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Abstract

Introduction

The aim of this study was to identify movement synergies during normal-walking that can dif-

ferentiate healthy adults in terms of gait adaptability at various speeds. To this end, the

association between movement synergies and lower-limb coordination variability or Devia-

tion Phase (DP) was investigated. This study also investigated the moderating effect of

movement synergies on the relationship between DP and the smoothness of arm-swing

motion (NJI).

Method

A principal component analysis of whole-body marker trajectories from normal-walking

treadmill trials at 0.8m/s, 1.2m/s and 1.6m/s was undertaken. Both DP and NJI were derived

from approx. 8 minutes of perturbed-walking treadmill trials. Principal movement compo-

nents, PMk, were derived and the RMS of the 2nd-order differentiation of these PMk

(PAkRMS) were included as independent variables representing the magnitude of neuro-

muscular control in each PMk. Each PAkRMS were input into maximal linear mixed-effects

models against DP and (DP x NJI) respectively. A stepwise elimination of terms and com-

parison of models using Anova identified optimal models for both aims.

Results

The principal movement related to the push-off mechanism of gait (PA4RMS) was identified

as an optimal model and demonstrated a significant negative effect on DP however this

effect may differ considerably across walking-speeds. An optimal model for describing the

variance in (DP x NJI) included a fixed-effect of PA6RMS representing Right—Left side

weight transfer was identified.

Interpretation

The hypotheses that individuals who exhibited greater control on specific kinematic syner-

gies would exhibit variations during perturbed walking was substantiated. Supporting
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evidence for the role of movement synergies during the double-support phase of gait in pro-

actively correcting balance was presented as well as the potential for this approach in tar-

geted rehabilitation. The potential influence of leg dominance on gait adaptability was also

discussed. Future studies should investigate further the role of walking-speed and leg domi-

nance on movement synergies and look to generalize these findings to patient populations.

1.1 Introduction

The stability and adaptability of human movement during quiet stance and locomotion is an

area of increasing relevance in the growing aging population. Approximately 30% of older

adults will experience a fall leading to extensive personal, social and economic costs [1,2]. A

stable gait pattern can be achieved when the effects of small perturbations throughout each

stride can be limited, when balance can be recovered successfully from large perturbations and

by not encountering perturbations in the environment that exceed the limits of the system [3].

To prevent small perturbations at each stride from accumulating into serious instability,

human walking takes on an inverted pendulum like motion that effectively harnesses the bio-

mechanical constraints of the lower-limbs to allow for smooth step-to-step transitions that are

both energy efficient and adequately stable [4]. When required, postural control strategies are

also introduced by the central nervous system (CNS) to accommodate fall prevention. These

may include a rapid change in swing-foot placement trajectory and modulation of stance-foot

plantar-flexion at push-off [5,6]. This may also be coupled with a change in arm-swing motion

towards a more elevated and lateral position to adjust the body’s center-of-mass [7]. [7] noted

that the magnitude and direction of such reactive arm-swing adaptations varied considerably

across healthy participants despite a uniform perturbation being adminstered.

To ensure stability while also achieving adaptability, an optimal level of variability in the

dynamics of gait is necessary [8]. This trade-off is a phenomenon that is present in various

physiological signals (e.g. heart-rate variability) [9]. Variability above or below this optimal

level can be indicative of pathology as excessive periodicity causes a system to be insufficiently

adaptable to the demands of the environment while excessive variability introduces sub-opti-

mal performance and instability [8,10]. Evidence from studies investigating this phenomenon

through the dynamic systems perspective suggests that abnormal gait coordination variability

is related to instability in patient populations [11,12]. Nonetheless among healthy adults, both

high- and low-variability can be associated with gait stability indicating that other factors may

also be at play in producing instable gait [13]. Variability and changes in variability however

may also reflect the adaptability of gait and respective adaptions to environmental demands

[14]. Therefore, the context and subject in question must be considered when assessing move-

ment from this perspective.

Human movement is thought to be modularly controlled by the CNS through task-relevant

synergistic muscle activations and in doing so, the CNS selects a near optimal solution to the

motor-task from the many redundant degrees of freedom available [15,16]. Common, invariant

muscle synergies have been identified across various activities such as standing and walking

[17], while more task-specific synergies have also been revealed during slipping for instance

[18], demonstrating the adaptability of human motor control to environmental demands [18].

revealed differences across healthy adults in terms of slip-severity were related to the magnitude

of specific muscle activations in response to a perturbation (e.g. the medial hamstring at heel-

strike post-slip). In a similar vein [19], demonstrated the different modular control the CNS

exhibits on body segments in maintaining whole-body angular momentum during the swing-

phase compared to the double-support phase of gait. Synergies have been successfully identified
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in not just the muscular space but also in dynamic and kinematic spaces [20,21]. It must be

noted however that the origin of these synergies and whether they represent an input or output

of neuromuscular control is still a point of debate in the literature [16,22]. Nonetheless identify-

ing deficits in adaptability across specific phases of gait from a dynamic systems perspective has

the potential to inform targeted rehabilitation interventions and clinical assessments [23].

The measurement of discrete points in complex systems requires their synthesis to give

more accurate and reliable interpretations. The ‘curse of dimensionality’ is a problem encoun-

tered in this process as large feature sets are to be analysed simultaneously. Dimensionality

reduction methods have become popular in this the era of ‘big data’ as they alleviate this issue

by reducing the number of features needed for a comprehensive analysis [24]. This reduction

can be implemented via the creation of a smaller number of new variables that retain a large

amount of the information in the original feature-set. Alternatively, through feature selection

methods the most relevant feature-subset can be identified and extracted based on specific cri-

teria. Dimensionality reduction has been used successfully to identify muscle synergies [25],

contrast sporting techniques [23], improve fall-risk classification [26,27] etc. and their uses

continue to expand with the availability of large datasets.

In particular and of specific relevance to this study, recent research has found effective use of

principle component analysis (PCA) in reducing the dimensionality of kinematic data for vari-

ous aims [21,28,29]. Of note, the ‘Principle movements’ (PM) are the eigen-vectors derived from

a PCA of movement data that represent correlated changes in marker coordinates (synergies)

[21]. Each successive PM extracted from this analysis is ordered in terms of the amount of vari-

ance explained by the movement with higher-order PMs explaining less variance and represent-

ing more subtle movement patterns [30]. By projecting the PMk scores onto a posture space, the

change in position of the body segments can be represented with respect to time and is known

as the ‘principal position’ (PPk) [21]. In accordance with Newton’s laws of motion, PPk time-

series can be differentiated to ‘principal velocities’ (PVk) and ‘principal accelerations’ (PAk) repre-

senting the 1st- and 2nd-order derivatives of the PPk time-series [21]. As muscles activated by the

nervous system causes changes in body segment motion, variables computed from PAk time-

series have been of focus in related literature as the extracted acceleration signals are thought to

represent the actions of the neuromuscular system on body segments [31–34].

In this study, a novel PAk variable (PAkRMS) representing the magnitude of neuromuscular

control on PMk will be derived from a gait analysis of healthy adults exposed to mechanical

perturbations at various speeds. The aim of this study is to determine the utility of PAkRMS in

identifying key gait mechanisms that differentiate healthy individuals in terms of adaptability.

To this end, the following associations will be investigated: 1) PAkRMS and lower-limb coordi-

nation variability and 2) the moderating effect of PAkRMS on the relationship between lower-

limb coordination variability and smoothness of arm-swing motion. It is hypothesized for the

first aim that PAkRMS will demonstrate a negative effect on lower-limb coordination variabil-

ity as participants who exhibit more control on specific PMk will require less adaptations and

therefore exhibit lower coordination variability. For the secondary aim, it is hypothesized that

PAkRMS will also demonstrate a negative moderating effect on this upper-limb—lower-limb

relationship as individuals who exhibit greater control of specific PMk will be able to prevent

lower-limb perturbations from accumulating into trunk-level postural corrections.

2.1 Methods

2.1.1 Secondary data analysis

Thirty-nine trials of normal and perturbed treadmill walking collected from 13 participants

were taken from an open-source dataset generated in the Human Motion and Control
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Laboratory in Cleveland State University [35]. Characteristics of the included participants

were: Age (Years) = 24±4.12, Height (Meters) = 1.74±0.08, Weight (kg) = 72.88±12. In short,

participants were asked to walk normally on an R-Mill treadmill with dual 6-degrees of free-

dom force plates and independent belts for each foot (Forcelink, Culemborg, The Nether-

lands). Motion capture was undertaken using a 10 Ospreys camera motion capture system

paired with the Cortex 3.1.1.1290 software at a sample rate of 100Hz (Motion Analysis, Santa

Rosa, CA, USA). Participants were first asked to walk for 2 minutes unperturbed and were

then subjected to 8 minutes of longitudinal belt-speed perturbations. This protocol was

repeated for each of 0.8m/s, 1.2m/s and 1.6m/s walking speeds. The pseudo-random belt-

speed control signals used to induce perturbations during each stance phase were generated a

priori using MATLAB and Simulink (Mathworks, Natick, Massachusetts, USA) and are avail-

able online [36].

Marker trajectories from a 47 whole-body marker setup for both normal-walking and per-

turbed-walking trials were extracted and processed using the GaitAnalysis toolbox V 0.1.2

[37]. Data for normal-walking trials was taken from when a constant belt-speed was achieved

(leaving approximately 50 seconds of normal-walking) and the length of the time-series were

normalized to 5,000 data points and then low-pass filtered with a 4th-order Butterworth filter

at a cut-off frequency of 20Hz.

2.1.2 Independent variable computation

All of the beforementioned procedures in this section were carried out using PManalyzer soft-

ware [38], a Matlab GUI specifically designed for PM variable computation (Matlab (R2019B),

Natick, Massachusetts: The MathWorks Inc.). Only data from normal-walking trials was

included in the independent variable computation. In short and in line with other recent

endeavours using this approach [32–34], the data from all subjects and walking-speed trials

were pooled into one matrix to allow for direct comparisons between subjects and across trials.

Raw marker coordinates (XYZ) were first transposed so that each frame represents a posture

vector, then centred by subtracting each posture vector from the mean posture vector to get

postural deviations and normalized to their mean Euclidean distances to ensure an equal con-

tribution by each subject/trial to the pooled dataset and subject-specific overall variance

respectively. The data was also centred towards the centre-of-mass to create a body-position

dependent coordinate system thus removing the potential inclusion of irrelevant body dis-

placements from the PMs [23]. The pooled dataset of concatenated normal-walking trials

accumulated into a 195,000 x 60 input matrix (100 Hz [Sampling rate] x approximately 50 sec-

onds [Trial duration] x 3 [Three trials] x 13 [Number of subjects] x 60 [Marker coordinates]).

The PCA algorithm decomposed this input into a covariance matrix of PMk.

The PMk within the output of this process were leave-one-out cross validated. The first 7

PMs presented a change of less than 15˚ when a participant was left out and were therefore

included in further analysis [31,38]. To compute the PAk time-series, the PPk time-series were

first extracted as the PCA-scores derived from the PM eigen-vectors that represent deviations

in posture across the orthonormal posture-space (25). The time-series were then further low-

pass filtered using a 3rd-order Butterworth filter at a cut-off of 10Hz and their spectral proper-

ties inspected with a Fourier analysis for frequency power above what is expected in noise free

movement data [39]. No significant power was found at frequencies above 5Hz and so the

effect of noise was deemed to have been sufficiently reduced. The control of PMk was repre-

sented as the root-mean-square (RMS) of the PAk time-series with respect to trial duration (t)
(PAkRMS) (Eq 1). In previous studies using this measure, static balance tasks were investigated

where the accelerations in PAk components could be directly related to postural control
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mechanisms [33]. During dynamic movements however, it must be noted that these accelera-

tions additionally include dependencies such as walking-speed and so cannot solely reflect the

actions of the neuromuscular control system [32]. Therefore, the PAkRMS were then normal-

ized by the respective walking-speed of the trial.

PAkRMS ¼ RMS
PAk
t

� �

ð1Þ

2.1.3 Dependent variable computation

Lower-limb coordination variability was represented as the stride-to-stride variability in inter-

joint continuous relative phase (CRP) values known as the deviation phase (DP). Heel-strikes

events during perturbed walking trials were identified using a coordinate-based treadmill algo-

rithm [40]. CRP was calculated in accordance with the methodology described in [41] to deter-

mine the coordinative relationship between the Hip-Ankle, Hip-Knee and Knee-Ankle of both

limbs in the sagittal plane only. Eq 3 below illustrates the CRP formula where φproximal (t) is the

phase normalized joint angle of the proximal segment at timepoint t and φdistal (t) is the phase

normalized joint angle for the distal segment at the same timepoint. From this, DP is calculated

as the standard deviation of CRP(t). The average DP across the CRP measurements within each

perturbed walking-speed trial was then taken as a summary statistic for further analysis.

CRPðtÞ ¼ φproximalðtÞ � φdistalðtÞ ð2Þ

DP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðCRPðtÞ � CRPmÞ2

N

s

Arm-elevation jerk (Jerkv) was computed as the 3rd-order derivative of the medial-wrist

marker position trajectories (~rðtÞ) with respect to time (Eq 3). The mean absolute Jerkv
(jJerkv j) was then normalised by the peak velocity (max d~rðtÞ

dt

� �
) of the marker trajectory to for-

mulate a measure of movement smoothness adopted from [42] hereafter referred to as the nor-

malised jerk index (NJI). As reactive arm-swing strategies are said to be asymmetrical (7), the

side that exhibited the highest NJI value was included in statistical analyses.

Jerkv ¼
d3~rðtÞ
dt3

ð3Þ

NJI ¼
jJerkv j

max d~rðtÞ
dt

� �

2.1.3 Statistical analysis

Due to the repeated-measures structure of this study along with the hypotheses being tested, a

linear mixed-effects regression was deemed appropriate. Mixed-effects regression is different

to the traditional ordinary least-squares in that it can flexibly consider effects at different levels

of analysis (i.e. multi-level regression), known as random-effects. Mixed-effects models are use-

ful for data structures which may have clustering present, providing more accurate effect esti-

mates than traditional techniques in such situations [43]. In the current study, clustering may

occur as a result of multiple observations from the same participant while the extent to which

the effect of PAkRMS varies across trials is also of interest to this study’s aims [44]. suggested
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that data-driven maximal models should be utilised in the case of confirmatory hypothesis

modelling. Therefore, the following effect terms were included in the models for both aims:

PAkRMS: Each PAkRMS component will be input into separate models as fixed-effects, to

examine how the magnitude of neuromuscular control in each movement synergy affects

gait adaptability.

Trial: As gait variability is said to be speed-dependent [45], the fixed-effect of walking-speed

was included in both models.

PAkRMS � Trial: It is within the scope of this study’s aims to examine the influence of walk-

ing-speed on the predictability of PAkRMS on the dependent variables. Therefore, an inter-

action term was modelled in both aims.

(PAkRMS|Participants): As a random sample of participants were taken from the population

and dependency across observations is present due to repeated measures, subject-specific

intercepts were modelled allowing within-participant clustering to be considered. This was

accompanied by random slopes to allow the slope to vary across participants also.

(PAkRMSTrial): As the walking-speeds in each trial were arbitrarily selected, the effect of this

random selection on the data structure will be considered by the inclusion of a random trial

intercepts term. Along with this random slopes for trials will also be included to allow for

differences in the effect of PAkRMS across trials to be considered.

Eqs 4 & 5 below illustrate the maximal models for each aim in R software syntax form. Due

to the small sample size included in this analysis, a step-wise elimination of fixed and random-

effect terms from these maximal models was conducted to improve parsimony. Each PAkRMS

was separately input into individual mixed-effects models with the above described terms and

a step-wise elimination was carried out for each of the 7 models in both hypotheses. The out-

put from this procedure was then compared in Anova with F-test p-values and Satterthwaite’s

degrees-of-freedom approximation to identify optimal models for both hypotheses. An opti-

mal synergy was identified as it was likely that a number of synergies would be relevant to the

dependent variables due to inherent interdependencies and reciprocal compensation rather

than through a direct relationship [46,47]. To reduce familywise error accumulation from mul-

tiple comparisons, a Bonferroni correction was implemented in which a significance level of

p<0.007 was set a priori for the final models. These statistical procedures were conducted

using the ‘LmerTest’ package in R software [48]. Goodness-of-fit was assessed using Akaike

information criterion (AIC), Bayesian’s information criterion (BIC) and McFadden’s R-

squared while coefficient estimates and p-values were obtained using restricted maximum-

likelihood and the Satterthwaite’s degrees of freedom method respectively.

DP � PAkRMSþ PAkRMS : Trialþ Trialþ ðPAkRMSjTrialÞ þ ðPAkRMSjParticipantsÞð4Þ

DP xNJI � PAkRMSþ PAkRMS : Trialþ Trialþ ðPAkRMSjTrialÞ þ ðPAkRMSjParticipantsÞð5Þ

3.1 Results

3.1.1 Walking condition variables

Average and standard deviation values for the variables of interest in this study are presented

in Table 1 while a summary of each validated PMk is described in Fig 1. These graphical repre-

sentations are also available as 2D and 3D videos in the supplementary material attached. DP

consistently increased with walking-speed in the perturbed-walking trials from a low of 25.1
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±3.5 at 0.8m/s to a high of 28.6±2.4 at 1.6m/s. Of note however, the 0.8m/s trials experienced

the highest between-participant variability in DP. The smoothness of arm-swing elevation dur-

ing perturbed-walking trials (NJI) also increased with walking-speed from 0.16±0.07 at 0.8m/s

to 0.24±0.14 at 1.6m/s. The non-normalized values for the first 7 validated PAkRMS compo-

nents taken from normal-walking trials are also presented. All PAkRMS components demon-

strated a positive relationship with walking-speed except in the case of PA2RMS (representing

the foot placement mechanism) which exhibited a negative relationship with walking-speed.

The dominant movement captured using PCA was PM1 (variance explained = 83.9%) that was

Table 1. Mean and standard deviation for independent and dependent variables in both conditions and for each

walking-speed.

Perturbed-walking condition 0.8 m/s 1.2 m/s 1.6 m/s

DP 25.1±3.5 27.8±2.5 28.6±2.4

NJI 0.16±0.07 0.22±0.14 0.24±0.14

Normal-walking condition 0.8 m/s 1.2 m/s 1.6 m/s

PA1 RMS� 25.6±4.5 36.1±5.2 44.3±6.7

PA2 RMS� 14.0±2.5 13.2±1.8 11.8±1.8

PA3 RMS� 24.9±4.0 31.4±4.1 35.0±4.7

PA4 RMS� 8.6±1.7 10.1±1.3 10.9±1.4

PA5RMS� 4.1±1.0 4.8±1.1 5.6±1.4

PA6 RMS� 5.0±1.0 5.3±0.9 5.8±1.1

PA7RMS� 8.1±1.4 11.8±.17 14.6±2.4

(� non-normalized values for PAkRMS).

https://doi.org/10.1371/journal.pone.0244582.t001

Fig 1. Summaries of each of the validated PMk along with their respective graphical representations to the right.

An amplification factor of 2 was used to provide clarity to more subtle movements in visualizations.

https://doi.org/10.1371/journal.pone.0244582.g001
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interpreted to represent a stiff inverted-pendulum motion of the lower-limbs along with

elbow-flexion. PM3 captured the synchronous extension of the knees during mid-swing/stance

phase while PM4 captured the push-off mechanism. PM5 and PM6 represent step-to-step tran-

sitions from the left—right side and right—left side respectively. PM7 explained just 0.39% of

the total variance and so a recognizable gait pattern could not be interpreted. It could be noted

however that transverse plane rotations of the lower-limbs and elbows were present for PM7.

Fig 2 provides some insight into the output of the PCA computation in terms of cumulative

percentage of variance explained by each PMk and their respective eigenvalues.

3.1.2 Identification of optimal models

Table 2 describes the parsimonious Eq 4 models found from a stepwise elimination of effect

terms and the findings from a subsequent comparison of these models using Anova. Just two

PAkRMS components were found to have individual relevance in explaining the variance in

DP, that of PA2RMS and PA4RMS. A random-participants intercepts term ((1 |Participant))

and a random-participants intercepts and slopes term ((PA4RMS |Participant)) were also

included in these Eq 4 models. The accompanying random-effect term to the PA4RMS model

indicates that the effect of PA4RMS differs significantly in starting value and in the rate of

change (i.e. slope) between-participants. The PA2RMS model was more parsimonious (degrees

of freedom = 4) but demonstrated a slightly less goodness-of-fit than the PA4RMS model. This

difference was not significant however, as indicated by the chi-square statistic (p>0.05).

Table 3 describes the findings from a similar procedure with Eq 5 models. PM2RMS–

PM6RMS found individual relevance in moderating the relationship between lower-limb DP

and the smoothness of arm-swing elevation(DP x NJI). All of these models were accompanied

by a random-participants intercepts term ((1 |Participant)), indicating within-participant clus-

tering was a predominant level II effect. The PM2RMS Eq 5 model was used as the baseline

model for the Anova. Three Eq 5 models were found to be significantly different from this

baseline model in terms of goodness-of-fit, with PM6RMS conveying the best-fit.

3.1.3 Final mixed-effects models

Table 4 details the regression output from the final, optimal models for both Eqs 4 & 5 found

from the stepwise elimination procedure. Both of the models fixed-effects reached a Bonfer-

roni corrected significance level of p<0.007. PA4RMS, the fixed-effect term in the Eq 4

model, had a negative effect on DP (β = -2.18±0.51) and explained 37% of the variance in DP

(McFadden’s Pseudo R2 = 0.37). With the addition of the random-participants intercepts

and slopes term, the Eq 4 model explained 70% of the total variance in DP (McFadden’s

Fig 2. Illustrations of both the percentage of variance explained (left) and Eigenvalues (right) for each PMk.

https://doi.org/10.1371/journal.pone.0244582.g002
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Pseudo R2 = 0.37). The variance within the data that could be explained by within-partici-

pant clustering was σ2 = 3.08 in the Eq 4 model and to a lesser extent in the Eq 5 model (σ2 =

2.27). Between-cluster variance was also predominant in the data as the random-effect resid-

ual variance was σ2 = 3.84 in the Eq 4 model and σ2 = 5.32 in the Eq 5 model. The inter-class

correlation within both models was moderate with an ICC of 0.44 and 0.34 for Eqs 4 & 5

respectively, indicating the presence of clustering in the data and further demonstrating the

Table 2. Output from a comparison of identified Eq 4 models using Anova. The PA4RMS model was found to be

the best fit however insignificantly.

Goodness-of-Fit indices DP ~ PA2RMS + (1 |Participant) DP ~ PA4RMS + (PA4RMS |Participant)

Degrees of freedom 4 6

AIC 192.5 191.0

BIC 199.2 201.0

Log-likelihood -92.3 -89.5

Deviance 184.5 179.0

Chi-square (p-value) - 5.5 (p>0.05)

https://doi.org/10.1371/journal.pone.0244582.t002

Table 3. Output from a comparison of identified Eq 5 models using Anova. The PA6RMS model was found to be the best fit.

Goodness-of-Fit

indices

DP x NJI ~ PA2RMS

+(1jParticipants)
DP x NJI ~ PA3RMS

+(1jParticipants)
DP x NJI ~ PA4RMS

+(1jParticipants)
DP x NJI ~ PA5RMS

+(1jParticipants)
DP x NJI ~ PA6RMS

+(1jParticipants)
Degrees of

freedom

4 4 4 4 4

AIC 207.2 207.9 207.1 206.7 205.0

BIC 213.8 214.5 213.7 213.4 211.6

Log-likelihood -99.6 -99.9 -99.5 -99.4 -98.5

Deviance 199.2 199.9 199.1 198.7 197.0

Chi-square (p-

value)

- 0.00 (p = 1.00) 0.8 (p<0.0001) 0.4 (p<0.0001) 1.8 (p<0.0001)

https://doi.org/10.1371/journal.pone.0244582.t003

Table 4. Optimal models found for Eqs 4 & 5.

Regression output Eq 4 DP ~ PA4RMS + (PA4RMS |

Participant)

Eq 5 DP x NJI ~ PA6RMS + (1|

Participant)

FE β Coefficient � -2.18 -1.02

FE Standard error� 0.51 0.33

P-value <0.005 <0.005

RE-Participant intercepts

variance�
3.08 2.27

RE-Participant slopes variance� 1.37 -

RE-residual variance� 3.84 5.32

Inter-class coefficient (ICC) 0.44 0.34

Pseudo-R2 (Fixed-effects only) 0.37 0.17

Pseudo-R2 (Total) 0.70 0.45

Restricted-Maximum

Likelihood

178.3 196.3

(�FE = Fixed effect, RE = Random effect).

https://doi.org/10.1371/journal.pone.0244582.t004
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necessity for a mixed-effects regression approach. Random-slopes for participants were also

included in the Eq 4 model and this term captured 1.37 of the variances.

4.1 Discussion

This study sought to investigate the role of the neuromuscular system in controlling key move-

ment synergies and their capacity to differentiate healthy adults in terms of gait adaptability

across various speeds. For this investigation, a coordination metric was devised in the form of

deviation phase (DP) that would indicate the level of gait adaptations required in the lower-

limbs during a trial of perturbed-walking on a treadmill. The association between this metric

and PCA derived measures (PAkRMS) representing the magnitude of neuromuscular control

on normal-walking movement synergies was then determined using linear mixed-effects mod-

els. The hypothesis that specific PAkRMS would have a negative effect on DP was substanti-

ated. As a secondary aim that extended this finding, the current study investigated the

moderating effect of PAkRMS on the relationship between DP and the smoothness of arm-

swing elevation (DP x NJI) during perturbed-walking. The hypothesis that PAkRMS would

demonstrate a negative effect on this relationship was also substantiated. A stepwise approach

was undertaken for both aims as it was foreseeable that a number of movement synergies

could be related to DP and (DP x NJI) due to reciprocal compensation [47]. The identification

of an optimal model allowed for the main source for these differences to be determined and

demonstrating the usability of such a protocol for informing targeted rehabilitation and clini-

cal assessments. Interestingly, a number of the identified synergies have been described in rele-

vant research including the push-off and foot placement mechanisms [5,46]. The current

study found the push-off mechanism to be optimal in explaining variance in DP while syner-

gies related to the transfer of weight to the left side were also most relevant for the DP x NJI

interaction.

4.1.1 Aim 1

The push-off mechanism has been observed in previous research where the modulation of

ankle plantar-flexion during a perturbation allowed for the modulation of other gait parame-

ters (i.e. step length and width) [5,46]. Participants in the current study exhibiting a greater

control during push-off prior to the slip-event were perhaps more capable of recovering pos-

ture by avoiding an excessive foot-floor angle post-slip, a gait parameter associated with slip

severity [49,50]. found significant associations between slip severity and baseline muscle syn-

ergy patterns among healthy adults. Less severe slippers demonstrated higher activation of the

medial-hamstring at heel-strike and of the vastus-lateralis following heel-strike allowing for

more efficient weight transfer than their less stable counterparts. The findings of the current

study mirror this in that the foot placement mechanism was related to DP during a trial of per-

turbed-walking [50]. focused solely on post-slip synergies and so understandably, the proactive

role of the push-off mechanism for gait adaptations was not elicited.

[19] noted the closed-loop control of gait during the double-support phase and how the

CNS appears to use this phase to correct whole-body angular momentum while swing-phase

plays a reactive, stabilising role in terms of stride-to-stride reproducibility. It is therefore

unsurprising to find a movement synergy identified during the double-support phase of nor-

mal-walking was most relevant to DP as this gait-phase plays a proactive role in dynamic bal-

ance control. Interestingly [51], was unable to find differences between mild- and severe-

slippers in terms of baseline sagittal plane angular momentum, centre-of-mass height, single/

double-support duration or upper-body extremity kinematics but did find differences between

groups during perturbed-walking. The results of the current study suggest PCA derived
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movement synergies may be useful in identifying such differences relevant to slip severity dur-

ing normal-walking trials. Due to the significant random-participant slopes term within the

Eq 4 model, the current study’s results also suggest that the closed-loop control represented in

PA4RMS may differ in its effect on gait adaptability significantly across walking-speeds. As this

random-effects term was participant-specific rather than trial-specific, this relationship may

potentially manifest as a function of the participants preferred walking-speed [45]. Further

research is required however to substantiate this claim.

4.1.2 Aim 2

Three PAkRMS were identified to contribute a moderating effect, that of PA4RMS, PA5RMS

and PA6RMS which were interpreted to represent the push-off mechanism and weight-trans-

fer to the right and left sides respectively. Moreover, PA6RMS was identified to be the most

optimal synergy in explaining the variance in DP x NJI, indicating the central role of this syn-

ergy in differentiating healthy participants [7]. established the role of the upper-limbs in

adjusting the centre-of-mass position when a perturbation is experienced. These arm-motion

strategies were said to include increased elevation and lateral orientation and depended on the

side of the perturbation experienced. They found the frontal plane position of the trunk at

heel-strike to be related to perturbed-side arm elevation in that with increased trunk lean

towards the trailing limb-side, the CNS intervened by adjusting the elevation of the perturbed-

side arm to improve the centre-of-mass position. The current study would support these find-

ings with relevant movement synergies identified during the double-support and weight-trans-

fer phases of gait.

In patient populations where reduced gait stability is present (e.g. stroke), the transfer of

weight is typically difficult as strength deficits among extensor muscles make this transfer less

efficient [52]. Within healthy populations however, where muscle strength should be sufficient

to support normal gait, more subtle differences may still be present that become relevant when

compared across healthy participants. Promsri and colleagues investigated the effect of leg

dominance on balance control during over-ground single leg-stance [53] and also single-leg-

ged stance on a multiaxial unstable board [39]. Sufficient evidence was found to warrant the

consideration of leg dominance in clinical testing and balance training. In the current study, it

is interesting that PA6RMS, representing right-to-left side weight transfer, was the most rele-

vant movement synergy in this sample despite explaining less variance than the opposite side

(PA5RMS). Assuming this random sample of healthy adults who were invited to take part in

this study were in fact randomly recruited, then it is reasonable to propose that the majority of

participants were right-side dominant [54,55]. Combining this insight with that of the afore-

mentioned observations made by [7], we propose that asymmetry in limb control between the

dominant and non-dominant sides was relevant in differentiating healthy adults in terms of

gait adaptability in this study. The moderating effect of movement synergies on coupled asym-

metries between the upper- and lower-limbs has been found in recent research and may have

significant influence on gait performance and risk for injury [56]. The influence of these inher-

ent asymmetries on gait stability has not been investigated in the research thus far. We there-

fore concur with the aforementioned studies related to leg dominance that this phenomenon

should be considered in balance testing and clinical evaluations.

5.1 Limitations

Healthy adults in this study were subjected to perturbations during treadmill walking and

therefore the findings cannot be generalized directly to over-ground walking. Results should

be interpreted with the limitations of a relatively small sample size in mind.
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6.1 Conclusion

This study identified movement synergies sourced from normal-walking trials whose magni-

tude of neuromuscular control had significant negative effects on lower-limb coordination

variability during perturbed-walking at various walking-speeds. Relevant movement synergies

were also identified that moderated the relationship between lower-limb coordination variabil-

ity and the smoothness of arm-swing motions, thus indicating the utility of this approach in

differentiating healthy adults in terms of gait adaptability. The usability of this approach in

informing targeted rehabilitation and clinical assessment was supported. Future research

should investigate further the change in control of these movement synergies across walking-

speeds, the influence of leg dominance on gait adaptability and the utility of this analytical

approach in patient populations.
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Methodology: David Ó’Reilly.
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