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Abstract. Epidemiological studies have consistently linked

exposure to PM2.5 with adverse health effects. The oxida-

tive potential (OP) of aerosol particles has been widely sug-

gested as a measure of their potential toxicity. Several acel-

lular chemical assays are now readily employed to measure

OP; however, uncertainty remains regarding the atmospheric

conditions and specific chemical components of PM2.5 that

drive OP. A limited number of studies have simultaneously

utilised multiple OP assays with a wide range of concur-

rent measurements and investigated the seasonality of PM2.5

OP. In this work, filter samples were collected in winter

2016 and summer 2017 during the atmospheric pollution

and human health in a Chinese megacity campaign (APHH-

Beijing), and PM2.5 OP was analysed using four acellu-

lar methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-

dichlorofluorescin/hydrogen peroxidase (DCFH) and elec-

tron paramagnetic resonance spectroscopy (EPR). Each as-

say reflects different oxidising properties of PM2.5, includ-

ing particle-bound reactive oxygen species (DCFH), super-

oxide radical production (EPR) and catalytic redox chem-

istry (DTT/AA), and a combination of these four assays pro-

vided a detailed overall picture of the oxidising properties

of PM2.5 at a central site in Beijing. Positive correlations of

OP (normalised per volume of air) of all four assays with

overall PM2.5 mass were observed, with stronger correla-

tions in winter compared to summer. In contrast, when OP

assay values were normalised for particle mass, days with

higher PM2.5 mass concentrations (µgm−3) were found to

have lower mass-normalised OP values as measured by AA

and DTT. This finding supports that total PM2.5 mass con-

centrations alone may not always be the best indicator for

particle toxicity. Univariate analysis of OP values and an ex-
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tensive range of additional measurements, 107 in total, in-

cluding PM2.5 composition, gas-phase composition and me-

teorological data, provided detailed insight into the chemical

components and atmospheric processes that determine PM2.5

OP variability. Multivariate statistical analyses highlighted

associations of OP assay responses with varying chemical

components in PM2.5 for both mass- and volume-normalised

data. AA and DTT assays were well predicted by a small set

of measurements in multiple linear regression (MLR) mod-

els and indicated fossil fuel combustion, vehicle emissions

and biogenic secondary organic aerosol (SOA) as influential

particle sources in the assay response. Mass MLR models of

OP associated with compositional source profiles predicted

OP almost as well as volume MLR models, illustrating the

influence of mass composition on both particle-level OP and

total volume OP. Univariate and multivariate analysis showed

that different assays cover different chemical spaces, and

through comparison of mass- and volume-normalised data

we demonstrate that mass-normalised OP provides a more

nuanced picture of compositional drivers and sources of OP

compared to volume-normalised analysis. This study consti-

tutes one of the most extensive and comprehensive compo-

sition datasets currently available and provides a unique op-

portunity to explore chemical variations in PM2.5 and how

they affect both PM2.5 OP and the concentrations of particle-

bound reactive oxygen species.

1 Introduction

Large-scale epidemiological studies have consistently linked

the exposure of airborne particulate matter (PM) with a range

of adverse human health effects (Hart et al., 2015; Laden et

al., 2006; Lepeule et al., 2012). A recent study by the World

Health Organisation estimated that 1 in 8 deaths globally in

2014 were linked to air pollution exposure (World Health Or-

ganisation, 2016), with urban areas in India and China par-

ticularly affected (Lelieveld et al., 2020). However, large un-

certainty remains regarding the physical and chemical char-

acteristics of PM that result in adverse health outcomes upon

exposure (Bates et al., 2019).

Studies have suggested that oxidative stress promoted by

PM components in vivo could be a key mechanism that

results in adverse health outcomes (Donaldson and Tran,

2002; Knaapen et al., 2004; Øvrevik et al., 2015). Oxida-

tive stress occurs when excess concentrations of reactive

oxygen species (ROS) overwhelm cellular anti-oxidant de-

fences, resulting in an imbalance of the oxidant–antioxidant

ratio in favour of the former, which can subsequently lead

to inflammation and disease (Knaapen et al., 2004; Li et

al., 2003, 2008). The term ROS typically refers to H2O2, in

some cases including organic peroxides, the hydroxyl radical

( qOH), superoxide (O
q−

2 ) and organic oxygen-centred radi-

cals. Particle-bound ROS is exogenously delivered into the

lung through PM inhalation or can be produced in vivo via

redox chemistry initiated by certain particle components, in

addition to baseline tissue ROS produced by metabolic pro-

cesses (Dellinger et al., 2001). The capability of PM to pro-

duce ROS with subsequent depletion of anti-oxidants upon

inhalation is defined as oxidative potential (OP) (Bates et al.,

2019).

OP is a fairly simple measure of PM redox activity but

reflects a complex interplay of particle size, composition

and chemistries which induce oxidative stress by free-radical

generation, which triggers cellular signal transduction and

damage. These effects can be both localised (to lung epithe-

lial surfaces and alveoli, reviewed by Tao et al., 2003) and

systemic, through immune system activation and cytokine

release (Miyata and van Eeden, 2011), translocation of ul-

trafine particles into the circulatory system (Oberdorster et

al., 1992), increased circulating monocytes (Tan et al., 2000),

and propagation to other cells and organs (Laing et al., 2010;

Meng and Zhang, 2006). Oxidative stress is implicated in the

majority of toxicological effects related to air pollution (Ghio

et al., 2012; Kelly, 2003; Pope and Dockery, 2006; Risom et

al., 2005). A rapid and simple metric to capture the oxida-

tive exposure burden which can be easily implemented for

epidemiological studies will enable greater insight into the

mechanisms of PM toxicity beyond total PM mass concen-

trations alone.

There are now a wide range of acellular chemical

methods that attempt to quantify particle-bound ROS and

the entire OP of PM, as typically acellular assays al-

low faster measurement and are less labour intensive

compared to cell cultures or in vivo methods (Bates

et al., 2019). These include, but are not limited to,

the dithiothreitol assay (DTT), ascorbic acid assay (AA),

2,7-dichlorofluorescin/hydrogen peroxidase assay (DCFH),

electron paramagnetic resonance (EPR) spectroscopy, glu-

tathione assay (GSH) and 9-(1,1,3,3,tetramethylisoindolin-2-

yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit).

These acellular assays all have differing sensitivities to spe-

cific particle components that may contribute to increased

particle-bound ROS concentrations and aerosol OP. For in-

stance, DTT has been shown to be sensitive to soluble met-

als (Shinyashiki et al., 2009), including copper and man-

ganese (Charrier et al., 2015; Charrier and Anastasio, 2012),

as well as a range of organic particle components includ-

ing water-soluble organic carbon (WSOC, a mixture of hun-

dreds to thousands of compounds), oxidised polycyclic aro-

matic hydrocarbons (PAHs), e.g. quinones (Chung et al.,

2006; McWhinney et al., 2013a), and humic-like substances

(HULIS) (Dou et al., 2015; Verma et al., 2015a). AA is par-

ticularly sensitive to redox-active transition metals, most no-

tably Fe (Godri et al., 2011) and Cu (Janssen et al., 2014;

Pant et al., 2015), and has demonstrated sensitivity to or-

ganic carbon (Calas et al., 2018) including secondary organic

aerosol (Campbell et al., 2019b). EPR is applied to speci-

ate and quantify radical species bound to aerosol particles
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(Arangio et al., 2016; Campbell et al., 2019a; Chen et al.,

2019; Gehling and Dellinger, 2013), so-called environmen-

tally persistent free radicals (EPFR), or radicals formed upon

suspension of particles into aqueous solution (Gehling et al.,

2014; Tong et al., 2016, 2017) or in some cases into syn-

thetic lung lining fluid (Tong et al., 2018) consisting of a

mixture of AA, glutathione and uric acid. EPR has the ad-

vantage of not being influenced by the dark colour of partic-

ulate suspensions (detection is via magnetic excitation rather

than magnetic absorbance), that it does not require extraction

of the PM from the filter and that speciation of the free rad-

ical generated can be explored using spin-trap reagents that

are selective for specific radicals (Miller et al., 2009). The

DCFH assay has been shown to be particularly sensitive to

hydrogen peroxide (H2O2) and organic peroxides (Venkat-

achari and Hopke, 2008; Wragg et al., 2016), also present

in secondary organic aerosol (SOA) particles (Gallimore et

al., 2017), and is a particularly useful assay for measuring

particle-bound ROS (Wragg et al., 2016). The application

of these four commonly used assays simultaneously allows

different mechanisms of ROS generation to be assessed: the

variability of particle-bound ROS (DCFH), the production

of superoxide upon aqueous particle suspension (EPR) and

the catalytic generation of ROS via redox-active components

(DTT/AA). Therefore, these data provide a broad picture of

the variability of both particle-bound ROS and OP, and com-

parison to a comprehensive compositional dataset provides a

unique opportunity to probe the chemical changes in PM that

affect the burden of particle-bound ROS and OP.

Despite several studies utilising the aforementioned as-

says, further exploratory work is required to determine

specifically which sources, physical properties and chemi-

cal components influence aerosol OP variability. A limited

number of investigations have explored the role of chemi-

cal composition on aerosol OP, and it is often unclear which

specific chemical components are responsible for driving

aerosol OP; for example, studies show transition metals such

as Cu and Mn dominate DTT activity (Charrier et al., 2015;

Charrier and Anastasio, 2012), whereas others highlight the

enhanced role of organics, in particular water-soluble organic

carbon (WSOC) such as HULIS, and quinones (Cho et al.,

2005; Fang et al., 2016). Furthermore, several studies cor-

relate volume-normalised OP measurements with composi-

tional variability, but given the potential co-linearity of many

aerosol components with overall mass, mass-normalised in-

trinsic OP values may provide additional insight into the ef-

fect of chemical composition on aerosol OP (Bates et al.,

2019; Puthussery et al., 2020). Thus, a comprehensive char-

acterisation of gas- and particle-phase pollution conditions

combined with measurements utilising multiple OP assays

simultaneously provides a wide range of information on

particle-bound ROS and aerosol OP, allowing the identifica-

tion of the most important components that drive aerosol OP.

Ultimately, a greater understanding of the specific aerosol

characteristics that influence OP, as well as specific sources

that contribute more to aerosol OP, could allow the develop-

ment of more targeted and efficient air pollution mitigation

strategies. Further details of the selection of OP assays, their

analytical scope, and biological and epidemiological appli-

cability are described in Sect. S2 of the Supplement.

In this work, PM2.5 filter samples collected in winter 2016

and summer 2017 during the APHH campaign (Shi et al.,

2019) were analysed using four acellular methods – AA,

DCFH, DTT and EPR – providing a broad panel of data on

the health-relevant properties of PM2.5, including particle-

bound ROS, redox-active components contributing to aerosol

OP and the formation of superoxide radicals upon sample

extraction. As the APHH campaign simultaneously captured

one of the most extensive and comprehensive atmospheric

composition datasets, including a range of PM compositional

data, we aimed to establish which individual PM compo-

nents and meteorological and atmospheric conditions con-

tributed to the increased OP assay response, whether these

influences and compositions differed substantially between

assays, and if the compositions confirmed previous observa-

tions and reflected particular PM sources. We included 107

different measurements, comprising transition metals, AMS

measurements, total elemental and organic carbon, and a

broad panel of organic species relating to biomass and fos-

sil fuel burning, cooking emissions, vehicular markers, sec-

ondary organic aerosol compounds, and gaseous species and

general atmospheric conditions. We also sought to investi-

gate the differences between volume-based and mass-based

responses, as mass-based analysis facilitates site and tempo-

ral comparisons more readily than volume measurements and

provides details on intrinsic particle properties that influence

OP. In order to highlight underlying trends in such a broad

and complex dataset, we also applied multivariate statistical

analysis and developed multiple linear regression models to

fully characterise the compositional factors driving each as-

say response.

2 Materials and methods

2.1 Air Pollution and Human Health in a Chinese

Megacity (APHH) campaign

2.1.1 Site description

High-volume 24 h aerosol filter samples were collected at

the Institute of Atmospheric Physics (IAP) in Beijing, China

(39◦58′28′′ N, 116◦22′15′′ E) (Fig. S1). Winter PM was col-

lected during the months of November–December 2016,

and summer PM was collected during the months of May–

June 2017. n = 31 filters for winter 2016 and n = 34 fil-

ters for summer 2017 were collected. A PM2.5 high-volume

sampler (RE-6070VFC, TICSH, USA) was used at a flow

rate of ∼ 1.06 m3 min−1. PM2.5 for subsequent OP analy-
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sis was collected onto quartz microfiber filters (Whatman,

20.3 × 25.4 cm) with a collection area of 405 cm2.

2.1.2 PM2.5 composition, gas-phase composition and

meteorological data

Oxidative potential measurements were correlated with a

range of additional particle-phase composition, gas-phase

composition and meteorological measurements conducted

concurrently during the APHH-Beijing campaign (Shi et

al., 2019). Briefly, the following composition data were

collated: total organic and elemental carbon (OC, EC),

soluble inorganic ions (K+, Na+, Ca2+, NH+
4 , NO−

3 ,

SO2−
4 and Cl−) measured using ion chromatography (IC),

low-oxidised organic aerosol and more-oxidised organic

aerosol (LOOOA/MOOOA) as well as total organic (ORG)

fractions using aerosol mass spectrometry (AMS), biomass

burning markers (galactosan, mannosan and levoglucosan),

16 polycyclic aromatic hydrocarbons (PAHs) (see Elzein

et al., 2019, 2020), C24-C34 n-alkanes, aerosol cooking

markers (palmitic acid, stearic acid, cholesterol), ve-

hicle exhaust markers (17a(H)-22, 29,30-trisnorhopane

(C27a) and 17b(H)-21a-norhopane (C30ba)), isoprene

SOA markers (2-methylglyceric acid, 2-methylerythritol,

2-methylthreitol, 3-hydroxyglutaric acid), C5-alkene triols

(cis-2-methyl-1,3,4-trihydroxy-1-butene, 3-methyl-2,3,4-

trihydroxy-1-butene, trans-2-methyl-1,3,4-trihydroxy-1-

butene), α-pinene SOA tracers (cis-pinonic acid, pinic

acid, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA),

2,3-dihydroxy-4-oxopentanoic acid, aged α-pinene SOA

marker), β-caryophyllene SOA tracer (β-caryophyllinic

acid), and an aromatic volatile organic compound (VOC)

SOA tracer (3-isopropylpentanedioic acid) (Liu et al., 2021).

The following additional data were obtained from the

Centre for Environmental Data Analysis (CEDA) archive:

concentrations of inorganic elements Al, Ti, V, Cr, Mn,

Fe, Co, Ni, Cu, Zn, Cd, Sb, Ba and Pb in PM2.5 using

X-ray fluorescence (XRF) (Xu et al., 2020a); gas-phase

concentrations of methanol, acetonitrile, acetaldehyde,

acrolein, acetone, isoprene, methacrolein, methyl ethyl

ketone, benzene, toluene, C2-benzenes and C3-benzenes

measured using proton-transfer-reaction time-of-flight mass

spectrometry (PTR-ToF-MS) (Acton et al., 2018); gas-phase

concentrations of O3, CO, NO, NO2, NOy and SO2 as well

as relative humidity (RH) and air temperature measurements

(Shi et al., 2019); photolysis rates for JO1D and JNO2

(Whalley et al., 2021); and gas-phase concentrations of

hydroxyl radicals (OH), peroxy radicals (HO2) and organic

peroxy radicals (RO2) measured using fluorescence assay

gas expansion (FAGE) (Whalley et al., 2021).

2.2 Oxidative potential measurements

2.2.1 Reagents

Chemicals and gases were obtained from Sigma-Aldrich

unless otherwise indicated and were used without fur-

ther purification: ascorbic acid (≥ 99.0 %), Chelex™ 100

sodium form, 0.1 M HCl solution, 0.1 M NaOH solu-

tion, dichlorofluorescin-diacetate (DCFH-DA), 1 M potas-

sium phosphate buffer solution, horseradish peroxidase

(HRP), methanol (HPLC grade), and o-phenylenediamine

(≥ 99.5 %). H2O used for the DCFH, HRP and AA solu-

tion was obtained from a Milli-Q high-purity water unit

(resistivity ≥ 18.2 M � cm−1, Merck Millipore, USA). For

DTT analysis, 9,10-phenanthrenequinone (PQN) (≥ 99 %),

5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) (99 %), DL-

dithiothreitol (DTT) (≥ 98 %), potassium phosphate diba-

sic (≥ 98 %, Krebs buffer), potassium phosphate monobasic

(≥ 98 %, Krebs buffer) and methanol (≥ 99.9 %) were all ob-

tained from Fisher Chemical. Nitrogen (oxygen free) was ob-

tained from BOC (Cambridge, UK).

2.2.2 Acellular oxidative potential assays

Four offline acellular methods for measuring PM2.5 oxida-

tive potential and particle-bound ROS were utilised in this

work. The DCFH/HRP assay (Fuller et al., 2014) quanti-

fies the fluorescent product 2,7-dichlorofluorescein, an as-

say that is particularly sensitive to species which are likely

particle-bound ROS. The ascorbic acid (AA) assay (Camp-

bell et al., 2019b) quantifies the dominant product of AA ox-

idation, dehydroascorbic acid (DHA) via condensation with

a dye and fluorescence spectroscopy. This is an AA-only as-

say and does not contain other components normally present

in synthetic lung fluid (SLF); filter extracts are performed

at pH 7, whereas the AA reaction with the filter extract is

performed at pH 2 to improve assay stability and sensitivity

(Campbell et al., 2019b). Electron paramagnetic resonance

spectroscopy (EPR) (Miller et al., 2009) specifically targets

the measurement of superoxide (O
q−

2 ), and the dithiothreitol

(DTT) assay (e.g. Cho et al., 2005) quantifies the rate of loss

of DTT via absorbance measurements. These acellular meth-

ods have been widely applied in the literature to study par-

ticle OP and particle-bound ROS (Bates et al., 2019). For

detailed descriptions of the assay protocols, see Sect. S3 in

the Supplement. Assessing OP and particle-bound ROS in

filters with the aforementioned assays is done offline. There

is potential to underestimate PM OP and particle-bound ROS

using offline filter-based analysis, as short-lived components

which contribute to particle-bound ROS and OP may un-

dergo degradation prior to analysis. However, using an of-

fline method allows the opportunity to correlate with a wide

range of additional composition measurements, allowing a

more explicit characterisation of the chemical components

of PM that contribute to observed acellular assay responses.

Atmos. Chem. Phys., 21, 5549–5573, 2021 https://doi.org/10.5194/acp-21-5549-2021
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2.3 Statistical analysis

We aimed to analyse the data as thoroughly as possible with

respect to characterising the OP measured by each assay and

to robustly connect assays to both individual measurements

and potential PM sources. As data were collated from sev-

eral different experimental projects, and as analytical uncer-

tainty values were not available for the majority of the data,

the use of positive matrix factorisation (PMF) was not under-

taken for source apportionment in this study and will be pub-

lished subsequently for selected analyses (Xu et al., 2020a).

Multiple analytical platforms were used for the acquisition of

compositional data; uncertainty estimates for each measure-

ment were not easily estimable; a factor-based chemical mass

balance approach was not required specifically; and tempera-

ture, relative humidity, actinic flux and other non-mass mea-

surements could also be influential on the OP response and

are factors mainly independent of PM sources. On this ba-

sis we considered that PMF would not ultimately give use-

ful models in the specific context of OP. However, these is-

sues are managed adequately by principal component analy-

sis (PCA), which is a useful general unsupervised method for

examining underlying variance and latent effects in data and

handles multicollinearity well, although it is not optimal for

chemical mass balance source apportionment (Paatero and

Tapper, 1994).

PCA and partial least squares regression (PLSR) models

were produced in SIMCA+ 16.0 (Umetrics, Umeå, Sweden).

Missing values were not altered prior to model construction,

although measurements with more than 56 % missing val-

ues per season were discarded from models. R2 and Q2 val-

ues were used to assess the goodness of fit of the model and

the goodness of prediction of the data through 7-fold cross-

validation respectively. Data were unit-variance-scaled and

mean-centred to remove effects related to absolute data mag-

nitude. Models were allowed to optimise to the maximum

number of latent variables (LVs) at which the cumulative Q2

value stabilised, which for most PLSR models was a single

LV. PLSR model robustness was assessed through permuta-

tion testing, where the classifier (i.e. OP assay response) for

all samples was randomly permuted 999 times and the PLSR

model constructed for each permutation; the model was con-

sidered robust if the real model R2 and Q2 values outper-

formed those from all random permutation models. Nega-

tive Q2 values indicate no predictive power of the data in

the model, and LVs with Q2 significantly lower than the R2

value (arbitrarily defined for this study as Q2 at more than

10 % below the R2) can be considered at least partially over-

fitted.

Spearman rank correlations (Rs) between OP measure-

ments and PM2.5 were calculated using Origin 2020 (Origin-

lab Corporation, USA) and R and were used to assess the re-

lationships between assay responses and individual measure-

ments, with Mann–Whitney U tests used for pairwise test-

ing of the differences in seasonal response for both assays

and individual measurements. All other multivariate analy-

ses, multiple linear regression models and selected univari-

ate analyses were produced in R 4.0.2 (R Core Team, Vi-

enna, Austria), implemented in RStudio 1.3.959 (Boston,

Massachusetts, USA).

For multiple linear regression models, outlier values were

arbitrarily deemed to be those greater than 5 times the stan-

dard deviation and replaced with the season median where

appropriate for analysis. Measurement subsets manually se-

lected as relevant to source composition were then subjected

to a variable selection process, whereby pairwise Spearman

correlations for all measurements were calculated, and mea-

surements removed from subsets if they were highly corre-

lated with other measurements but predicted OP more poorly

than the other co-correlated measurements to reduce the

number of variables contributing identical information in the

final models. Multiple linear regression models were then

further optimised from this initial subset using the regsub-

sets function in the leaps R package to allow for between

4–8 variables, which best predicted the OP response (mod-

els could be constructed with fewer or even more measure-

ments, but the aim was to examine a small panel of con-

tributors to potential source compositions). The variable se-

lection process precludes the use of linear regression mode

performance indicators such as the Akaike or Bayesian in-

formation criteria, as the optimised model basis sets are not

identical. The stability of model predictions and features

were assessed using bootstrap resampling of data, by ran-

domly splitting one-fifth of the data as a test set and us-

ing the remaining samples to construct the model and pre-

dict the left-out samples, for 500 random iterations. Stabil-

ity was also assessed though overall variance in OP predic-

tions, measurement feature coefficients and model residu-

als plots, and run order/date bias (not differentiable as sam-

ples were analysed in date order) was assessed in residuals

plots. Although not all data distributions were strictly nor-

mal when examined in the univariate kernel density plots,

data were not log-transformed for multiple linear regression

models, as this creates non-linearity in the model compo-

nent response, which can complicate interpretation. Model

residuals were plotted for manual examination and were all

generally normally distributed despite the relatively small

number of samples, and biases were related to periods of

missing measurements or samples with values below the

limit of quantification. Code developed for analysis is pub-

licly available at https://github.com/katewolfer/Beijing (last

access: 6 April 2021).

3 Results and discussion

Both volume-normalised (OPv, per m3 air) and particle-

mass-normalised (OPm, per µg PM2.5) values are consid-

ered in this work, where the OP value of the specific assay

and sample is normalised by the volume of air collected or

https://doi.org/10.5194/acp-21-5549-2021 Atmos. Chem. Phys., 21, 5549–5573, 2021
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Figure 1. Time-averaged (24 h) volume-normalised AAv (red bars)

and PM2.5 mass (blue dots), analysed from 24 h high-volume filters,

for both winter 2016 (8 November–8 December 2016) and summer

2017 (21 May–24 June 2017) (Shi et al., 2019; Xu et al., 2020a).

Substantially higher average PM2.5 mass concentrations (µg m−3)

and AAv were observed in the winter season compared to the sum-

mer (see Table S1 for summary). DCFHv, DTTv and EPRv 24 h

averaged datasets can be found in Figs. S8–S10 respectively.

by the total PM2.5 mass on the filter, respectively. OPv is

useful when considering exposure or epidemiological out-

comes, but OPm is likely a more informative metric when

exploring how chemical composition influences PM2.5 OP,

potentially enabling better OP response, site and composi-

tion inter-comparisons (Bates et al., 2019). Henceforth, OPv

and OPm will be used when discussing the overall response

of all four methods; specific discussion of the acellular meth-

ods will be referred to as AAv, DTTv, DCFHv, and EPRv for

volume-normalised values and AAm, DTTm, DCFHm, and

EPRm for mass-normalised values. For comparison of mass-

normalised OPm values, PM2.5 composition measurements

were also normalised for total PM mass (e.g. ng/µg per µg

PM2.5)

3.1 Seasonal variation of OPm and OPv

The 24 h PM2.5 mass concentrations in winter

2016 (8 November–9 December 2016) ranged from

8.1–328.7 µgm−3, with an average PM2.5 mass of

98.7 ± 75 µgm−3, whereas in summer 2017 (21 May–

24 June 2017) PM2.5 concentrations ranged between

13.6–85 µgm−3 with an average of 36.7 ± 16 µgm−3

(Fig. S7) (Shi et al., 2019; Xu et al., 2020a). Average

seasonal values for each assay are summarised in Table S1 in

the Supplement. An example data set showing 24 h average

data, for AAv and PM2.5 mass in both the winter and summer

campaign, is shown in Fig. 1 (for DCFHv, DTTv and EPRv;

see Sect. S6 “Summary statistics for all measurements”).

For all assays, a higher average was observed in the win-

ter compared to the summer in Beijing (Table S1). The av-

erage AAv was 96.7 ± 42.7 nM DHA m−3 in the winter,

whereas a mean value of 24.1 ± 6.1 nM DHA m−3 was ob-

served in the summer. Given the recent introduction of this

AA-based assay, which measures the formation of the AA

oxidation product DHA rather than measuring the decay of

AA via UV absorbance, limited literature values are avail-

able for direct comparison (Campbell et al., 2019b). Average

DCFHv in the winter was 0.71 ± 0.52 nmol H2O2 m−3 com-

pared to 0.17 ± 0.11 nmol H2O2 m−3 in the summer, which

is within the range of DCFHv values observed in previous

studies in Taiwan, the United States and Singapore (OPDCFH

0.02–5.7 nmol H2O2 m−3) (Hasson and Paulson, 2003; He-

witt and Kok, 1991; Hung and Wang, 2001; See et al., 2007;

Venkatachari et al., 2005). Mean observed values for DTTv in

the winter and summer were 2.9 ± 0.11 nmol min−1 m−3 and

0.9 ± 0.40 nmol min−1 m−3, respectively. The mean values

of DTTv observed in this study are greater than those mea-

sured in similar studies in Beijing (Liu et al., 2014) (0.11–

0.49, mean = 0.19 nmol min−1 m−3) with similar mass con-

centrations of PM2.5 (mean = 140 µgm−3), although they are

within the range of DTTv values observed in a number of

previous studies in several locations, including Europe (Je-

dynska et al., 2017; Yang et al., 2015), the United States

(Fang et al., 2015; Verma et al., 2014) and northern China

(Liu et al., 2018) (0.1–14.7 nmol min−1 m−3). The mean

EPRv values, relating to the specific detection of O
q−

2 , were

2.4 × 106 ± 1.6 × 106 and 5.8 × 105 ± 4.1 × 106 counts m−3

in the winter and summer campaign, respectively.

Spearman rank correlation coefficients (Rs) of aerosol OPv

with PM2.5 vary between the winter and summer season, and

also between OP assays, as illustrated in Fig. 2. All four as-

says, when normalised per volume (OPv), show a stronger

correlation with PM2.5 mass concentration in the winter com-

pared to the summer, consistent with results observed in Cha-

monix, France, by Calas et al. (2018). For example, DCFHv

correlates well with 24 h average total PM2.5 mass concentra-

tion (µg m−3) in both winter (Rs = 0.96) and summer (Rs =

0.76) (Fig. 2b), whereas AAv correlates well in the winter

(Rs = 0.89) and poorly in summer (Rs = 0.21). Similar cor-

relations of DCFHv with PM2.5 mass concentrations in both

winter and summer suggest that species influencing DCFHv

variability (e.g. H2O2 and organic peroxides, likely particle-

bound ROS) present in the particles are relatively consistent

between both seasons. Similar to AAv, differences between

the seasons are also observed for DTTv and EPRv, where

correlations of aerosol OPv vs. PM2.5 are stronger in winter

compared to summer (Fig. 2c and d), also generally consis-

tent with previous studies, although in contrast to Calas et

al. (2018), who observed no difference in EPRv between sea-

sons in Chamonix, in that study the spin-trap 5,5-dimethyl-

1-pyrroline-N-oxide (DMPO) was used to study hydroxyl

radicals, whereas in this study we focus on the formation

of superoxide upon particle suspension in aqueous solution.

The differences in the correlation shown in Fig. 2 suggests

that the four assays are sensitive to different PM compo-
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nents and that in winter and summer different PM sources

or components are important for the assay’s responses (Calas

et al., 2018; Saffari et al., 2013; Verma et al., 2014). Figure

2 demonstrates that PM2.5 mass could be a reasonable pre-

dictor of total OPv in winter but the poorer correlations be-

tween all OPv assays and PM2.5 in the summer indicate that

a more detailed understanding is necessary to elucidate and

ultimately predict aerosol OP. However, the variability in the

strength of correlation between OPv and PM2.5 mass as well

as the seasonal difference indicates that compositional differ-

ences in PM2.5 or additional atmospheric processes influence

PM2.5 OP.

To gain further insights into the potential particle-level

compositional differences underlying assay OP response, the

OP data for the four assays was normalised to the PM2.5

mass in each sample. As shown in Fig. 3, mass-normalised

OPm values vary up to a factor of 10 within a single season.

AAm, DCFHm, DTTm and EPRm for both winter and sum-

mer are also displayed in Fig. 3, with colour bars indicat-

ing the 24 h average total PM2.5 mass (µgm−3) for the corre-

sponding OPm measurement. The average OPm response ob-

served in this study shows a similar trend to OPv (Table S2),

where higher OPm values are observed for winter compared

to summer (Fig. 3), as observed previously (Liu et al., 2018;

Saffari et al., 2014). This demonstrates that there are specific

properties of PM2.5 in the winter that result in overall higher

intrinsic OPm compared to the summer.

For AAm, an inverse relationship between total PM2.5

mass concentration and AAm is observed in both seasons,

where days with high PM2.5 mass loadings have corre-

spondingly low AAm values in both the winter and sum-

mer, with almost a factor of 6 difference between the

AAm on the highest PM2.5 mass day (PM2.5 = 328 µgm−3,

AAm = 0.6 nM [DHA] µg−1) and lowest PM2.5 mass day

observed during the winter campaign (PM2.5 = 8 µgm−3,

AAm = 3.53 nM [DHA] µg−1). A similar trend is observed

for DTTm, where in general days with higher overall PM2.5

mass concentrations have correspondingly low DTTm val-

ues, which has also been observed previously (J. Wang et

al., 2020). The DTTm response is also not correlated with Cu

and Mn concentrations, despite the non-linear but monotonic

relationship between these components being demonstrated

in other studies (Charrier et al., 2016). These results indi-

cate that on high-pollution days a large fraction of the PM

mass might be OP-inactive, resulting in low intrinsic OPm

values. In general, smaller particles have been observed to

have higher DTTm values compared to larger particles (Bates

et al., 2019; Janssen et al., 2014), an effect which may also

play a role here. Another possibility is that on higher PM2.5

mass days, selected chemical species interact with or deac-

tivate redox-active components present in PM2.5 (e.g. inter-

action of organics with metals (Tapparo et al., 2020), there-

fore reducing the observed OPm signal. It is also possible

that components present in PM2.5 on higher PM2.5 mass con-

centration days interfere with the assay response. It is cur-

rently unclear which chemical components are responsible

for the observed inverse relationship between PM2.5 mass

with AAm and DTTm. However, statistically significant in-

verse correlations are observed between AAm and DTTm in

both the winter and summer with the chemically undeter-

mined “unknown” fraction of PM2.5 for DTTm (Rs = −0.81)

and AAm (Rs = −0.75), implying that PM2.5 chemical com-

ponents unaccounted for in this study are likely responsible

for the lower intrinsic AAm and DTTm values on high PM2.5

mass days (see Sect. 3.2 “Univariate analysis of PM OP and

additional measurements”, Figs. S11 and S12).

In contrast, higher DCFHm responses are observed on days

with greater PM2.5 mass concentrations in both winter and

summer. Increased DCFHm responses on more polluted days

could indicate that the mass fraction of particle-bound ROS

(e.g. organic peroxides from SOA) increases with increasing

PM2.5 mass concentration or that the capacity of PM com-

ponents to produce H2O2 upon extraction, as measured by

DCFH, is enhanced. Despite the significant seasonal differ-

ence in EPRm, no obvious relationship between EPRm and

PM2.5 mass was observed in our study. There is potential to

underestimate PM OP and particle-bound ROS using offline

filter-based analysis, as short-lived components which con-

tribute to particle-bound ROS and OP may undergo degra-

dation prior to analysis. However, using an offline-based

method allows the opportunity to correlate with a wide range

of additional composition measurements, allowing a more

explicit characterisation of the chemical components of PM

that contribute to observed acellular assay responses.

Spearman rank correlations (Rs) between the four assays,

for mass-normalised OPm and volume-normalised OPv, are

presented in Table 1. In terms of OPv, all four assays show

significantly strong correlations with each other in the winter

season (Rs 0.72–0.89), but weaker correlations are observed

between assays in the summer (Rs 0.01–0.58), a seasonal dif-

ference observed previously by Calas et al. (2018). In con-

trast, the only statistically significant correlation observed for

OPm is between AAm and DTTm in the winter season only

(Rs = 0.58).

Seasonality of both OPv and OPm observed in the as-

says could be driven by changes in PM sources influ-

encing overall OP, or a number of physical and chemi-

cal factors directly affecting particle composition. For in-

stance, lower ambient temperatures in the winter may in-

crease the partitioning of semi-volatile organic compounds,

such as small quinones (e.g. anthracenequinone and 2,3-

dimethylanthraquionone, Delgado-Saborit et al., 2013) and

nitro-PAHs, which have been shown to influence DTT ac-

tivity (Ntziachristos et al., 2007; Verma et al., 2011), obser-

vations which are supported by lab-based studies showing

decreasing aerosol OP at higher temperatures (Biswas et al.,

2009; Verma et al., 2011). Changing boundary layer height

between the seasons may also contribute to higher concen-

trations of species which correlate with PM2.5 mass respon-

sible for increasing aerosol OP during the winter, compared
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Figure 2. Comparison of PM2.5 OPv during winter 2016 (blue) and summer 2017 (orange) vs. PM2.5 mass (µg m−3). (a) AAv, (b) DCFHv,

(c) DTTv and (d) EPRv. Each data point represents a 24 h average for OP measurements and PM2.5 mass. Corresponding Rs and linear fit

equations are included. For AAv, DCFHv and DTTv, error bars represent the standard deviation observed over three repeat measurements

for each filter sample, and in some cases the error is smaller than the data point. Uncertainty values are unavailable for EPRv measurements.

Figure 3. Summer and winter 24 h averaged mass-normalised OPm (a) DCFHm (nmol H2O2 µg−1), (b) EPRm (counts µg−1), (c) AAm

(µM DHA µg−1) and (d) DTTm (pmol min−1 µg−1). Box plots indicate the median, 25 % and 75 % percentiles, and the data range. Data

points are colour coded with respect to the 24 h average PM2.5 mass (µg m−3), with a separate colour scale for winter and summer PM2.5

masses given the difference in total PM2.5 masses observed between the seasons.
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Table 1. Correlation of volume-normalised (OPv, top panel) and

mass-normalised (OPm, bottom panel) assay responses in the win-

ter (upper right values, regular font) and summer (lower left val-

ues, italic font) campaign. It should be noted that assay responses

expressed as mass-normalised (OP per µg) are correlated with

mass-normalised additional particle-phase composition measure-

ments (i.e. µg or ng per µg PM2.5).

OPv Rs AAv DCFHv EPRv DTTv

AAv 0.89∗∗∗ 0.86∗∗∗ 0.83∗∗∗

DCFHv 0.35∗ 0.86∗∗∗ 0.72∗∗∗

EPRv 0.19 0.01 0.88∗∗∗

DTTv 0.41∗
0.58

∗∗∗ 0.07

OPm Rs AAm DCFHm EPRm DTTm

AAm −0.29 0.22 0.60∗∗

DCFHm −0.20 −0.08 −0.15

EPRm −0.26 0.15 0.27

DTTm 0.20 −0.28 0.14

Bold font indicates Rs ≥ 0.5; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

to summer, especially affecting OPv seasonality (H. Wang et

al., 2020). Furthermore, air mass history may be an important

contributor to the observed seasonality of OP. For instance,

it was observed that winter days with high PM2.5 mass con-

centrations typically originate from regional sources south of

Beijing, which is widely industrialised, whereas high mass

days in the summer typically have more varied air mass his-

tories (Panagi et al., 2020; Steimer et al., 2020). There are

likely varying contributions between different sources in dif-

ferent seasons, e.g. more photochemistry in the summer driv-

ing oxidation and biogenic sources, and more contributions

from residential heating combustion in the winter (Xu et

al., 2020a). In order to gain further insight into what causes

the observed variability of OP, relationships between parti-

cle chemical composition and aerosol OP will be explored in

detail below.

3.2 Univariate analysis of PM OPm and additional

measurements

Spearman rank correlations between OPm of the four as-

says and 107 additional measurements conducted during the

APHH campaign (see Sect. 2.1.2 “PM2.5 composition, gas-

phase composition and meteorological data”) were calcu-

lated for both the winter (n = 31) and summer (n = 34). We

focus on OPm in the forthcoming discussion; as mentioned

previously, we consider it a particularly informative metric

when determining the role of chemical composition on OP

(Bates et al., 2019; Puthussery et al., 2020). All univariate

statistical summaries are presented in Sect. S8.

The majority of additional particle-phase composi-

tion, gas-phase composition and meteorological measure-

ments differed significantly by season. Exceptions in-

cluded Al, V, Zn, Pb, Ca2+, Na+, NH+
4 , acetalde-

hyde, acetonitrile, methanol, methyl ethyl ketone, methyl

vinyl ketone/methacrolein, trans-2-methyl-1,3,4-trihydroxy-

1-butene, β-caryophyllinic acid, 3-hydroxyglutaric acid, C5-

alkene triols, cholesterol, LOOOA and MOOOA. Stacked

bar plots illustrating the total daily concentrations for both

mass-normalised and volume-normalised data are shown in

Figs. 4 and S13. Total concentrations of individual PM com-

ponents (excluding all composite measures) account for ap-

proximately 0.3–0.8 µg µg−1, i.e. 30 %–80 % of the total PM

mass (data not shown). Interestingly there were no marked or

characteristic changes in mass composition associated with

haze days; however, haze events were generally correlated

with increased biomass burning marker concentration and

total organic carbon in winter for the mass-normalised data

(also observed during recent later winter haze events in Bei-

jing (Li et al., 2019), as well as small inorganic ion con-

centrations in both seasons in the volume-normalised data

(Fig. S13).

IC measurements (K+, Na+, Ca2+, NH+
4 NO−

3 and SO2−
4 )

account for the greatest proportion of total particle mass in

both seasons, all of which are major components of sec-

ondary inorganic PM mass (NH+
4 , NO−

3 , SO2−
4 ), mineral dust

(Ca2+, K+) and marine aerosols (Na+, Cl−). These species

were present at higher daily concentrations in summer than

in winter. Summer compositions for each category were gen-

erally consistent for the whole sampling period, with a larger

total proportion of SOA markers, whereas winter composi-

tions were more variable, with greater contributions from el-

emental carbon, PAHs, n-alkanes and cooking-related com-

pounds than for summer samples. Although PAHs are not

redox-active (Charrier and Anastasio, 2012), they are pre-

cursors to redox-active oxy-PAHs (quinones) and nitro-PAHs

(Atkinson and Arey, 2007) and have well-established intrin-

sic cellular toxicity (reviewed in Moorthy et al., 2015), me-

diated by their conversion to hydroxy-PAHs, which exert

mutagenic and teratogenic effects and also induce transcrip-

tional modifications and oxidative stress. EC and n-alkanes

are also non-redox-active, and the exact mechanisms of their

toxicities are unclear (Levy et al., 2012); however, SOA de-

rived from the interaction of n-alkanes with NOx with photo-

oxidation (Lim and Ziemann, 2005; Presto et al., 2010) is

likely both to contribute to the redox activity of samples

(Tuet et al., 2017) and to have more toxic properties than its

precursors (Xu et al., 2020b). The sample from 22 Novem-

ber 2016 has a particularly high concentration of cooking

markers (palmitic acid, stearic acid and cholesterol). This

could reflect the fact that the traditional Chinese winter so-

lar term Xiao Xue ( , “light snow”) begins on this date

(Li, 2006), a period associated with the preparation of warm

foods as the ambient temperatures in northern China drop; a

similar elevation of palmitic acid and stearic acid has been

observed around the same week in a more recent study in

Shanghai (Q. Wang et al., 2020).
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Figure 4. Stacked bar plots of total concentrations for mass-normalised data. OC: organic carbon; EC: elemental carbon; PAH: polycyclic

aromatic hydrocarbon; SOA: secondary organic aerosol. “Metals” is the summed concentrations of Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,

Cd, Sb, Ba, Pb; “biomass burning” is the summed concentrations of palmitic acid, stearic acid and cholesterol; “PAH” is the summed

concentrations of naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chry-

sene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(ghi)perylene;

“n-alkane” is the summed concentrations of C24, C25, C26, C27, C28, C29, C30, C31, C32, C33 and C34; “cooking markers” is

the summed concentrations of palmitic acid, stearic acid and cholesterol; “vehicle markers” is the summed concentrations of 17a(H)-

22,29,30-trisnorhopane (C27a) and 17b(H),21a(H)-norhopane (C30ba); “SOA” is the summed concentrations of 2-methylthreitol, 2-

methylerythritol, 2-methylglyceric acid, cis-2-methyl-1,3,4-trihydroxy-1-butene, 3-methyl-2,3,4-trihydroxy-1-butene, trans-2-methyl-1,3,4-

trihydroxy-1-butene, C5-alkene triols, 2-methyltetrols, 3-hydroxyglutaric acid, cis-pinonic acid, acid, MBTCA, β-caryophyllinic acid, glu-

taric acid derivative, 3-acetylpentanedioic acid, 3-acetylhexanedioic acid, 3-isopropylpentanedioic acid and 2,3-dihydroxy-4-oxopentanoic

acid. Dates marked in red indicate partial or total day haze events as described in Shi et al. (2019). Measurement uncertainty values were

unavailable for most data types, and for selected dates in the upper plots, the sum of the total mass measurements is slightly more than 1 (i.e.

more than 1 µg per µg); for these dates, the data have been proportionately scaled. It should be noted that the OC measurement in the upper

plots incorporates the variety of organic carbon species represented in the lower plots.
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Rs values calculated for OPv and OPm with individual

compositional measurements have strikingly different uni-

variate correlations, as illustrated in correlation heat maps

(Fig. 5). Cumulative scores, referring to the number of Rs

correlations ≥ 0.5 for OPm and OPv (Table S3), demonstrate

that for all assays, considerably more significant correlations

are observed for OPv in the winter compared to OPm. For

both OPv and OPm, all assays show more statistically signifi-

cant correlations in winter compared to summer, particularly

for the AA response (AAm, n = 54 winter, n = 15 summer,

AAv, n = 67 winter, n = 4 summer).

Volume-based correlation analysis (Fig. 5a) indicates that

a very large number of the 107 atmospheric components

measured in this study correlate statistically significantly

with all four assays. The large number of correlations in

the volume-normalised data indicate strong collinearity be-

tween concentrations of chemical components in PM2.5 and

overall PM2.5 mass concentrations likely due to meteorolog-

ical processes, complicating analysis of the sources and pro-

cesses contributing to OP variability in particles. However,

the mass-based analysis (Fig. 5b) reveals that the mass frac-

tions of chemical components and sources to which the four

assays are sensitive to differ significantly (further illustrated

by the weaker inter-assay correlations shown in Table 1),

which demonstrates that mass-based analysis of OP data is

also important to elucidate atmospheric processes and parti-

cle sources responsible for the different OP metrics.

A range of transition metals were all positively correlated

with AAm and DTTm, including V, Cr, Mn, Fe, Co, Ni, Zn,

Cd and Pb (all Rs ≥ 0.5, p < 0.05). This reinforces the im-

portance of their contribution to urban PM2.5 and potential

to substantially influence PM2.5 OP, particularly Fe, Cr, V

and Co, which are commonly major components of vehi-

cle emissions and which can undergo redox-cycling reac-

tions producing ROS (Charrier et al., 2014; Shen and Anas-

tasio, 2012; Valko et al., 2005) contributing to higher AAm

and DTTm in the winter compared to the summer. Stronger

correlations between Fe and AAm are observed in the win-

ter (Rs 0.73) compared to summer (Rs 0.48) despite Fe con-

centrations (µg µg−1) being lower in winter samples than

summer samples, again highlighting the enhanced role of

redox-active transition metals in winter. It is not established

whether this seasonal difference is related to the chemical

availability (i.e. redox state, solubility, speciation) of Fe, to

the variability of emission sources of Fe between the seasons

or to some other important unknown additional contribution

of Fe to AAm in the summer; complexation of Fe in PM may

differ between seasons, and the ligands directly influence the

redox state and thus the bioavailability of the metal (Ghio et

al., 1999). Ultimately, the direct correlation of transition met-

als measured only by inductively coupled plasma mass spec-

trometry (ICP-MS) with OP does not adequately reflect the

nuances in redox behaviour of these species when they are

complexed with organic ligands (Calas et al., 2017), as well

as their range of oxidation states; this represents further gaps

in the standard chemical (and particularly the transition metal

and TM complex) characterisation of PM. The epidemiolog-

ical effects related to bioavailability of the metal when com-

plexed (Costa and Dreher, 1997) in humans are also still not

fully explored, although it is clear from multiple atmospheric

and clinical studies that complexation affects transition metal

uptake both in the atmosphere and in the body. Interestingly,

a mild inverse correlation of Fe with DCFHm is observed (Ta-

ble S8), which may be linked to the destruction of particle-

bound organic peroxides by Fe via Fenton-type chemistry

(Charrier et al., 2014), a process which the DCFH assay is

specifically sensitive to (Gallimore et al., 2017; Wragg et al.,

2016) and which has been observed in other recent studies

(Paulson et al., 2019). No significant positive correlation be-

tween any metals measured in this study and DCFHm and

EPRm was observed. Few EPR studies have looked specifi-

cally at superoxide formation, as is the case here, but those

conducted so far show that EPR specifically detecting O
q−

2 is

less sensitive to transition metal chemistry compared to tra-

ditional EPR methods focussing on OH formation.

In the summer, from the measured transition met-

als, only Fe correlated significantly positively (Spearman

p value < 0.05) with DTTm and AAm response (Rs = 0.48,

0.51 respectively), whereas in the winter, DTTm and AAm

correlated with a number of transition metals, including V,

Cr, Mn, Fe, Co, Ni, Zn and Cd. Of particular note, AAm

is mildly correlated with Cu in winter samples (Rs 0.48),

whereas no correlation is observed between DTTm and Cu

in either winter or summer, in agreement with a recent online

DTT study also (Puthussery et al., 2020). In contrast, pre-

vious reports from other locations have implicated Cu as a

dominant contributor to DTT oxidation, considering volume-

normalised and mass-normalised data (Calas et al., 2018;

Charrier et al., 2015). Interestingly, in contrast with OPm,

strong correlations (Rs > 0.6) are observed in this study be-

tween AAv, EPRv, DCFHv, and DTTv and Cu in the win-

ter, but poorer correlations are observed in the summer for

all assays (Rs < 0.39). Higher average Cu concentrations in

winter compared to summer (winter = 17.7 ng m−3, sum-

mer = 4.9 ng m−3) may explain the higher Rs observed for

Cu vs. OPv in winter compared to summer, whereas mass-

normalised concentrations of Cu are more similar between

the seasons. Poor correlation of Cu concentrations with AAm

and DTTm response in winter may hint at more insoluble Cu

complex formation observed at this site in Beijing, as pre-

dominantly water-soluble Cu participates in redox reactions;

therefore the sensitivity of AA and DTT towards Cu proba-

bly depends on the soluble fraction of Cu (Bates et al., 2019;

Charrier and Anastasio, 2012; Fang et al., 2016). Further-

more, the presence of organic chelating ligands in PM may

reduce the redox activity of Cu and Fe (Charrier et al., 2014;

Charrier and Anastasio, 2011; Shen and Anastasio, 2012).

Correlations between AAm and DTTm with total OC are

observed in both summer and winter (Tables S6 and S7),

and with total EC in the winter season, whereas DCFHm is

https://doi.org/10.5194/acp-21-5549-2021 Atmos. Chem. Phys., 21, 5549–5573, 2021



5560 S. J. Campbell et al.: PM2.5 oxidative potential in Beijing, China

Figure 5. Heat maps demonstrating the correlation of OP, expressed as volume-normalised OPv (a) and mass-normalised OPm (b) vs. a range

of additional measurements conducted during the APHH campaign. Red indicates positive correlation; blue indicates inverse correlation. For

OPm, particle-phase components are also mass-normalised (µg per µg PM2.5), and for OPv the components are volume-normalised (µg or

ng per m3).

negatively correlated with total OC (Table S8). In contrast,

DCFHm is positively correlated with MOOOA and LOOOA,

whereas DTTm and AAm show no correlation and even ex-

hibit slight negative correlations with MOOOA and LOOOA

in both summer and winter. This potentially indicates that

the MOOOA and LOOOA AMS fractions, typically associ-

ated with water-soluble organic carbon content (Verma et al.,

2015b), may contain higher concentrations of particle-bound

ROS (i.e. organic peroxides) as measured by DCFHm, but

on a per-mass basis these species may contribute less signif-

icantly to AAm and DTTm compared to redox-active tran-

sition metals and other organic components. Total OC and

EC correlations with AAm and DTTm may relate to con-

centrations of redox-active organic components such as oxi-

dised PAHs and quinones, which may not be represented by

MOOOA and LOOOA factors and which have been shown

to significantly contribute to DTTm (Chung et al., 2006;

McWhinney et al., 2013b).

Significant correlations are also observed between AAm

and a range of n-alkanes and hopanes (17a(H)-22, 29, 30-

trisnorhopane (C27a) and 17b(H)-21a-norhopane (C30ba),

Table S6), markers of primary organic aerosol emitted from

vehicles (Schauer et al., 1999; Subramanian et al., 2006). Al-

though these species are not redox-active, they are co-emitted

with redox-active transition metals such as Fe, V and Cu

from vehicle activity, either directly (Bates et al., 2019) or via

dust resuspension, and other organics contributing to SOA

(Platt et al., 2014) and highlight the potential importance of

vehicular emissions on AAm. Vehicular emissions and dust

resuspension have been previously shown to be the dominant

sources of Cu and Fe in Beijing (Gao et al., 2014). EPRm,

DTTm and DCFHm responses do not show any significant

correlations with these organic traffic markers.
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Notably, AAm correlates well with cis-pinonic acid, pinic

acid and 3-methyl-2,3,4-butanetricarboxylic acid (MBTCA)

in both seasons, all of which are biogenic SOA markers and

products of α-pinene oxidation, with MBTCA a marker for

OH-initiated ageing of first-generation α-pinene oxidation

products (Müller et al., 2012). AA sensitivity towards α-

pinene SOA has been demonstrated previously (Campbell

et al., 2019b; Tong et al., 2016). Although these three car-

boxylic acids are also not redox-active, they may correlate

with the formation of particle-bound ROS such as peroxides

or peroxy acids in SOA (Steimer et al., 2018), or with species

that decompose and liberate ROS upon extraction (e.g. Tong

et al., 2017); these processes are highly likely to contribute to

AAm, highlighting the assay’s potential sensitivity to redox-

active particle-phase components and particle-bound ROS.

Generally, DTTm has been previously shown to be relatively

insensitive to SOA as observed here (Bates et al., 2015;

Verma et al., 2015b), and both DTTm and DCFHm correlate

poorly with the SOA markers analysed in the present study

(Tables S7 and S8).

Compared to the three other assays, few significant corre-

lations are observed between EPRm and additional measure-

ments, despite the much better correlations with the EPRv

data, particularly for the summer samples. However, season-

ality in the EPRm response is still observed, with substantial

variability in the mass-normalised EPRm response (≈ factor

of 10 in the summer, factor of 2 in the winter, Fig. 3). There-

fore, we observe differences in aerosol composition influenc-

ing EPRm, but with the current comprehensive measurements

we are unable to determine the specific PM2.5 components

responsible for the observed EPRm. As an example, recent

studies have found associations between peroxide-containing

highly oxygenated molecules (HOMs) in PM2.5 and superox-

ide formation in water (Chowdhury et al., 2019; Tong et al.,

2019; Wei et al., 2021); thus HOMs, which were not mea-

sured in this study, could have contributed towards the ob-

served EPRm variability.

The univariate analysis presented here clearly shows that

OPm enables a more nuanced identification of aerosol com-

ponents influencing the oxidising properties of PM2.5 as

compared to OPv. Many more correlations are observed

when considering volume-normalised OPv, likely related to

collinearity of species with overall PM2.5 mass concentra-

tion due to meteorological effects. Metal and organic tracers

of traffic emissions (exhaust and non-exhaust) such as Fe,

Cu, and hopanes and SOA markers show especially strong

correlations with AAm, whereas the other three OPm metrics

(DTTm, DCFHm and EPRm) provide a less clear picture.

3.3 Multivariate modelling of OP from measured

components

To assess potential latent influences from the individual com-

ponents on assay response and hence on OP, a system-

atic multivariate analysis was undertaken. Initially, princi-

pal component analysis was applied to the whole set of in-

dependent measurements excluding the OP assay responses

(i.e. the values to be predicted by the models) to investigate

which contributed most to the variation in the data, whether

there were relationships between measurements which char-

acterised OP and if the OPm response could be predicted

from the individual component measurements.

In the PCA model, the seasonal variation within the sam-

ples was clearly apparent (Fig. 6). The first four principal

components (PCs) accounted for 68.2 % of the observed

variation in the dataset (R2 or goodness of fit), of which

50.5 % was stable through 7-fold cross-validation (Q2, or

model variation accounted for through cross-validation), in-

dicating about half of the variation in the model was robust

with respect to sample score prediction. The loadings plot

(Fig. 7) indicated that seasonality in the first principal com-

ponent was related to increased PAHs (Feng et al., 2019),

n-alkanes (He et al., 2006) and biomass burning markers

(He et al., 2006) in winter, as well as increased ozone (Zhao

et al., 2018), ambient temperature and selected SOA mark-

ers (including 2-methylerythritol (Liang et al., 2012), and 2-

methylglyceric acid (Ding et al., 2016; Shen et al., 2018)) in

summer, findings which are consistent with existing volume-

based studies. When scores were coloured by OP, the AAm

(Fig. 6a), DTTm (Fig. 6c) and DCFHm (Fig. 6d) assay re-

sponses could be observed in the second and sometimes also

the first principal components (although the EPRm response

demonstrated no specific trend, Fig. 6b). When loadings plots

were examined by general measurement category (Fig. 7), it

was observed that some categories of measurements cluster

together (e.g. PAH, n-alkanes, NOx , temperature, relative hu-

midity), but this appeared to be related to strong correlation

of these species with the OPm measurement and known com-

pound behaviour rather than to measurement bias, as other

categories showed broader variation (e.g. inorganic and small

organic ions, gases, metals and SOA markers).

Partial least squares regression (PLSR) is a supervised re-

gression extension of PCA, which models the variation in the

data which is associated with a predefined sample classifica-

tion (Eriksson et al., 2013). PLSR models were constructed

for each individual OP assay and season to examine the most

specific markers associated with seasonal assay response. Ta-

ble 2 provides the performances for all PLSR models of OP

assay response, and example PLSR score plots for all AAm

and DTTm models are illustrated in Figs. 8 and 9 (analogous

plots for other assays provided in Figs. S18 and S19). The

performance indicators show that while the mass-normalised

measurement data can be used to explain (R2) and predict

(Q2) a large majority of the variation associated with AAm

summer/winter and DTTm winter assay response, the other

assay responses were less consistent; R2 and Q2 values for

these models indicated that less than 70 % of the variance

in response can be predicted from the individual compo-

nent measurements, and the predictions were much less sta-

ble through cross-validation. These results could suggest ei-
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Figure 6. Principal component analysis score plot of all data. (a) Coloured by AAm response; (b) coloured by EPRm response; (c) coloured by

DTTm response; (d) coloured by DCFHm response. Both principal component 1 and principal component 2 demonstrate variance associated

with AA and DTT response, and there is greater variation associated with the winter response than the summer response (highlighted in

panel a). PC 1 R2X 35.90 %, Q2 29.28 %; PC 2 R2X 19.34 %, Q2 23.73 %; the model included six principal components, with a cumulative

R2X of 68.2 % and Q2 of 50.5 %.

ther that assay responses are not as adequately sensitive at

µgµg−1 concentrations as for the total PM per sample, or that

a proportion of the OPm response is contributed to by species

not measured directly in this campaign and which cannot also

be inferred from total organic carbon measurements. As to-

tal OC is estimated from combustion properties of the sam-

ple rather than from a sum of individually validated compo-

nent measurements, and as multiple organic and transition

metal–organic complexed species contribute to the total OC

measurements with unknown redox properties, these obser-

vations reiterate the need for more comprehensive chemical

characterisation of PM. Similar to the univariate correlations,

the summer samples were less well modelled in both mass-

normalised and volume-normalised data, indicating either in-

adequate assay sensitivity (which may be compounded by the

reduced collected filter PM mass in summer) or the influence

of unmeasured components.

Table 3 shows the top 10 features in the variable impor-

tance in projection (VIP) for the PLSR loadings, which en-

able a ranking of the features which contribute most to the

model (Naes and Martens, 1988). It is evident from these

data that the features which best model the OPm seasonal re-

sponse are derived from multiple particle sources and atmo-

spheric ageing processes. For example, the AAm and DTTm

responses show similar trends in the multivariate models, but

the main contributors to their responses have little overlap,

with AAm responses being more strongly associated with

SOA tracers, PAHs, and general measures of organic carbon

and the DTTm responses more characterised by combustion

and vehicle emissions markers (Figs. S19–S22; Figs. S17–

S24 list the top 50 contributors to each assay model re-

sponse). Notably, compounds which are not generally recog-

nised as being redox-active were frequently observed to be

important in PLSR classification, and though they do not

directly contribute to the OPm response, they are likely to

be co-emitted with or be secondary products of redox-active

particle components.

3.4 Multiple linear regression (MLR) modelling to

predict OPm associated with specific sources

While multivariate model loadings highlighted the measure-

ments most associated with assay response, multivariate

models are not always amenable to variable selection, which

is important to characterise the chemical profiles contribut-

ing to each assay OP response. Multiple linear regression

modelling has been used in previous studies (Calas et al.,

2018) to establish contributors to total OP response, rather
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Table 2. Performance assessment of PLSR models for all assays, for both mass-normalised and volume-normalised data. Models are consid-

ered to perform well when both cumulative (i.e. across all latent variables included in the model) R2 and Q2 values are high, or at a minimum

where Q2 values are within 10 % of the R2 value, indicating that the variance is well accounted for in model cross-validation. Permutation

tests were rejected for robustness if any single random permutation model performance surpassed the performance of the real cross-validated

model; on this basis, the winter DCFHm and summer DTTv models were rejected (highlighted with ∗), although fewer than three random

models outperformed the real model, and none of the permuted model Q2 values outperformed those of the real model.

Mass (µg µg−1) Volume (µg m−3)

Assay Season Optimal Cumulative Cumulative Permutation Optimal Cumulative Cumulative Permutation

LVs R2 Q2 test pass LVs R2 Q2 test pass

EPR winter 1 43.2 19.3 no 2 83.9 75.2 yes

summer 1 11.3 −10.0 no 1 52.0 3.7 no

AA winter 1 81.4 78.2 yes 2 94.1 87.9 yes

summer 2 79.3 49.7 yes 1 41.8 22.6 no

DTT winter 2 76.0 62.0 yes 2 86.8 67.0 yes

summer 1 47.4 31.6 no 1 66.2 50.9 no∗

DCFH winter 2 71.9 50.4 no∗ 2 67.0 55.2 yes

summer 1 28.2 −6.6 no 1 86.0 66.7 yes

than looking at source apportionment from PMF models

in relation to OP, and only simple forward variable selec-

tion was used for model refinement. In the present study,

relevant measurements were grouped into six categories of

known contributors to Beijing PM (biogenic SOA, biomass

burning, coal and fossil power generation, cooking, dust,

and vehicle emissions). The full method description, refer-

ences, model formulae and performance parameters for the

mass-normalised data models are presented in the methods

(Sect. 2.3 “Statistical analysis”) and in Sect. S10. Briefly, lit-

erature sources (Table S13, Sect. S10) and the SPECIEU-

ROPE database (Pernigotti et al., 2016) were used to estab-

lish which individual chemical measurements were likely to

be characteristic of each source, with several measurements

appearing in multiple categories (e.g. total EC). All proxy

and composite measurements (except total EC, as multiple

organic carbon species are represented in the dataset, but

elemental carbon should be independent of the majority of

these), AMS measurements, and general atmospheric mea-

surements including temperature, relative humidity and ac-

tinic flux measurements were excluded from models entirely.

Composite measures duplicate selected individual measure-

ments; atmospheric measurements complicate model inter-

pretation and are more likely to be useful as random effects

terms in a mixed effects model approach (not pursued in the

present study due to the complexity of model parameterisa-

tion and measurement uncertainties). Multiple linear regres-

sion models were then constructed for each assay and season

for each category, using both mass-normalised and volume-

normalised data.

MLR models further reinforced that not all putative

sources and components of PM2.5 contribute equally to OPm

response (Table 4). OPm assay response models based on

measurements characteristic of vehicle emissions, coal/fossil

fuel combustion and biomass burning gave accurate and ro-

bust predictions of OPm, and these are important contribu-

tors to PM (reported as mass per volume) in Beijing urban

background sites (Yu et al., 2013; Zheng et al., 2005). As ex-

pected, OPv models also gave very good predictions for these

source profiles but additionally gave improved models of

OPv for biogenic SOA and dust compared with the OPm data.

Although the same base sets of predictors for each source

were used for each model (season, OP assay and PM normal-

isation), there was only partial overlap of the final selected

predictors between models from the same source and sea-

son, again illustrating the complex dynamic between OP and

overall mass/volume composition. As with the PLSR models,

the most important contributors to regression models were

often not redox-active species, indicating that they are prob-

ably influencing or contributing to the oxidation state of the

redox-active PM components. As observed in the univariate

and multivariate analyses, the summer samples gave less ro-

bust linear regression models (and thus OP predictions) from

both mass- and volume-normalised data. However, AA and

DTT measurements produced the best models for all source

contributions, indicating that these assays might be most op-

timal for measuring OP in an urban environment, as they ap-

pear to reflect the variety and composition of PM sources

well.

Vehicle emissions, biogenic SOA and winter biomass

burning contributions to AA and DTT response (as mea-

sured by the model R2 value) were generally comparable

across both assays, contrasting with the findings of Fang et

al. (2016), who observed greater OP response in positive ma-

trix factorisation–chemical mass balance (PMF-CMB) mod-

els associated with traffic emissions for AAv over DTTv, as
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Table 3. Characteristic loadings most influential in PLSR models of OPm as defined by ordered variable importance in projection for each

model. Upward arrows indicate positive correlation with the assay measurement, downward arrows for inverse correlation and ∗ for p < 0.05

in Spearman correlation of the feature with the assay in the univariate analysis.

EPRm winter AAm winter DTTm winter DCFHm winter

feature VIP feature VIP feature VIP feature VIP

indeno(1,2,3-cd)-

pyrene∗
2.12 ↑ cis-pinonic acid∗ 1.44 ↑ SO2

∗ 1.46 ↓ NH+
4 2.16 ↑

acenaphthylene 2.02 ↑ Cl−∗ 1.42 ↑ Ca2+∗ 1.40 ↑ chrysene∗ 1.61 ↓

benzo(ghi)-

perylene∗
2.01 ↑ total OC∗ 1.33 ↑ Fe∗ 1.37 ↑ benzo(b)-

fluoranthene∗
1.59 ↓

benzo(a)pyrene∗ 2.01 ↑ MOOOA∗ 1.30 ↑ fluorene 1.34 ↑ RH8∗ 1.59 ↑

fluorene 1.82 ↑ pyrene∗ 1.30 ↑ acetaldehyde∗ 1.33 ↓ benzo(a)anthracene* 1.58 ↓

benzo(a)-

anthracene∗
1.81 ↑ 2-methylthreitol 1.29 ↑ phenanthrene∗ 1.33 ↑ pyrene∗ 1.58 ↓

dibenzo(a,h)-

anthracene∗
1.80 ↑ ORG∗ 1.29 ↑ acetone∗ 1.33 ↓ LOOOA∗ 1.57 ↑

phenanthrene∗ 1.77 ↑ benzo(k)-

fluoranthene∗
1.29 ↑ Cl−∗ 1.31 ↑ fluoranthene∗ 1.56 ↓

chrysene∗ 1.66 ↑ 3-methyl-2,3,4-

trihydroxy-1-butene∗
1.28 ↑ benzene∗ 1.31 ↓ RH120∗ /

RH240∗
1.55 ↑

1.55 ↑

naphthalene∗ 1.62 ↑ fluoranthene∗ 1.27 ↑ toluene∗ 1.30 ↓ K+∗ 1.51 ↑

EPRm summer AAm summer DTTm summer DCFHm summer

feature VIP feature VIP feature VIP feature VIP

LOOOA 2.59 ↑ ORG∗ 1.80 ↑ OH 1.58 ↑ cis-pinonic acid∗ 2.38 ↓

T8/T120/T240 2.28/2.15/

2.08 ↑

cis-pinonic acid∗ 1.62 ↑ dibenzo(a,h)-

anthracene∗
1.51 ↑ C31∗ 1.76 ↓

O3 2.00 ↑ MOOOA∗ 1.58 ↑ C26∗ 1.48 ↑ pinic acid∗ 1.74 ↓

RO2
∗ 1.76 ↑ cholesterol 1.58 ↓ benzo(a)-

pyrene∗
1.48 ↑ acetonitrile∗ 1.69 ↑

galactosan∗ 1.74 ↓ naphthalene∗ 1.57 ↑ total OC∗ 1.46 ↑ 3-methyl-2,3,4-

trihydroxy-1-butene

1.65 ↓

K+ 1.70 ↑ palmitic acid∗ 1.49 ↑ C30∗ 1.46 ↑ benzo(ghi)-

perylene

1.62 ↓

17a(H)-22,29,30-

trisnorhopane (C27a)

1.55 ↓ RH8 1.39 ↓ C28∗ 1.43 ↑ C32 1.61 ↓

cis-2-methyl-1,3,4-

trihydroxy-1-butene

1.55 ↑ stearic acid∗ 1.39 ↑ benzo(ghi)-

perylene∗
1.41 ↑ dibenzo(a,h)-

anthracene∗
1.61 ↓

Ba 1.47 ↓ benzo(ghi)-

perylene∗
1.36 ↑ C33∗ 1.40 ↑ acetaldehyde∗ 1.61 ↑

RH8 1.46 ↓ benzo(a)-

pyrene∗
1.34 ↑ C29∗ 1.39 ↑ isoprene∗ 1.61 ↓

well as biomass burning for DTTv over AAv in multiple loca-

tions in the southeastern United States. However, a more re-

cent study conducted in the coastal areas adjacent to Beijing

(Liu et al., 2018) observed similar seasonality to the present

study in the DTT OPm response. Vehicle emissions (Wang

et al., 2016; Yu et al., 2019), coal combustion (Ma et al.,

2018; Yu et al., 2019), biomass burning (Ma et al., 2018)

and dust (Yu et al., 2019) sources have been shown in other

studies using PMF models to contribute to OPv in Beijing,

all using the DTT assay. Cooking markers (palmitic acid,

stearic acid and cholesterol) contributed a substantial pro-

portion of the known organic fraction of the PM mass and

volume concentrations (see Fig. 4) but did not contribute ro-

bustly to the modelled OP response for either normalisation

type, suggesting that either (i) they are not strongly contribut-

ing to or affected by oxidative conditions in PM or (ii) their

variation over the sampling period cannot be linearly mod-

elled. Similarly, biomass burning markers contribute a com-

parable number of variables in the model base sets but ap-

pear to contribute much more significantly to the OPv than

to the OPm response. Biogenic SOA and dust models (which

incorporate K+, Na+, Ca2+, Cl−, Al, Ti, Mn, Fe and Zn) ex-

plained a significant proportion of winter OPv responses but

were only strongly correlated with winter AA and DTT for

mass-normalised models. These observations suggest these

sources contribute to PM OPv by total quantity rather than

through their particularly high intrinsic OP – i.e. their mass

as a proportion of the PM mass is smaller, but their concen-

tration per volume is high – and the AA and DTT assays

have a notable selectivity for these species over the EPR and

DCFH assays.

It should be noted that the MLR models represent a sub-

optimal prediction of the OP response from measured com-

ponents, as numerous species which are known source com-
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Figure 7. Principal component analysis loadings plot for all data

points. Points are coloured by measurement category; fully labelled

loadings are provided in Fig. S14. The plot is annotated with the

same orientation as the score plot to indicate the direction of visu-

alised trends for selected assays and for season from the latent vari-

able origin as shown in Fig. 6. In PC 1, the winter classification is

driven by increased gas radicals, n-alkanes, PAH, vehicle markers,

biomass burning markers, total OC and selected metals and SOA

markers; the summer classification is driven by increased tempera-

ture and photolysis, ozone (the single gas species in this section of

the plot), selected SOA markers and metals, and selected VOCs. In

PC 2, high AAm and DTTm response is associated with increased

SOA, transition metals, cooking markers, n-alkanes and PAH con-

centrations in samples; low AAm and DTTm response associated

with low VOCs, gases and selected meteorological parameters (rel-

ative humidity).

ponents (e.g. PAHs from combustion processes and those

which distinguish gasoline from diesel vehicle emissions,

or VOCs relevant to biomass burning such as methanol or

acrolein) could not be included in models. Not all measure-

ments which were associated in the literature with a particu-

lar assay response passed the stages of variable selection for

mass-normalised models, which could reflect a lower limit of

detection either in the OPm assay responses or in the individ-

ual component measurements. Synergistic effects between

individual measured components (e.g. transition metals with

organic components such as quinones or carboxylic acids,

Wang et al., 2018) cannot be interpreted from linear models

when the complexation and oxidation states of the contribut-

ing compounds are essentially unknown. MLR models do not

fully account for the proportion of each measurement which

may originate from multiple emissions sources, and PMF-

CMB or mixed effects models can address this issue more ad-

equately. Validation of both the multivariate and MLR mod-

els using secondary datasets (both from Beijing and other lo-

cations) is also needed prior to their future implementation.

4 Conclusions

This study presents a detailed and comprehensive analysis

of PM2.5 oxidative potential and particle-bound ROS con-

centrations measured in winter 2016 and summer 2017 dur-

ing the APHH-Beijing campaign at a central site in Beijing,

China. Four acellular methods for measuring OP were ap-

plied, providing a broad assessment of the oxidative prop-

erties of particles including particle-bound ROS concen-

trations, superoxide radical production and catalytic redox

activity. We correlated the acellular assay responses with

an extensive and comprehensive dataset including 107 ad-

ditional atmospheric measurements (particle components,

trace gases, meteorological parameters) to delineate chem-

ical particle components and atmospheric processes and

sources responsible for driving PM2.5 OP. Higher volume-

normalised and mass-normalised OP values across all assays

were observed in the winter compared to the summer. An

inverse correlation was observed between AAm and DTTm

with overall PM2.5 mass concentrations; i.e. days with higher

PM2.5 mass concentrations have lower intrinsic OP values.

This is likely due to an increase in OP-inactive material in

high PM2.5 mass days and/or a mass fraction that is at present

undetermined and highlights that a focus on total PM expo-

sure only does not necessarily capture accurately the oxidis-

ing properties and therefore certain toxicological effects of

PM.

Univariate analysis with the additional 107 measurement

parameters acquired during the APHH-Beijing campaign

highlight significant assay-specific responses to chemical

components of PM2.5, as well as a seasonal difference in

what components drive aerosol OP. It also highlights the im-

portance of considering both volume-normalised and mass-

normalised OP metrics when drawing conclusions on the role

of chemical composition on OP, as assay correlations vary

significantly between the two metrics. The data presented in

this study illustrate that mass-normalised OPm values pro-

vide a more nuanced picture of specific chemical compo-

nents and sources that influence intrinsic OP, whereas many

more correlations with OPv values are observed, likely due

to collinearity of many chemical components with overall

PM2.5 mass concentrations driven by changes in meteoro-

logical conditions. Both metrics, mass-normalised OPm as

well as volume-normalised OPv, are important to consider

with OPv a more relevant metric with respect to exposure

and epidemiological studies, whereas OPm provides more in-

sight into what sources and what composition drives OP con-

centrations in particles. Furthermore, OPm may allow easier

study and site inter-comparisons.
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Figure 8. PLSR score plot for AAm assay. Model performance parameters given in Table 2. (a) Winter samples; (b) summer samples. Points

coloured by overall AA assay response for both seasons. Red bar indicates 2× SD for all scores; orange dotted line indicates 1× SD for all

scores. Models which have only one latent variable have the x axis replaced by date for easier visualisation.

Figure 9. PLSR score plot for DTTm assay. Model performance parameters given in Table 2. (a) Winter samples; (b) summer samples.

Points coloured by overall DTT assay response for both seasons.

The multivariate statistical analyses encapsulated the ob-

servations from the univariate analyses into comprehensive

single models of OP relating to PM composition, mirroring

the observations in the univariate analyses that OPm mea-

sured by each assay is related to different compounds present

in the particle. It is clear from these differences that assay

chemistry must contribute directly to its chemical selectivity,

as the independent chemical measurements were given equal

analytical weight with respect to each assay. The relation-

ship between each assay and the independent measurements

also confirmed that while there may exist a correlative rela-

tionship between an assay and non-redox-active compounds

such as n-alkanes or PAHs, the assay is more likely to be

measuring either secondary oxidation products of these pri-

mary compounds or species co-emitted that contribute to

particle OP. This represents a gap in the chemical analysis

of these samples, and more detailed redox-active compound

speciation is required, especially for functionalised organics.

Furthermore, variable selection of measurements and eval-

uation through multiple linear regression models indicated

that OPm is well predicted by measurement panels character-

istic of combustion sources, particularly (exhaust and non-

exhaust) vehicle emissions and biogenic SOA. This study

demonstrates further that these commonly applied acellular

Atmos. Chem. Phys., 21, 5549–5573, 2021 https://doi.org/10.5194/acp-21-5549-2021
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Table 4. R2 values for optimised subset multiple linear regression models of relevant source contributions. R2 values greater than 0.7 are

highlighted in bold. Full model performance indicators are provided in Sect. S11 of the Supplement, including all model terms, residuals,

coefficients and p values.

EPR R2 AA R2 DTT R2 DCFH R2

source model winter summer winter summer winter summer winter summer

(µg µg−1) vehicle emissions 0.88 0.72 0.95 0.73 0.91 0.80 0.89 0.62

biomass burning 0.41 0.29 0.49 0.47 0.45 0.41 0.58 0.31

coal/fossil fuel combustion 0.84 0.56 0.88 0.61 0.86 0.68 0.75 0.71

cooking markers 0.19 0.11 0.66 0.20 0.39 0.36 0.08 0.24

dust 0.23 0.23 0.88 0.47 0.72 0.46 0.50 0.26

biogenic SOA 0.55 0.35 0.95 0.74 0.79 0.61 0.55 0.70

(µg m−3) vehicle emissions 0.94 0.79 0.97 0.74 0.96 0.87 0.94 0.86

biomass burning 0.85 0.23 0.89 0.24 0.72 0.62 0.78 0.53

coal/fossil fuel combustion 0.91 0.69 0.95 0.62 0.88 0.77 0.93 0.91

cooking markers 0.10 0.08 0.09 0.22 0.10 0.44 0.11 0.49

dust 0.79 0.21 0.92 0.30 0.78 0.54 0.73 0.63

biogenic SOA 0.87 0.36 0.84 0.59 0.80 0.63 0.94 0.90

assays are sensitive to a wide and differing range of chem-

ical components, highlighting the advantage of using these

assays as a they encompass multiple chemical components

and sources of aerosol into an integrated measurement. Fur-

ther comprehensive work is needed to identify the direct links

between these OP assays and biological and toxicology data.

Code availability. All R code used for statistical data analysis

and visualisation can be found at the Beijing GitHub repository,

https://github.com/katewolfer/Beijing (last access: 6 April 2021,

https://doi.org/10.5281/zenodo.4665696, Wolfer, 2021). All code

was written by Kate Wolfer, except for the named package depen-

dencies stated in the code.

Data availability. All statistical analyses, processed data and

model parameters are available in the Supplement. Raw data have
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