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Enhanced Primary Droop Controller for Meshed DC Micro-Grids with

Overvoltage Protection

A.-C. Braitor, G. C. Konstantopoulos and V. Kadirkamanathan

Abstract— Droop control represents the key grid-forming
control strategy in modern micro-grids consisting of multiple
distributed energy resources (DERs), implemented at the pri-
mary control layer of the hierarchical control architecture. In
this paper, an enhanced droop control methodology for meshed
DC micro-grids with constant power loads (CPLs) is proposed,
which inherits the conventional droop control features and ad-
ditionally guarantees a crucial overvoltage protection property
of each DER unit, independently from each other or the loads.
Since one of the main challenges in DC micro-grids is that CPLs
introduce negative impedance characteristics that can lead to
system instability, in this paper, based on the proposed novel
control structure and using nonlinear ultimate boundedness
theory, an upper limit for the output voltage is rigorously
guaranteed. In addition, asymptotic stability to the desired
equilibrium for the closed-loop system is analytically proven,
and detailed conditions are derived to guide the control design.
Simulation testing is performed for a meshed DC micro-grid to
verify the theoretical contribution and the effectiveness of the
proposed primary droop controller.

I. INTRODUCTION

Nowadays, conventional electrical power grids are wit-

nessing a steady increase of renewable energy sources (RES).

Simultaneously, conventional power plants based on syn-

chronous generators, which provide important grid functions

such as inherent frequency support from their mechanical

inertia or grid restoration capability, are being replaced by

RES and energy storage systems (ESS). As a result, these

DER units are expected to behave in a similar manner and

provide ancillary services to the main grid. Since the majority

of the DER units is integrated to the grid via power electronic

converters, their desired operation lies on the suitable control

design of their converter components.

As DER units are distributed in the power grid, neigh-

bouring DERs and local loads can form small-scale power

networks to utilise clean electricity within their premises,

resulting in the so called micro-grids. Among the different

micro-grid types, DC micro-grids are becoming increasingly

interesting since most of the DER units operate in DC

power, i.e., PV systems, batteries, fuel cells, etc. Hence, the

control of the DER converter units within a DC micro-grid

is crucial for providing a stable and reliable DC network
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architecture, and is mainly formed in a hierarchical control

structure [1], [2]. As reported in [3]–[5], the standard primary

control approach, that is located at the lower level of the

hierarchical control architecture and is responsible for the

stability of the micro-grid, is based on the concept of droop

control. However, droop control strategies increase the output

resistance of the DER units which places them further away

from an ideal (current/voltage) source. This results in the

local DC bus voltage being more dependent on the load

coupled to the system [6].

Particularly, in DC micro-grids, ensuring system stability

is a major challenge especially in the presence of CPLs.

Unlike passive loads, CPLs, also known as active loads,

enable the power conditioning at the load side and behave

as negative impedances in the small-signal model analysis;

thus, introducing instabilities in a DC micro-grid system

[7], [8]. Safe operating regions have been calculated in [6]

to provide a useful micro-grid design guideline. Several

methods aimed to increase the system stability margin using

different approaches, i.e. via introducing passive damping

[9], additional filter or energy storage devices [10] to deal

with the voltage oscillations at the DC bus, virtual resistance

[11] to adjust the current flowing through the source and

DC link; virtual capacitance [12] to reduce the size and

weight of DC-link capacitor. In all of these approaches in

order to guarantee small-signal stability with a CPL, the

condition imposed by the impedance inequality criterion

must be always met.

Since DC capacitors are customary used at the output of

each DER converter unit to stabilize the output voltage, they

also introduce a maximum voltage limit. Hence, apart from

the theoretical analysis, the need of protecting the power

units from overvoltages through control has emerged [13],

[14]. In plain words, overvoltages happen when the voltage

in a circuit, or part of the circuit, increases above its designed

limit, causing potential damage in the converter components

or the grid. Potential limitations and the main challenges

when experiencing such situations have been discussed in

[15]. In [16], a comparison, by means of optimal power

flow (OPF), between centralized and local voltage control

solutions have been conducted to mitigate the voltage rise

impact. Several methods, for instance [17], [18], aim to

reduce the active power injected by a source until its local

voltage complies with the operational requirements, com-

monly referred to as active power curtailment (APC). In [19],

the authors propose a methodology to identify and locate

transient overvoltages using wavelet packet decomposition

(WPD) and general regression neural networks (GRNN)



theory. In the same framework, a protection structure for

locating any type of fault in meshed micro-grids has been

proposed in [20]. However, incorporating the overvoltage

protection at the primary control layer, in order to maintain

the local DER voltage limitation even during transients,

continues to remain an open problem.

In this paper, an enhanced primary droop controller is

proposed for meshed DC micro-grids with local CPLs that

guarantees an upper limitation for every DER unit local

output voltage independently. In particular, motivated by

the recently developed state-limiting PI (sl-PI) control in

[21], a novel droop control structure is first proposed and

analyzed. Using nonlinear ultimate boundedness theory, it

is rigorously proven that every node voltage within the

DC micro-grid network architecture remains bounded below

a desired maximum value. Then, closed-loop stability is

analytically investigated and sufficient conditions are derived

to inform the control design and ensure a stable DC micro-

grid system despite the multiple CPLs. Finally, the theoretical

contribution of the paper and the effectiveness of the novel

primary droop controller is verified by simulating a meshed

DC micro-grid with multiple DER units and CPLs.

The rest of this section introduces some notations and

revisits basic graph theory preliminaries used throughout

the entire manuscript. Section II introduces the meshed DC

micro-grid model with local CPLs. In Section III, the novel

droop control strategy is proposed. Closed-loop stability of

the entire micro-grid is guaranteed in Section IV, while in

Section V the simulation results of a DC micro-grid are

presented. Finally, conclusions are drawn in Section VI.

A. Common notations

Let v ∈ R
n represent the associated vector of an n-

dimensional sequence (v1, v2, . . . , vn), and [v] ∈ R
n×n the

associated matrix, whose diagonal entries are the elements

of v. Consider 1n ∈ R
n the n-dimensional vector with all

entries equal to one, and 0n×n ∈ R
n×n the n-dimensional

matrix with all the entries equal to zero. Let I be the ordered

index set, and In the identity matrix. For v ∈ R
n, define the

column vector-valued, and diagonal matrix-valued functions

sinv, cosv, and [sinv], [cosv], respectively.

B. Graph theory preliminaries

Let G (V, E) be a weighted undirected and connected loopy

graph with the set of vertices V and the set of edges E ⊆
V × V . The notation εij = (i, j) ∈ E denotes the edge that

connects the nodes i and j, where (i, j) is an unordered

node pair. Since the graph G is connected, there exists a

spanning tree connecting all the nodes of G (with n − 1
edges). The Laplacian matrix of the loopy graph G is defined

as LG = L+D, where D is diagonal and contains the self-

loops of each node on the main diagonal.

II. DC MICRO-GRID MODEL

A common meshed DC micro-grid architecture is depicted

in Figure 1, consisting of a finite number of nodes n, each

of the nodes representing a controllable DER unit supplying

a local CPL and connected with each other through resistive

Fig. 1: Generic framework of a meshed DC micro-grid.

lines. Note that if a different micro-grid architecture was

considered, where some nodes include a load but not a DER

source, the system can still be transformed into the one in

Figure 1 using the Kron-reduced network approach [22]. In

Figure 2, the model of the voltage source converter that

integrates each DER unit with each node j is depicted. The

dynamic equations of the capacitor voltages for an arbitrary

node j can be obtained by employing Kirchhoff’s laws

Cj V̇j = iinj − ij , (1)

where Cj is the output capacitor, Vj is the output voltage,

while iinj and ij represent the input and output current,

respectively, with iinj also used as the control input, for

∀j ∈ I. This is a typical system representation where an

inner current controller is applied to the converter, resulting

in a fast regulation of the inductor current to the value iinj
[2]. One can express the output current of the converter as

ij =
Pj

Vj

+
∑

k∈Nj

ijk, (2)

where Nj represents the neighbourhood of the node j, in the

induced graph G described by the meshed DC network, i.e.,

Nj ∈ V : εjk ∈ E .

Remark 1. Note that the configuration represents just a

generic model of n-sourced units that could be incorporated

within the microgrid via different power converter configu-

rations (buck, boost, buck-boost, AC/DC), where a fast inner

current control loop is considered.
Considering a steady-state voltage value for the j-th node

denoted by Vje, by taking the partial derivative of the output
current ij from (2) with respect to the output voltage Vj ,
one can obtain the symmetric admittance matrix Y of the
DC micro-grid, in the following form:

Y=


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If there is no connection between the vertices j and k, i.e.,

εjk /∈ E , the corresponding Y matrix entry will be zero, i.e.,
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a) Voltage source converter model.

b) Simplified converter model.

Fig. 2: Integration of a DER unit in a meshed DC micro-grid

through a power converter.

1
Rjk

= 0. The admittance matrix Y can be rewritten as

Y = L−D, (3)

with D = diag
{

Pj

V 2

je

}

positive-definite and L positive-

semidefinite matrices. Note that L represents the Laplacian

matrix of the graph G induced by the DC micro-grid, while

D incorporates the self-loops of the nodes.

III. PROPOSED CONTROL ARCHITECTURE

The end goal of this work is to design a primary controller

for the DC micro-grid that inherits the conventional and

widely used droop controller, whilst guaranteeing an over-

voltage protection for each DER unit (node) independently.

The conventional droop control requires each node voltage

Vj to satisfy the following expression at the steady-state:

Vj = V ∗ −mjij + xset
j , (4)

where V ∗ is the rated voltage, mj is the droop coefficient

and xset
j is a desired signal or correction term obtained

from the supervisory controller in the hierarchical control

architecture. Note that xset
j can be set to 0, which is a

common approach in islanded DC micro-grids [23], but

generally, it can represent a constant or piecewise constant

value (due to the time-scale separation difference between

primary and supervisory control).

This paper investigates only the primary control dynamics,

and in order to achieve the desired goal, as mentioned above,

a novel primary droop control technique is proposed in the

sequel.

A. Droop control design with overvoltage protection

Motivated by the development of the sl-PI controller in

[21], the proposed droop control strategy defines the control

input, iinj , in the following manner:

iinj = −gjVj + Imaxjsinσj , (5)

with σj constructed to follow the nonlinear dynamics

σ̇j =
kj

Imaxj

(V ∗ − Vj −mjij + xset
j )cosσj , (6)

that incorporates the droop control, with the droop coefficient

mj satisfying the following inequality:

mj < 1. (7)

Substituting the control input from (5) into the open-loop

system (1), it yields

Cj V̇j = −gjVj + Imaxjsinσj − ij . (8)

By taking the following continuously differentiable

energy-like function for each node j:

Wj =
1

2
CjV

2
j , (9)

and by calculating its time derivative, it becomes

Ẇj = −gjV
2
j +VjImaxjsinσj−Vj





Pj

Vj

+
∑

k∈Nj

ijk





= −gjV
2
j +VjImaxjsinσj−



Pj+Vj

∑

k∈Nj

ijk



, (10)

where Vj

∑

k∈Nj
ijk represents the power fed by the j−th

converter to the neighbouring converters through every εjk
edge. Considering that Vj

∑

k∈Nj
ijk could be both positive

or negative, this leads to the scenario where similarly the

total power Pj+Vj

∑

k∈Nj
ijk could be positive or negative.

Hence, the boundedness of the voltage Vj is not straight-

forward. As a result, the proof can be divided into the two

following distinct cases:

a) Case 1: Pj+Vj

∑

k∈Nj
ijk ≥ 0

From equation (10), it is clear that

Ẇj≤−gjV
2
j +VjImaxjsinσj≤−gj |Vj |

2+Imaxj |Vj |. (11)

Let gj = ḡj + ǫj > 0, with ḡj > 0 and ǫj representing an

arbitrarily small positive constant. In that case, (11) becomes

Ẇj ≤ − (ḡj + ǫj) |Vj |
2 + Imaxj |Vj |

≤ −ǫj |Vj |
2, ∀ |Vj | ≥

Imaxj

ḡj
. (12)

According to (12), the solution Vj (t) is uniformly ultimately

bounded, and every solution starting with the initial condition

Vj (0), satisfying

|Vj (0) | ≤
Imaxj

ḡj
, (13)

will remain in this range for all future time, i.e.

|Vj (t) | ≤
Imaxj

ḡj
, ∀ t ≥ 0. (14)

To ensure that each voltage Vj is bounded below a maximum

voltage V max, the control parameters, ḡj and Imaxj can be

selected to satisfy

Imaxj

ḡj
= V max. (15)



This completes the design of the control parameters ḡj and

Imaxj , to guarantee an upper bound for the output voltage

Vj , when Pj+Vj

∑

k∈Nj
ijk ≥ 0.

b) Case 2: Pj+Vj

∑

k∈Nj
ijk < 0

In the islanded microgrid case, considering the existence

of constant power loads with Pj > 0, at least one converter

(e.g. k-th converter) should be feeding the loads and/or other

(up to n − 1) converter units, based on Kirchhoff’s laws.

Hence, if the corresponding power of that particular source

is Pk+Vk

∑

l∈Nj
ikl > 0, then since Pk+Vk

∑

l∈Nj
ikl =

Vk

(

Pk

Vk
+
∑

l∈Nj
ikl

)

, it yields that Vk > Vl, and equivalently

from Case 1, there is Vk ≤ V max. However, since for the

j−th source, the output power is negative Pj < 0, then there

always exists a spanning tree in the induced connected graph

G such that Vj < Vl < Vk which leads to Vj < V max.
Therefore, in both cases, an upper bound for the output

voltage is guaranteed, i.e. Vj(t) ≤ V max, at any time instant,

i.e., even during transients.

IV. STABILITY ANALYSIS

Prior to proceeding to the stability analysis, let us define

the following lemmas:

Lemma 1. Consider A and B two Hermitian matrices,

with λ1 ≤ λ2 ≤ . . . ≤ λn the eigenvalues of A, and β1 ≤
β2 ≤ . . . ≤ βn the eigenvalues of B. Then, the following

inequality holds

λi + β1 ≤ ηi ≤ λi + βn,

where ηi, with i ∈ I, represent the eigenvalues of the

Hermitian matrix A+B.

Proof. presented in Chapter 7, in [24].

Lemma 2. With S a positive-semidefinite real symmetric

matrix, and D a positive-definite real symmetric matrix, the

following statements hold:

1) SD (or DS) is diagonalizable.

2) SD (or DS) has only real eigenvalues, and same index

of inertia as matrix S.

Proof. By polar decomposition SD (or DS) is of the form

SD = UP , with U unitary and P =

√

(SD)
T
SD is a

positive-semidefinite symmetric matrix. Consider Q unitary

that satisfies Q2 = U . Note that M = Q−1 (SD)Q = QPQ
is symmetric, and by spectral decomposition M = V ΛV −1,

with V unitary and Λ diagonal with the eigenvalues of M
(and same index of inertia as SD) on the main diagonal.

One can infer that (QV )
−1

SD (QV ) = Λ, with QV unitary.

Statement 1) is proved.

Matrix D
1

2 (SD)D− 1

2 = D
1

2SD
1

2 is congruent with S,

hence, according to Sylvester’s law of inertia, SD has the

same index of inertia as matrix S. The proof of statement 2)
is presented in Chapter 7, in [24].

Consider now the closed-loop micro-grid system written

in matrix form:

V̇ = C−1 (−gV + Imaxsinσ − i) (16)

σ̇ = I−1
maxk [cosσ] (V

∗
1n − V −mi) , (17)

where C = diag {Cj}, V = [V1 . . . Vn], g = diag {gj},

Imax = diag {Imaxj}, i = [i1 . . . in], σ = [σ1 . . . σn],
k = diag {kj}, m = diag {mj}. Considering an equilibrium

point (Ve, σe) of the closed-loop system (16)-(17), with

σie =
(

−π
2 ,

π
2

)

, the following theorem can be formulated

that guarantees stability of the entire droop-controlled DC

microgrid with a CPL.

Theorem 1. The equilibrium point (Ve, σe) is asymptoti-

cally stable if the controller parameter gj satisfies

gj >
Pj

V 2
je

, ∀j ∈ I. (18)

Proof. The corresponding Jacobian matrix of system (16)-

(17) has the following form:

J=

[

−C−1g − C−1Y C−1Imax [cosσe]
I−1
maxk [cosσe] (D +mY ) 0n×n

]

.

Replacing the admittance matrix Y with its expression

from (3), it yields

J=

[

−C−1g − C−1 (L−D) C−1Imax [cosσe]
I−1
maxk [cosσe] (D +m (L−D)) 0n×n

]

.

The characteristic polynomial will look as follows:

|λI2n − J | = |λ2In + λC+K| = 0, (19)

with

C = C−1 (g + L−D)

K = C−1 [cosσe]
2
k (mL+ (1−m)D) .

By left multiplying (19) with |m−1k−1 [cosσe]
−2

C| > 0,

one obtains

|λ2m−1k−1 [cosσe]
−2

C + λC+K| = 0, (20)

with

C = m−1k−1 [cosσe]
−2

(g + L−D)

K =
(

L+m−1 (1−m)D
)

.

Notice that matrix K is symmetric and matrix C diagonal-

izable according to Lemma 2, with P−1
CP = Λ, with P

unitary and Λ diagonal, having the same index of inertia as

matrix C. Equation (20) becomes

|λ2m−1k−1 [cosσe]
−2

C + λP−1ΛP +K| = 0,

or equivalently

|λ2Pm−1k−1 [cosσe]
−2

CP−1 + λΛ + PKP−1| = 0,

which is a quadratic eigenvalue problem (QEP) with Λ diag-

onal having the same index of inertia as matrix C, and the

similarity transformation Pm−1k−1 [cosσe]
−2

CP−1 and

PKP−1 symmetrical since P is unitary (P−1 = PT ), and

isospectral with m−1k−1 [cosσe]
−2

C and K, respectively.

According to the QEP theory, if the matrix coefficients are

positive-definite, then the eigenvalues are negative, i.e., λ <
0, thus the Jacobian is Hurwitz. Matrix m−1k−1 [cosσe]

−2
C

is already positive definite, hence the two remaining condi-

tions are:
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Fig. 3: Meshed DC micro-grid under investigation.

1) Λ ≻ 0, or equivalently C has positive eigenvalues.

Since matrix C is represented by a product of two sym-

metric matrices, one of them being positive-definite,

i.e. m−1k−1 [cosσe]
−2 ≻ 0, according to Sylvester’s

law of inertia, one can investigate the sign of the

remaining symmetric matrix,

g + L−D ≻ 0.

In the worst case scenario, by employing Lemma 1,

the above condition becomes in scalar form

gj + 0−
Pj

V 2
je

> 0,

which holds true provided that (18) is satisfied.

2) K ≻ 0 that, in the worst case scenario according to

Lemma 1, in scalar form becomes

0 +
1

mj

(1−mj)
Pj

V 2
je

> 0,

which is true given the appropriate selection of the

droop coefficient as specified in (7).

This completes the proof.

V. SIMULATION RESULTS

A DC microgrid portrayed in Figure 3, with the parameters

specified in Table I, is considered for simulation testing, con-

sisting of 7 DER units integrated via buck converters, feeding

local CPLs, and connected to each other via Rij lines.

The expression of the micro-grid’s corresponding admittance

is introduced at the top of the following page. The main

objective of the proposed controller is to regulate each node

voltage close to V ∗ = 100V based on the droop controller

concept, while guaranteeing an overvoltage protection.

The system dynamic response is presented in Figure 4.

During the first 0.02s the converters operate in conventional

droop control mode, as the constant correction term xset =
[0 0 0 0 0 0 0]. Prior to the first load change at 0.01s, the

load power demand is P = [500 200 100 50 300 20 300].
The output voltages drop just below the rated value of 100V
(Figure 4b), as expected by the droop control feature, and

(a) Output currents

(b) Output voltages

Fig. 4: Simulation results of the DC microgrid equipped with

the proposed controller.

the output currents are all positive, thus they all feed their

local loads, as it can be observed in Figure 4a.

At t = 0.01s, the load power demand increases to P =
[800 500 300 150 400 100 500]. From Figure 4b, it can be

noticed that the output voltages drop even lower than before,

while the output currents increase to satisfy the new power

demand as reported in Figure 4a.

While maintaining the power demand constant, at

t = 0.02s, the correction term becomes xset =
[2.94 0 2.1 0 2.52 0.7 0], representing possible input signals

from a supervisory controller. One can see in Figure 4 that

several voltages increase above the rated 100V , while current

i4 becomes negative. That means that the other six converters

are feeding not only the load P4, but also converter 4.

To test the overvoltage protection, at t = 0.03s the correc-

tion term becomes xset = [10.08 2.1 7.56 2.52 9.45 2.8 1.4].
The output voltages V3, V5, V6 are successfully limited to

TABLE I: System and control parameters

Parameters Values

C [µF ] [250 50 200 75 100 350 150]

m [0.42 0.42 0.21 0.21 0.21 0.14 0.14]

Imax 21 × 103

g 200

k 2 × 107

[R12 R23 R24 R34 R45 R56 R57][Ω] [1 1.5 2 1.25 0.5 0.75 1.75]
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











V max = 105V (Figure 4b), verifying the developed theory,

while the output currents i2, i4, i6 become negative. That

is converters 2, 4, 6 and their local loads, P2, P4, P6, are

fed by the other four converters.

VI. CONCLUSIONS

In this paper, an enhanced droop controller with overvolt-

age protection has been presented for meshed DC micro-

grids consisting of multiple DER units and CPLs. Using

nonlinear systems theory, an ultimate bound for the voltage

of each source was analytically proven. Closed-loop stability

was rigorously guaranteed given some straightforward con-

ditions are met. The theoretical findings and the effectiveness

of the proposed approach were verified through simulation

testing.

The main aim of this paper was to present for the first time

this novel primary droop control structure. Future research

will focus on the combination of the proposed controller

with supervisory control methods to obtain xset based on

centralised or distributed optimal control, in order to finalise

the hierarchical control architecture in DC micro-grids.
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