this uncertainty.
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Fσ =

√

√

√

1

W

kr
∑

j=1

[

F(Ncr j
) − Fµ

]2
. . . (2)

Fµ =
1

W

kr
∑

j=1

P(Ncr j
)F(Ncr j

) . . . (3)

W =

kr
∑

j=1

P(Ncr j
) . . . (4)

The benefit of using uniformly distributed weighted samples over a random sampling

method such as Monte Carlo is that far fewer sample points are needed. This is because

the evenly spaced samples have perfect equidistribution. This reduces computational cost as

each sample point represents a model evaluation. The spacing between Ncr sample points

determines the accuracy of the mean and standard deviation values calculated.

However, given the periodic nature of this sampling strategy, it is unsuitable for models

containing oscillatory behaviour with frequency close to that of the samples. In most cases,

this will not be an issue as the transition location on both upper and lower aerofoil surfaces

will move monotonically upstream as Ncr is reduced. However, some oscillations in transition

location may be seen as Ncr is reduced if laminar separation is present. In these cases, transi-

tion location would move upstream of the separation point as Ncr is reduced. The separation

point may then move downstream as turbulent flow can more easily resist flow separation.

The resulting lift increase would allow for the same lift coefficient to be maintained at a lower

incidence angle. This would in turn result in a more positive pressure gradient on the upper

surface, which helps to suppress instability growth and so will move transition location down-

stream. In these cases, the accuracy of the uncertainty quantification carried out may be low

if an insufficient number of Ncr samples are used.

2.3 Computational Solvers

Two efficient flow solvers were used during this study. The first, used for analysis and op-

timization at subsonic conditions, was XFOIL, developed by Drela (26). This is a 2D flow

analysis tool which uses the viscous-inviscid interaction (VII) approach to couple a potential

flow panel method with integral boundary layer solution and a simplified incompressible eN

transition model (27). Additional corrections are included to account for weak compressibility

effects and mild separation. Simulations were run with 300 panels during this study, which is

near the maximum allowed by XFOIL. This was done to ensure the results are independent

of the number of panels used. While XFOIL is considered a low fidelity solver given its use

of VII over the Reynolds Averaged Navier-Stokes approach, it is a highly reliable tool when

operated within its limitations and has been used extensively in industry.

For analysis and optimization at transonic conditions, the flow solver CVGK (28) was used.

This is derived from BVGK which was developed by the ex-Royal Aircraft Establishment.

CVGK also uses a VII approach (29), modelling inviscid flow using the Garabedian and

Korn (30) (G&K) full potential flow method (with additional improvements as outlined by

Lock (31)) and viscous flow using the Lag-Entrainment integral method (32). This has been cou-

pled with an eN transition model (33) capable of both incompressible and compressible stability
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analysis. The compressible eN method is used throughout this work. CVGK is able to model

un-swept, infinity swept and swept-tapered wings. As such it allows for the specification of

both Tollmien-Schlichting and Crossflow instability Ncr values. CVGK has been extensively

used for transonic wing design in the UK aerospace industry and validated at swept and un-

swept transonic flow conditions (28,34). Atkin and Gowree (28) found good agreement between

computational results from CVGK and wind tunnel results for the RAE5237 and RAE5240

from 0.6 < M < 0.85. It was, however, found that CVGK slightly under-estimated shock

strength at high Mach numbers. CVGK was found to produce mesh independent results over

the Mach range investigated with 240 cells in the stream-wise direction and 48 in the wall-

normal direction. To increase transition location accuracy during this study, 320 cells were

used in the stream-wise direction for all simulations.

3.0 Critical N-factor Uncertainty Analysis

3.1 Definition of Subsonic Problem

The NLF0215 aerofoil (35) has been analysed using the proposed methodology to investigate

how its performance varies with uncertainty in Ncr. This is a flapped aerofoil developed for

low drag at a cruise lift coefficient of Cl = 0.2 and climb lift coefficient range of 0.5 < Cl <

1.0. The design Reynolds number and Mach number were Re = 9 × 106 and M = 0.1. A

fixed flap deflection angle of 0◦ is used during this study. Analysis of the aerofoil is carried

out at the cruise Reynolds number of Re = 9 × 106 and Mach number of M = 0.1 over the lift

coefficient range 0 ≤ Cl ≤ 1.6 with angle of attack left free. Practical implementation of NLF

will require some form of protection from leading edge contamination (36). It is assumed that

a method such as liquid discharge (6) can be used for subsonic applications. This approach

protects both the upper and lower surfaces from contamination so transition is left free on

both during this study.

The probability distribution describing uncertainty in Ncr has an ideal value of Ni = 9

and standard deviation of Nσ = 2. Ni = 9 is selected as the simplified eN model used in

XFOIL is based on the e9 method of Smith and Gamberoni (37). This value is also used in

other studies on aerofoil performance at similar flow conditions (38,39,9). The value of Nσ is

selected somewhat arbitrarily and so the effect of varying Nσ is also included in the analysis.

The mean performance and standard deviation in performance of the aerofoil is calculated

at each lift coefficient. This is done using flow solutions evaluated with Ncr values taken at

intervals of 0.1 from Ncr = 9→ 0.

3.2 Subsonic Analysis

Figure 2 shows the drag and transition polars of the NLF0215 when Ncr = 9. The drag polar

includes total drag (Cd) with skin friction (Cd f ) and pressure drag (Cdp) components. The

transition polar includes upper (Tru) and lower (Trl) surface transition locations. Figure 3

shows the standard deviation of drag components and transition locations with uncertainty in

Ncr. The standard deviation of each variable is represented by the subscript σ.

The total drag polar exhibits a bucket shape between 0.5 < Cl < 1.0. This is a common

feature of NLF aerofoil designs, where laminar flow is extended on both surfaces through the

design lift coefficient range, but quickly lost when moving off-design. Trσ is largest on each

surface where the transition location is most sensitive to lift coefficient. As the peaks in Tru|σ
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Figure 2. Drag and transition location polars for the NLF0215 when Ncr = 9.
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Figure 3. Standard deviation of drag and and transition location polars for the NLF0215.

and Trl|σ overlap, Cd|σ is high through the entire drag bucket lift coefficient range. Although

the peak in Trσ for the upper surface is smaller, the corresponding peak in Cd|σ is larger. This

is because a change in upper surface transition location has a stronger effect on lift coefficient.

As angle of attack is varied to obtain the desired lift coefficient, this causes both skin friction

and pressure drag to vary. The standard deviation of Cd is larger as a result. The sensitivity of

pressure drag to lift coefficient is larger at higher lift coefficients. This is apparent in the Cd|σ
polar where the standard deviation of Cdp is large at high lift coefficients while Trσ is low for

both surfaces. The Cd|σ polar therefore takes the shape of the combined Trσ polars at low lift

coefficient values, but diverges from this as lift coefficient is increased.

Figure 4 shows pressure distributions and N-factor envelopes for the NLF0215 at lift coef-

ficients of Cl = 0.4, Cl = 0.7 and Cl = 1.0 when Ncr = 9. These help to explain why Trσ is

largest on each surface when transition location at the ideal Ncr is most sensitive to changes

in lift coefficient. A strong adverse pressure gradient on both surfaces at Cl = 0.4 precedes

transition. Varying lift coefficient has little effect on transition location as the strength and

direction of the pressure gradient is largely unaffected. Lower surface transition is close to

the leading edge so also insensitive to Ncr. Upper surface transition follows a long favourable

pressure gradient that suppresses instability growth until rapid growth occurs just upstream of

the transition point. Transition is therefore insensitive to reductions in Ncr until Ncr is reduced
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Figure 4. Pressure distributions and N-factor envelopes for the NLF0215 at Cl = 0.4, 0.7 and 1.0 with Ncr = 9.

Markers on the pressure distributions indicate transition locations.

significantly. A weak pressure gradient precedes transition on the lower surface at Cl = 0.7

and on the upper surface at Cl = 1.0. Varying lift coefficient now has a large effect on tran-

sition location as the direction of the pressure gradient can change over a large chord length.

The weak pressure gradient also promotes gradual instability growth up to the transition loca-

tion. Therefore, only a small reduction in Ncr is needed to shift transition upstream.

The shape of the Cd|σ and Trσ polars can therefore be inferred from the drag and transition

polars found at the ideal Ncr. Trσ is found to be directly related to the rate of change of

transition location with lift coefficient at the ideal Ncr, and Cd|σ is proportional to the sum of

upper and lower surface Trσ. It is important to note that this may not hold if a different Ncr

uncertainty distribution or standard deviation of Ncr is selected. The uncertainty distribution

chosen gives highest probability weighting to the ideal Ncr. Therefore the sensitivity of the

transition locations to changes in lift coefficient at the ideal Ncr has the largest effect on Trσ.

This relationship will diminish if the probability weighting at the ideal Ncr is reduced. Figure

5 shows the standard deviation of Cd and the standard deviation of Tr polars when calculated

with different standard deviations of Ncr (Nσ).
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The value of Cd|σ and Trσ grows at all lift coefficients as Nσ is raised. The increase in Trσ
is greatest for each surface where Trσ is already large. However, Trσ increases everywhere

where extended laminar flow is achieved at the ideal Ncr. Regardless of the Nσ value chosen,

the Cd|σ polar still has the same form as the combined Trσ polars at low lift coefficient values.

However, the Cd|σ polar deviates more from this at higher lift coefficients if Nσ is larger.

3.3 Definition of Transonic Problem

The RAE2822 aerofoil (40) has also been analysed using the proposed methodology to inves-

tigate how its performance varies with uncertainty in Ncr. This is a supercritical aerofoil

designed for Cl = 0.56 at M = 0.66 with transition fixed near the leading edge on both sur-

faces. During this study, transition remains fixed on the lower surface at 0.03x/c but is free to

move on the upper surface. Transition remains fixed on the lower surface as a popular method

for protecting the leading edge from contamination on large transonic aircraft is via the use

of a Krueger flap (41–43). This shields the leading edge when deployed during take-off, before

being retracted into the lower surface during cruise. This leaves the upper surface free of

contamination but triggers early transition on the lower surface. Initial analysis of the aerofoil

at a Reynolds number of Re = 6.5 × 106 and Ncr = 9 with free transition on the upper surface

found that (ML/D)max occurs at approximately M = 0.715 and Cl = 0.76. This is used to fix

M2Cl while varying Mach number between 0.68 < M < 0.73. Angle of attack is varied to

obtain the target lift coefficient at each Mach number.

The probability distribution describing uncertainty in Ncr again has an ideal value of Ni = 9

and standard deviation of Nσ = 2. Ni = 9 is selected as it lies between the values of Ncr

obtained with compressible eN stability analysis of ATTAS and FOKKER 100 NLF flight

test data without the presence of crossflow instability growth (44,45). Nσ = 2 is again selected

somewhat arbitrarily with the effect of varying Nσ included in the analysis. The mean per-

formance and standard deviation in performance of the aerofoil is calculated at each Mach

number and lift coefficient combination. This is again done using flow solutions evaluated

with Ncr values taken at intervals of 0.1 from Ncr = 9→ 0.

3.4 Transonic Analysis

Figure 6 shows the ML/D, drag (Cd) and upper surface transition location (Tru) polars for the

RAE2822 when Ncr = 9. The drag polar is broken down into viscous (Cdv) and wave drag

(Cdw) components. Figure 7 shows the standard deviation of each with uncertainty in Ncr.

Standard deviation is denoted by the subscript σ.

Total drag is dominated by the viscous drag component at the ideal Ncr for the Mach range

considered. As M2Cl is fixed, increasing Mach number reduces lift coefficient and angle

of attack. This leads to a near linear reduction in viscous drag as transition location moves

downstream. Maximum ML/D coincides with minimum drag. This occurs at the point where

increasing Mach number causes a rise in wave drag that outweighs the reduction in viscous

drag. (ML/D)σ and Cd|σ are both largest at a Mach number just below this. As total drag is

dominated by the viscous drag component, the Cd|σ and Tru|σ polars are very similar.

The shape of the Tru|σ polar can be explained using figure 8 showing the pressure distribu-

tions and N-factor envelopes for the RAE2822 at Mach numbers of M = 0.680, M = 0.715

and M = 0.730 when Ncr = 9. A strong favourable pressure gradient is obtained at the lower

end of the Mach range where lift coefficient is small. This suppresses instability growth and
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Figure 7. Standard deviation of ML/D, drag and upper surface transition location polars for the RAE2822.

delays transition up to the shock position. As instability growth is suppressed, the transition

location only moves upstream once Ncr is significantly reduced. Tru|σ is therefore small. A

strong adverse pressure gradient is obtained at the upper end of the Mach range where lift

coefficient is large. Although this causes upstream instability growth, transition at the ideal

Ncr occurs closer to the leading edge so reducing Ncr can only lead to a small reduction in

laminar flow. Tru|σ is therefore small. In both cases, Trσ is small when transition is shock

induced at the ideal Ncr as reducing Ncr has no initial effect on transition location. All three

N-factor envelopes shown end at the point of shock induced transition so fail to reach Ncr = 9.

The effect that the standard deviation of Ncr uncertainty has on aerofoil performance is

again assessed. Figure 9 shows the (ML/D)σ, Cd|σ and Tru|σ polars when calculated with

different standard deviations of Ncr uncertainty. As is expected, all three standard deviation

polars grow in magnitude as Nσ is increased. The increase is comparable between polars and

is largest at higher Mach numbers as this is where there is the largest amount of laminar flow

at the ideal Ncr. If there is a larger amount of laminar flow at the ideal Ncr, a larger amount is

lost as Ncr is reduced from the ideal value to zero. If there is strong instability suppression,

this shift in transition location will occur at small Ncr values with low probability and have

little effect on Trσ. However, the probability only needs to increase slightly for this loss of

laminar flow to have a much larger effect on the calculated Trσ.
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Ncr = 9. Markers on the pressure distributions indicate transition locations.
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calculated with different standard deviations of Ncr uncertainty.

4.0 Robust Optimization

4.1 Problem Formulation

Two multi-objective shape optimization cases have been carried out. The goal of each was

to improve aerofoil performance with uncertainty in Ncr. The NLF0215 aerofoil with a fixed

flap deflection angle of 0◦ is used as a starting shape for a subsonic optimization case. This

is optimized at a Reynolds number of Re = 9 × 106, Mach number of M = 0.1 and lift

coefficient of Cl = 0.7. The optimisation objectives used are the minimization of mean drag

and standard deviation of drag with uncertainty in Ncr. Angle of attack is left free for the flow

solver to control so that the target lift coefficient can be obtained. Transition is left free on

both surfaces.

The RAE2822 aerofoil is used as the starting shape for a transonic optimization case. This

is optimized at a Reynolds number of Re = 6.5 × 106, Mach number of M = 0.715 and lift

coefficient of Cl = 0.76. The optimization objectives used are the maximization of mean

ML/D and the minimization of the standard deviation of ML/D with uncertainty in Ncr.

Angle of attack is again left free for the flow solver to control. Transition is left free on the

upper surface but is fixed on the lower surface at 0.03x/c.
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The mean performance and standard deviation of performance are calculated using the pro-

posed uncertainty quantification method in both cases. The probability distribution describing

uncertainty in Ncr has an ideal value of Ni = 9 and standard deviation of Nσ = 2, matching the

values used during uncertainty analysis. The optimiser changes aerofoil shape using 6 design

variables per surface for a total of 12. These come from the selected parameterisation method

discussed in detail below. Bounds are placed on each design variable so that the optimiser has

a finite design space to explore. The selection of these are also outlined below. Both cases

have a constraint placed on maximum aerofoil thickness, ensuring that all optimized designs

have a maximum thickness larger than or equal to that of the starting aerofoil.

A python-based genetic algorithm is used to conduct the optimisation. This is implemented

using the Distributed Evolutionary Algorithms in Python (DEAP) package (46) and interfaces

with the external flow solver used in each case. Genetic algorithms replicate the selection,

mating and mutation processes found in natural evolution, creating successive generations of

new designs that combine the favourable characteristics of their predecessors. Initial designs

are generated randomly within the design variable bounds and checked against the geometric

constraints before being evaluated. Designs from this initial generation are selected using the

NSGA-2 non-dominated method (47), mated using simulated binary crossover (48) and mutated

using the bound polynomial mutation method (49). New designs obtained through this process

are then evaluated. This is repeated until a limit on the number of generations to evaluate is

reached.

4.2 Parameterisation

There are various approaches to aerofoil parameterisation that can be grouped into two dis-

tinct categories: Constructive and Deformative (50). Constructive methods define the aerofoil

shape itself while deformative methods define a perturbation profile which is then used to

deform a starting aerofoil shape. A deformation approach is used in this study as it allows for

optimization of a complex starting aerofoil using a low number of design variables. When us-

ing a genetic algorithm, the number of designs needed per generation is between 2− 10 times

the number of design variables used (51,52). It is, therefore, desirable to use a low number of

design variables.

New aerofoil shapes are obtained by changing the z coordinate of a starting aerofoil by some

amount defined using a perturbation profile. This is represented mathematically in Equation

5 where zo is the original aerofoil z coordinate and zp is the perturbation z coordinate. u is the

chord length position x/c.

z(u) = zo(u) + zp(u) . . . (5)

The perturbation profile is parameterised using the Class Shape Transformation method de-

veloped by Kulfan (53). This is shown in Equation 6 where ∆zte
is the trailing edge thickness

while C(u) and S (u) are the class and shape functions from the CST method.

zp(u) = C(u) S (u) +
(

u ∆zte

)

. . . (6)

The class function is defined in Equation 7 where n1 and n2 are exponents that determine the

basic shape of the CST fitting. The values n1 = 0.5 and n2 = 1.0 are used to define a round-

nosed aerofoil with finite trailing edge gradient as the CST is commonly used for constructive

aerofoil parameterisation. Values of n1 = n2 = 1 are used for this application.

C(u) = un1 (1 − u)n2 . . . (7)
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The shape function given in Equation 8 contains n number of CST coefficients, Ar. These

are the design variables controlled by the optimizer. As the optimiser varies each of these

coefficients, the magnitude of the perturbation profile will change, deforming the original

aerofoil and so creating new aerofoil designs. In both subsonic and transition optimization

cases, 6 CST coefficients are used to define the perturbation profile on each surface. Therefore,

the optimiser is in control of 6 design variables per surface, or 12 design variables in total.

S (u) =

n
∑

r=0

Ar

n!

r!(n − r)!
ur (1 − u)n−r . . . (8)

Upper and lower bounds were placed on the design variables during optimisation. In both

cases, these were selected to allow for a large design space to be explored while also at-

tempting to prevent the generation of unfeasable designs, which would waste computational

resources and slow down the progress of the optimiser.

4.3 Uncertainty Sampling

The number of Ncr sample points used should be as small as possible while still being enough

to calculate the mean performance and standard deviation of performance of an aerofoil with

acceptable accuracy. This is because each sample point requires a flow solution and so ad-

ditional sample points increase computational cost substantially. To determine the minimum

number of sample points needed, a sample dependence study has been carried out for both

the NLF0215 and RAE2822 aerofoils at the flow conditions to be used during optimisation.

For each aerofoil, a number of Ncr samples are taken at regular intervals between the ideal

Ncr = 9 and Ncr = 0. Performance of the aerofoil is calculated at the design Mach number,

Reynolds number and lift coefficient with each of the Ncr values. These are then weighted

by the probability of that Ncr value occurring and used to calculate the mean and standard

deviation of performance with uncertainty in Ncr. This process is repeated for different num-

bers of Ncr samples. The mean and standard deviation of aerofoil performance can then be

plotted against the number of Ncr samples used to assess the accuracy obtained as the number

of samples is varied.

Figure 10 shows mean drag and standard deviation of drag for the NLF0215 when cal-

culated with different numbers of Ncr samples. Figure 11 shows mean ML/D and standard

deviation of ML/D for the RAE2822 when calculated with different numbers of Ncr samples.

As is expected, the mean and standard deviation converge as the number of samples used

increases for both cases. Mean drag is within 0.4 percent and the standard deviation of drag
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Figure 10. Mean drag and standard deviation of drag calculated with a varying number of Ncr samples for the

NLF0215 aerofoil at Cl = 0.7, M = 0.1 and Re = 9 × 106.
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Figure 11. Mean ML/D and standard deviation of ML/D calculated with a varying number of Ncr samples for

the RAE2822 aerofoil at Cl = 0.76, M = 0.715 and Re = 6.5 × 106.

is within 2 percent of the values found using 91 samples when only 19 samples are used for

the NLF0215. Mean ML/D is within 0.003 percent and standard deviation of ML/D within

3 percent of the values found using 91 samples when only 19 sample points are used for the

RAE2822. Thus it is felt that 19 Ncr samples taken at intervals of 0.5 over the Ncr range gives

acceptable accuracy while reducing computational cost as much as possible.

5.0 Results

5.1 Subsonic Results

The optimization produced 4800 unique designs before the 100 generations limit. XFOIL

was able to converge 3051 of these at all Ncr sample points. Figure 12 shows the minimum

mean drag (Cd|µ) and standard deviation of drag (Cd|σ) found during the optimisation. After

approximately 50 generations the value of each is close to the final values found. Further

iterations therefore primarily serve to explore the trade-off between objectives. Figure 13

shows designs on the Pareto front found between the two objective functions. All designs are

at least 2 mean drag counts lower than the NLF0215 at the chosen design conditions and have

a 3 drag count or more decrease in the standard deviation of drag. The optimized aerofoils

with smallest Cd|µ and Cd|σ are also indicated on the Pareto front. These are selected for

comparison against the NLF0215, and are denoted as design M (standing for minimum mean

drag) and design S (standing for minimum standard deviation of drag) respectively.
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Figure 12. Minimum mean drag and standard

deviation of drag found during the optimization.
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Figure 14 shows aerofoil profiles for the NLF0215 and selected optimized designs. The

grey shaded area indicates the viable design region as dictated by the design variable bounds.

Both optimized aerofoils have common NLF design characteristics such as increased max-

imum thickness located further aft and increased curvature at the leading edge of the upper

surface followed by reduced curvature between 0.05 < x/c < 0.4. In combination, this creates

a more favourable pressure gradient which thus delays transition. This can be seen in figure

15, showing pressure distributions for the NLF0215 and selected optimized designs at the

ideal Ncr of Ncr = 9. Some differences are seen between the two optimized designs despite

their similar Cd|µ and Cd|σ values. Design M is thicker than design S towards the rear of the

aerofoil so requires a smaller angle of attack to generate the same lift. This results in a longer

upper surface favourable pressure gradient and so more laminar flow. The smaller angle of

attack has little effect on the lower surface pressure gradient.
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Figure 14. Aerofoil profiles for the NLF0215 and

selected optimized designs.

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

NLF0215

Design M

Design S

Figure 15. Pressure distributions for the NLF0215 and

selected optimized designs at Ncr = 9. Markers

indicate transition location.

Figure 16 shows drag and transition locations with varying Ncr for the NLF0215 and se-

lected optimized designs. These were obtained using Ncr samples taken at intervals of 0.1

as done during the uncertainty analysis carried out previously. As expected, both optimized

designs have lower drag than the NLF0215 over almost all of the Ncr range. The reduction

in drag is small at the ideal Ncr but becomes much larger as Ncr is reduced. While both op-

timized designs have only slightly delayed transition at the ideal Ncr on each surface, this is

maintained down to much smaller Ncr values.

To delay transition at the ideal Ncr, the favourable pressure gradient up to the transition loca-

tion should be as long as possible. However, its strength must be weak to avoid flow separation

caused by the strong adverse pressure that will inevitably follow it. A weak favourable pres-

sure gradient will delay transition at the ideal Ncr but see stronger upstream instability growth.

It will therefore be more sensitive to lift coefficient and Ncr. A shorter but stronger favourable

pressure gradient has the inverse effect. This can be seen in the differences between designs M

and S. A more favourable pressure gradient up to location of minimum pressure helps design

S keep Trl extended down to lower Ncr values. A stronger adverse pressure gradient past the

location of minimum pressure moves transition at the ideal Ncr upstream compared to design

M but this also reduces the sensitivity of Tru to Ncr at high Ncr values. Both effects combine

to reduce Cd|σ.
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Figure 16. Variation of drag and transition locations with changes in Ncr for the NLF0215 and selected

optimized designs.

Off-design analysis of the selected optimized aerofoils has also been carried out. Figure 17

shows Cd|µ and Cd|σ for the NLF0215 and selected optimized designs at a range of lift coef-

ficients. The analysis carried out previously showed that the standard deviation of transition

location, and so drag, is smallest when the sensitivity of transition location to lift coefficient

at the ideal Ncr is low. As the selected optimised designs have a reduced Cd|σ at the design lift

coefficient, the sensitivity of Cd|µ to lift coefficient at the design lift coefficient is also low. By

reducing both Cd|σ and Cd|µ, a reduction in Cd|µ is achieved between Cl = 0.65 and 1.0 using

only a single lift coefficient design point. However, both designs do now feature strong drag

bucket shapes and higher mean drag than the NLF0215 above Cl = 1.0. Cd|σ also peaks at the

upper end of the Cd|σ bucket lift coefficient range. The analysis carried out previously showed

that a more rapid movement of transition location over a smaller lift coefficient range at the

ideal Ncr resulted in a larger peak in the standard deviation of transition location, and so drag.

The larger peak in Cd|σ at Cl = 1.0 seen with both optimised designs comes from this larger

movement of transition location over a smaller lift coefficient range. These results indicate

that aerofoil designs that are insensitive to changes in Ncr and so changes in lift coefficient

on-design become more sensitive off-design to both.
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Figure 17. Mean drag and standard deviation of drag polars for the NLF0215 and selected optimized designs.
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5.2 Transonic Results

The optimization produced 4800 unique designs before the 100 generations limit. CVGK was

able to converge 1504 of these at all Ncr sample points. Figure 18 shows the minimum mean

ML/D ((ML/D)µ) and standard deviation of ML/D ((ML/D)σ) found during the optimisa-

tion. Neither objectives improve after 70 iterations which suggests an optimum of each is

found. The Pareto front found between the objects is shown in figure 19. All Pareto front

designs have a lower (ML/D)σ than the RAE2822 but some designs only achieve this with a

smaller (ML/D)µ. The maximum (ML/D)µ found is much larger than for the RAE2822. A

reduction in (ML/D)σ can be obtained by allowing a small decrease in (ML/D)µ, but reducing

(ML/D)σ further then results in a substantial drop in (ML/D)µ. The optimized designs with

maximum (ML/D)µ, minimum (ML/D)σ and an aerofoil trading between the two variables

are also highlighted in figure 19 and selected for comparison against the RAE2822. These

are denoted design M (standing for maximum mean ML/D), design S (standing for minimum

standard deviation of ML/D) and design T (standing for a trade-off in objectives).
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Figure 18. Minimum value found for mean ML/D and

standard deviation of ML/D during optimization.
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Figure 19. Mean ML/D and standard deviation of

ML/D for Pareto front designs.

Aerofoil profiles for the RAE2822 and selected optimized designs are shown in figure 20,

with the grey shaded area indicating the viable design region dictated by the design variable

bounds. The optimized aerofoils have increased camber compared to the RAE2822. The

increase is largest at the trailing edge to help lower the angle of attack required to obtain

the target lift coefficient. Leading edge curvature has increased for designs M and T while

reduced for design S. Figure 21 shows the pressure distributions for the RAE2822 and selected

optimized aerofoils at the ideal Ncr = 9. The reduced angle of attack and increased leading

edge curvature has resulted in a long favourable pressure gradient for designs M and T. This

has extended laminar flow on the upper surface of both designs by delaying the shock position,

while also helping to suppress instability growth. Design M is slightly thicker than design T

and so operates at a lower angle of attack. As such it is able to obtain a weaker and more

delayed shock. In contrast to this, design S has increased leading edge curvature so sees a

strong shock and earlier transition close to the leading edge.

Figure 22 shows how ML/D and Tru vary with Ncr for the RAE2822 and selected optimised

design. All designs see no change in ML/D until Ncr < 6 as low instability amplification

means upper surface transition is shock induced. Both designs M and T have a higher ML/D



18 The Aeronautical Journal

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−0.05

0.00

0.05

z/
c

RAE2822

Design M

Design T

Design S

Bounds

Figure 20. Aerofoil profiles for the RAE2822 and

selected optimized designs.
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Figure 21. Pressure distributions for the RAE2822 and

selected optimized designs.
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Figure 22. Variation of ML/D and upper surface transition location with changes in Ncr for the RAE2822 and

selected optimized aerofoils.

than the RAE2822 over the entire Ncr range. Laminar flow has been extended on both designs

by moving the shock position downstream. Laminar flow is maintained on both designs at

lower Ncr values due to the stronger favourable pressure gradient obtained. The Ncr value

where instability induced transition first occurs is lower for design T than design M as the

favourable pressure gradient obtained is stronger. However, design T has a lower maximum

ML/D than design M as this causes a stronger shock positioned further upstream. Fixing

transition near the leading edge at Ncr = 9 means design S seeing almost no change in ML/D

as Ncr is reduced. While this design has a very low (ML/D)σ, it is of no practical use to a

designer given its extremely low (ML/D)µ. The transition location envelope closely matches

the ML/D envelope for all designs when Ncr > 2. Designs M and T have higher ML/D below

Ncr = 2, indicating they perform better than the RAE2822 under turbulent conditions.

Off-design analysis of designs M and T has also been performed for comparison against

the RAE2822. Design S was excluded due to its poor (ML/D)µ value. Figure 23 shows

(ML/D)µ and (ML/D)σ polars for the RAE2822 and selected optimized designs at a range of

Mach numbers. Both optimized designs have a larger (ML/D)µ and smaller (ML/D)σ than

the RAE2822 over the entire Mach range investigated. Design M has the largest (ML/D)µ
above the design Mach number. This is due to it having a weaker but longer favourable
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pressure gradient and so most delayed shock position. The stronger but shorter favourable

pressure gradient of design T results in an earlier shock but better instability suppression at

high Mach numbers. Design M sees a large reduction in (ML/D)µ below the design Mach

number. This is due to a sudden upstream movement of transition location at the ideal Ncr

triggered by the laminar boundary layer solver detecting flow separation in the presence of

a strong adverse pressure gradient. As less laminar flow is obtained, design M also sees

a reduction in (ML/D)σ. As design T features a stronger favourable pressure gradient at

the design Mach number, transition location is slower to move upstream as Mach number is

reduced and laminar boundary layer separation is not detected until below M = 0.705. Design

T does, however, see an increase in (ML/D)σ as Mach number reduces. As M2Cl is fixed,

reducing Mach number increases lift coefficient and so angle of attack. This results in a less

favourable and more adverse pressure gradient that promotes upstream instability growth.

It is important to note that transition location oscillates substantially during the convergence

of cases with laminar separation. A much stronger under-relaxation of transition location and

an increased iteration limit not specified during the optimization was needed to converge

these cases. As such, a uniformly spaced sampling method for uncertainty propagation may

not be appropriate when laminar separation is encountered. Furthermore, CVGK is not able

to model laminar separation bubbles or re-lamination of the boundary layer which may be

occurring for these cases. These limitations are not, however, felt to affect the validity of the

trends observed.
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Figure 23. Mean ML/D and standard deviation of ML/D polars for the RAE2822 and selected optimized

aerofoils.

6.0 Conclusions

The affect of uncertainty in critical N-factor (Ncr) on the performance and shape optimisation

of natural laminar flow aerofoils has been investigated. Uncertainty in Ncr could be attributed

to a degradation in surface and flow quality, which is not directly modelled but assumed to

be crudely incorporated through a reduction in Ncr. Uncertainty in Ncr is modelled using a

negative half-normal probability distribution.

Analysis of the NLF0215 aerofoil showed that the standard deviation of transition location

caused by uncertainty in Ncr is largest when the transition location at the ideal Ncr is sensitive

to changes in lift coefficient. An estimate of the standard deviation of transition location with
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uncertainty in Ncr can therefore be made using the aerofoils transition location polar at the

ideal Ncr. This is beneficial as it allows for an initial prediction of the most uncertain transition

polar regions without the use of uncertainty analysis methods. The standard deviation of

drag is proportional to the combined standard deviation of upper and lower surface transition

locations at low lift coefficient values. This is not at high lift coefficients as even small changes

in upper surface transition location cause large variations in pressure drag. Analysis of the

RAE2822 showed that the standard deviation of ML/D (when M2Cl is fixed) is proportional

to the standard deviation of upper surface transition location. Standard deviation of ML/D is

largest when ML/D at the ideal Ncr is high, and reduces as Mach number is increased and

decreased from this point. Transition is close to the leading edge at low Mach numbers so is

insensitive to Ncr. A strong favourable pressure gradient suppresses instability growth up to

the downstream shock position at high Mach numbers.

Robust shape optimization of each aerofoil was then carried out with the goal of reducing

mean drag and standard deviation of drag for the NLF0215, and increasing mean ML/D and

reducing standard deviation of ML/D for the RAE2822. In both cases, the optimiser is able

to produce designs that have improved mean performance and a reduced standard deviation

of performance with uncertainty in Ncr at the design conditions. However, a trade-off is

found between the two objectives once they are sufficiently reduced. Off-design analysis of

several optimized aerofoils showed that improvements in the mean and standard deviation of

performance on-design can reduce both when off-design.

Because of this, further work on this topic could be to extend the methodology used to

allow for robust optimization with uncertainty in Ncr at a range of Mach numbers or lift coef-

ficients. As the approach used in this study requires a large number of Ncr samples per design

point, this may be too computationally expensive. Work may need to be done to reduce the

computational cost of the optimisation or uncertainty quantification methods to compensate.

Any further work should also consider pitching moment as this had increased considerably for

the optimized aerofoils generated during this study. These designs will therefore incur a trim

drag penalty, which may negate any drag reductions found. Finally, only 2D flow was consid-

ered during this study. For transonic aerofoils with wing sweep, three-dimensional cross-flow

instabilities become important. As the design requirements for suppression of cross-flow in-

stabilities differ from suppression of Tollmien-Schlichting instabilities, analysis of 3D flows

would make for another interesting extension to this work.
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