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Abstract

Active Learning (AL) is a method to iteratively

select data for annotation from a pool of un-

labeled data, aiming to achieve better model

performance than random selection. Previous

AL approaches in Natural Language Process-

ing (NLP) have been limited to either task-

specific models that are trained from scratch

at each iteration using only the labeled data

at hand or using off-the-shelf pretrained lan-

guage models (LMs) that are not adapted ef-

fectively to the downstream task. In this pa-

per, we address these limitations by introduc-

ing BALM; Bayesian Active Learning with pre-

trained language Models. We first propose to

adapt the pretrained LM to the downstream

task by continuing training with all the avail-

able unlabeled data and then use it for AL.

We also suggest a simple yet effective fine-

tuning method to ensure that the adapted LM is

properly trained in both low and high resource

scenarios during AL. We finally apply Monte

Carlo dropout to the downstream model to ob-

tain well-calibrated confidence scores for data

selection with uncertainty sampling. Our ex-

periments in five standard natural language un-

derstanding tasks demonstrate that BALM pro-

vides substantial data efficiency improvements

compared to various combinations of acquisi-

tion functions, models and fine-tuning meth-

ods proposed in recent AL literature.

1 Introduction

Active Learning (AL) is a method for training su-

pervised models in a data-efficient way (Cohn et al.,

1996; Settles, 2009). AL methods iteratively alter-

nate between (i) model training with the labeled

data available; and (ii) data selection for annotation

using a stopping criterion, e.g. until exhausting a

fixed annotation budget or reaching a pre-defined

performance on a held-out dataset. Data selection

is performed by an acquisition function that ranks

unlabeled data points by some informativeness met-

ric aiming to improve over random selection.

AL has been used in NLP for part-of-speech tag-

ging (Engelson and Dagan, 1996), parsing (Tang

et al., 2002), sentiment analysis (Li et al., 2012),

machine translation (Haffari et al., 2009) and qual-

ity estimation (Beck et al., 2013) among others. It

is especially useful in scenarios where a large pool

of unlabeled data is available but only a limited

annotation budget can be afforded; or where ex-

pert annotation is prohibitively expensive and time

consuming.

Traditional Bayesian AL methods use uncer-

tainty sampling (i.e. informativeness is measured

by predictive uncertainty) and typically require

probabilistic machine learning models to acquire

good uncertainty estimates for the candidate data

points. However, current work uses deep learning

models that provide large performance gains but

not well-calibrated confidence scores (Guo et al.,

2017), i.e. predictive softmax probabilities are er-

roneously interpreted as model confidence (Gal

and Ghahramani, 2016). Several approaches have

been proposed to calibrate the output probability

distribution of deep neural networks, such as tem-

perature scaling (Guo et al., 2017), Monte Carlo

dropout (Gal and Ghahramani, 2016) and model

ensembles (Lakshminarayanan et al., 2017). Using

uncertainty sampling with the vanilla output proba-

bilities for AL may lead to incorrect conclusions,

i.e. poor results may be attributed to the acquisi-

tion method, while the problem may be in fact the

lack of calibration. Still, only a few deep Bayesian

AL approaches apply a calibration method to the

posterior probabilities (Gal et al., 2017; Shen et al.,

2017; Siddhant and Lipton, 2018; Lowell and Lip-

ton, 2019; Ein-Dor et al., 2020).

Furthermore, most current AL approaches in

NLP use task-specific neural models that are

trained from scratch at each iteration (Shen et al.,

2017; Siddhant and Lipton, 2018; Prabhu et al.,

2019; Ikhwantri et al., 2018; Kasai et al., 2019).

However, task-specific models are usually out-

ar
X

iv
:2

10
4.

08
32

0v
1 

 [
cs

.C
L

] 
 1

6 
A

pr
 2

02
1



performed by pretrained language models (LMs)

adapted to end-tasks (Howard and Ruder, 2018; De-

vlin et al., 2019), making them suboptimal for AL.

Only recently, pretrained LMs such as BERT (De-

vlin et al., 2019) have been introduced in AL set-

tings (Yuan et al., 2020; Ein-Dor et al., 2020),

where they are transferred and used as downstream

classification models. Still, they are trained at each

AL iteration with a standard fine-tuning approach

that mainly includes a pre-defined number of train-

ing epochs, which has been demonstrated to be

unstable, especially in small datasets (Mosbach

et al., 2021; Zhang et al., 2020; Dodge et al., 2020).

Since AL includes both low and high data resource

settings, the AL model training scheme should be

robust in both scenarios.1

To address these limitations, we introduce

Bayesian Active Learning with pretrained language

Models (BALM). Contrary to previous work (Yuan

et al., 2020; Ein-Dor et al., 2020) that also use

BERT (Devlin et al., 2019), our proposed method

accounts for the varying data availability settings,

the instability of fine-tuning and the poor calibrated

confidence scores for data selection:

1. We propose to continue pretraining the LM

with the available unlabeled data to adapt it to

the task-specific domain. This way, we leve-

rage not only the available labeled data at each

AL iteration, but the entire unlabeled pool;

2. We further propose a simple yet effective fine-

tuning method that is robust in both low and

high resource data AL settings;

3. We improve data acquisition by providing

well-calibrated uncertainty estimates by using

Monte Carlo dropout (Gal and Ghahramani,

2016) instead of using the softmax output as

confidence scores.

We evaluate BALM on five standard natural lan-

guage understandings tasks using a full suite of

uncertainty-based acquisition functions, and com-

pare against strong baselines that are based on di-

versity sampling (i.e. BERT K-means clustering),

both uncertainty and diversity (e.g. BADGE (Ash

et al., 2020), ALPS (Yuan et al., 2020), ), and

random sampling. We show that BALM outper-

forms all combinations of acquisition functions and

1During the first few AL iterations the available labeled
data is limited (low-resource), while it could become very
large towards the last iterations (high-resource).

training methods across all datasets (§5). We also

find that our proposed training strategy yields sub-

stantial performance improvement when combined

with any acquisition function (§6).

2 Background and Related Work

2.1 Problem Formulation

Given a downstream classification task with C
classes, a typical pool-based AL setup consists of

a pool of unlabeled data Dpool, a modelM, a pre-

defined annotation budget b of data points and an

acquisition function a(.) for selecting k unlabeled

data points for annotation (i.e. acquisition size)

until b runs out. A validation set Dval is used to

evaluate M after each iteration. The goal is to

achieve data efficiency by selecting the least num-

ber of data points from Dpool for annotation and

achieve the highest performance on the validation

set Dval (Siddhant and Lipton, 2018). The perfor-

mance of the algorithm is assessed by training a

model on the actively acquired dataset and evaluat-

ing on a held-out test set Dtest.

AL systems are first initialized and subsequently

loop over Model Training, Data Acquisition and

Data Annotation steps for T iterations, or until a

pre-defined performance on Dval is reached.

2.2 Active Learning Initialization

To initialize AL, the total number of AL iterations

can be simply calculated by T = b
k

, where b is the

budget and k the acquisition size.2 Then, a data

initialization policy selects the first k data points

from Dpool to be annotated and update the labeled

dataset Dlab. The most common approach to select

the first batch of data for annotation is stratified

random sampling (Gal et al., 2017).

2.3 Model Training

In the first step of the AL loop, a model Mi is

trained with the available labeled data Dlab at itera-

tion i. IfMi is a task-specific architecture (Shen

et al., 2017; Siddhant and Lipton, 2018; Prabhu

et al., 2019), it is simply trained from scratch on

Dlab until convergence. IfMi is based on a pre-

trained LM (Yuan et al., 2020; Ein-Dor et al., 2020),

then it is initialized with the pretrained weights and

fine-tuned to the task on Dlab by adding a task-

specific output classification layer and updating

all model parameters until convergence. Note that

2If the budget b is a percentage of the number of unlabeled

data points then T =
b|Dpool|

k
.



at each iteration i, the model parameters are ini-

tialized randomly if Mi is trained from scratch

or from the original pretrained LM, respectively.

Warm-starting the model (i.e. initializingMi with

the parameters ofMi−1) has been shown to hinder

the model’s generalization ability (Ash and Adams,

2020). The AL loop stops if performance ofMi

on Dval is equal or higher that the goal.

2.4 Data Acquisition

In this step, we use the acquisition function a to

select the k most informative unlabeled samples

fromDpool for annotation. The acquisition function

usually uses the trained modelMi to rank the can-

didate unlabeled data. This is called a warm-start

approach and the acquisition function formally is

a(Mi,Dpool, k). A cold-start acquisition function

typically does not use the model and selects data

based on their input representations a(Dpool, k).

There are two main strategies for acquiring

data: uncertainty and diversity sampling. Un-

certainty sampling aims to select the most uncer-

tain data based on the model’s predictive uncer-

tainty. The assumption is that the most uncer-

tain data are the most difficult ones for the model,

and therefore the most useful to facilitate train-

ing. Typical uncertainty-based acquisition func-

tions include LEAST CONFIDENCE (Lewis and

Gale, 1994) that sorts Dpool by the probability of

not predicting the most confident class, in descend-

ing order, ENTROPY (Shannon, 1948) the selects

samples that maximize the predictive entropy, and

BALD (Houlsby et al., 2011), short for Bayesian

Active Learning by Disagreement, that chooses

data points that maximize the mutual information

between predictions and model’s posterior proba-

bilities. BATCHBALD (Kirsch et al., 2019) is a

recently introduced extension of BALD that jointly

scores points by estimating the mutual informa-

tion between multiple data points and the model

parameters. This iterative algorithm aims to find

batches of informative data points, in contrast to

BALD that chooses points that are informative in-

dividually. Uncertainty sampling is a warm-start

approach since it requires confidence scores from

the trained model for all candidate unlabeled data.

On the other hand, diversity-based approaches

aim to exploit the heterogeneity of the feature space

and typically use clustering to choose a diverse set

of points from Dpool (Wang and Ye, 2015; Sener

and Savarese, 2018; Zeng et al., 2019). A diversity-

based acquisition function can be either cold-start

or warm-start. There are also hybrid approaches

that aim to select data based on both uncertainty

and diversity sampling (He et al., 2014; Yang et al.,

2015; Erdmann et al., 2019; Yuan et al., 2020; Ash

et al., 2020), and other methods that use reinforce-

ment learning (Fang et al., 2017; Liu et al., 2018).

In our work, we use acquisition functions based

on uncertainty sampling (§3.3), but any acquisition

function that takes as input the unlabeled data, the

acquisition size and, if applied, the model, and

outputs a batch of k data points could be used,

Qi = a(Mi, k,Dpool). Comparison of different

types of acquisitions functions is out of the scope

of this paper.

2.5 Data Annotation

Finally, the acquired set Qi of k data points at

iteration i is passed to an oracle for annotation. Af-

ter acquiring labels, Qi is appended to the labeled

dataset Dlab and subsequently removed from Dpool.

The remaining budget b is adjusted accordingly. If

it has been exhausted, AL stops. Otherwise itera-

tion i+1 begins from the Model Training step with

the updated Dlab and Dpool datasets.

We note that, following previous work (Siddhant

and Lipton, 2018; Yuan et al., 2020; Ein-Dor et al.,

2020), we use budget as a stopping criterion to fa-

cilitate fair comparison between the various meth-

ods considered. However, there are various AL

stopping criteria for practitioners (Vlachos, 2008;

Bloodgood and Vijay-Shanker, 2009) which are

beyond the scope of this paper.

3 BALM: Bayesian Active Learning with

Pretrained Language Models

Our aim is to improve LM-based AL to (1) account

for varying data resource availability; (2) tackle

the instability of LM fine-tuning; and (3) improve

data acquisition with better calibrated confidence

scores. For that purpose, we propose Bayesian

Active Learning with pretrained language models

(BALM) following the standard AL pipeline (§2).

In the AL initialization step (§2.2), we first adapt

the LM using all the available unlabeled data of the

downstream task (§3.1). We then propose a fine-

tuning approach of the model (§3.2) that adjusts to

all data availability settings (i.e. the low-resource

setting at the first iterations, and the high-resource

at the later iterations) during training (§2.2). Last,

we extract uncertainty estimates from the adapted



Algorithm 1: BALM algorithm

Input: unlabeled data Dpool, pretrained

language model P(x;W0),
acquisition size k, AL iterations T ,

acquisition function a
1 Dlab ← ∅
2 PTAPT(x;W

′

0
)← Train P(x;W0) on Dpool

3 Q0 ← RANDOM(.), |Q0| = k
4 Dlab = Dlab ∪ Q0

5 Dpool = Dpool \ Q0

6 for i← 1 to T do

7 Mi(x; [W
′

0
,Wc])← Initialize from

PTAPT(x;W
′

0
)

8 Mi(x;Wi)← Train model on Dlab

9 Qi ← a(Mi,Dpool, k)
10 Dlab = Dlab ∪ Qi

11 Dpool = Dpool \ Qi

12 end

Output: Dlab

model using a probabilistic framework (§3.3) to

improve uncertainty-based data acquisition.

In our experiments, we use BERT (Devlin et al.,

2019), a state-of-the-art pretrained language model,

as our AL classification model but our method is

independent of the chosen LM.

3.1 LM Adaptation during AL Initialization

Inspired by recent work on transfer learning that

shows improvements in downstream classification

performance by continuing the pretraining of the

LM with the task data (Howard and Ruder, 2018;

Gururangan et al., 2020), we add an extra step in

the AL initialization by continuing pretraining the

LM. To this end, we use Task-Adaptive Pretraining

(TAPT) to the AL setting. Formally, we use an LM,

such as BERT (Devlin et al., 2019), P(x;W0) with

weights W0, that has been already pretrained on a

large corpus. We fine-tuneP(x;W0) with the avail-

able unlabeled data of the downstream task Dpool,

resulting in the task-adapted LM PTAPT(x;W
′

0
)

with new weights W ′

0
(cf. line 2 of algorithm 1).

3.2 AL Classification Model Fine-tuning

We now use the adapted LM PTAPT(x;W
′

0
) for ac-

tive learning. At each iteration i, we initialize our

modelMi with the pretrained weights W ′

0
and we

add a task-specific feedforward layer for classifica-

tion Wc on top of the [CLS] token representation

of BERT-based PTAPT. We fine-tune the classifi-

cation modelMi(x; [W
′

0
,Wc]) with all x ∈ Dlab.

(cf. line 6 to 8 of algorithm 1).

Recent work in AL (Ein-Dor et al., 2020; Yuan

et al., 2020) uses the standard fine-tuning method

proposed in Devlin et al. (2019) which includes

a fixed number of 3 training epochs, a learning

rate between 2e-5 and 5e-5, learning rate warmup

over the first 10% of the steps and AdamW opti-

mizer (Loshchilov and Hutter, 2019) without bias

correction, among other hyperparameters. We fol-

low a different approach by taking into account

insights from few-shot fine-tuning literature (Mos-

bach et al., 2021; Zhang et al., 2020) that proposes

longer fine-tuning. We also follow Dodge et al.

(2020) that demonstrates more robust BERT fine-

tuning by increasing the number of evaluations

steps during training.

We combine these guidelines to our fine-tuning

approach by using early stopping with 20 epochs

based on the validation loss, learning rate 2e-5,

bias correction and 5 evaluation steps per epoch.

However, increasing the number of epochs from

3 to 20, also increases the warmup steps (10% of

total steps3) almost 7 times. This may be prob-

lematic in scenarios where the dataset is large

but the optimal number of epochs may be small

(e.g. 2 or 3). To account for this limitation in our

AL setting where the size of training set changes

at each iteration, we propose a simple empirical

warmup approach by selecting the warmup steps as

min(10% of total steps, 100). We denote standard

fine-tuning as SFT and our approach as FT+.

3.3 Uncertainty Estimation for Data

Acquisition

After fine-tuning the classification modelMi with

Dlab, we use it to acquire uncertainty estimates for

all candidate data points in Dpool. We use uncer-

tainty sampling by selecting the k most uncertain

data from Dpool for annotation (cf. line 9 of al-

gorithm 1). Instead of using the output softmax

probabilities for each class, we use a probabilistic

formulation of deep neural networks in order to

acquire better calibrated scores.

Monte Carlo (MC) dropout (Gal and Ghahra-

mani, 2016) is a simple yet effective method for per-

forming approximate variational inference, based

on dropout (Srivastava et al., 2014). Gal and

Ghahramani (2016) prove that by simply perform-

3Some guidelines propose an even smaller number of
warmup steps, such as 6% in RoBERTa (Liu et al., 2020).



DATASETS TRAIN VAL TEST k C

TREC-6 4.9K 546 500 1% 6

DBPEDIA 20K 2K 70K 1% 14

IMDB 22.5K 2.5K 25K 1% 2

SST-2 60.6K 6.7K 871 1% 2

AGNEWS 114K 6K 7.6K 0.5% 4

Table 1: Datasets statistics for Dpool, Dval and Dtest re-

spectively. k stands for the acquisition size (% ofDpool)

and C the number of classes.

ing dropout during the forward pass in making

predictions, the output is equivalent to the predic-

tion when the parameters are sampled from a varia-

tional distribution of the true posterior. Therefore,

dropout during inference results into obtaining pre-

dictions from different parts of the network.

Our BERT-basedMi model uses dropout layers

during training for regularization. We apply MC

dropout by simply activating them during test time

and we perform multiple stochastic forward passes.

Formally, we do N passes of every x ∈ Dpool

throughMi(x;Wi) to acquire N different output

probability distributions for each x.

Four uncertainty acquisition functions are used

in our work: LEAST CONFIDENCE, ENTROPY,

BALD and BATCHBALD (§2.4). Note that LEAST

CONFIDENCE, ENTROPY and BALD have been

used in AL for NLP by Siddhant and Lipton (2018).

To the best of our knowledge, BATCHBALD is

evaluated for the first time in the NLP domain.

4 Experimental Setup

4.1 Tasks & Datasets

We experiment with five diverse natural language

understanding tasks including binary and multi-

class labels and varying dataset sizes (Table 1).

The first task is question classification using the six-

class version of the small TREC-6 dataset of open-

domain, fact-based questions divided into broad

semantic categories (Voorhees and Tice, 2000). We

also evaluate our approach on sentiment analysis

using the binary movie review IMDB dataset (Maas

et al., 2011) and the binary version of the SST-2

dataset (Socher et al., 2013). We finally use the

large-scale AGNEWS and DBPEDIA datasets from

Zhang et al. (2015) for topic classification. We

undersample the latter and form a Dpool of 20K

examples and Dval 2K.

4.2 Training & AL Details

We use BERT-BASE (Devlin et al., 2019) and fine-

tune it (TAPT §3.1) for 100K steps, with learning

rate 2e-05 and the rest of hyperparameters as in

Gururangan et al. (2020) using the HuggingFace

library (Wolf et al., 2020). We evaluate the model

5 times per epoch on Dval and keep the one with

the lowest validation loss as in Dodge et al. (2020).

We use the code provided by Kirsch et al. (2019)

for the uncertainty-based acquisition functions and

Yuan et al. (2020) for ALPS, BADGE and BERTKM.

We use the standard splits provided for all datasets,

if available, otherwise we randomly sample a val-

idation set. We test all models on a held-out test

set. We repeat all experiments with five different

random seeds resulting into different initializations

of Dlab and the weights of the extra task-specific

output feedforward layer. For all datasets we use as

budget the 15% of Dpool. Each experiment is run

on a single Nvidia Tesla V100 GPU. More details

are provided in the Appendix A.1.

4.3 Baselines

Acquisition functions We compare uncertainty

sampling (§3.3) with four baseline acquisition func-

tions. The first is the standard AL baseline, RAN-

DOM, which applies uniform sampling and selects

k data points from Dpool at each iteration. The

second is BADGE (Ash et al., 2020), an acquisi-

tion function that aims to combine diversity and

uncertainty sampling. The algorithm computes

gradient embeddings gx for every candidate data

point x in Dpool and then uses clustering to select

a batch. Each gx is computed as the gradient of

the cross-entropy loss with respect to the param-

eters of the model’s last layer. We also compare

against a recently introduced cold-start acquisition

function called ALPS (Yuan et al., 2020). ALPS ac-

quisition uses the masked language model (MLM)

loss of BERT as a proxy for model uncertainty in

the downstream classification task. Specifically,

aiming to leverage both uncertainty and diversity,

ALPS forms a surprisal embedding sx for each x,

by passing the unmasked input x through the BERT

MLM head to compute the cross-entropy loss for

a random 15% subsample of tokens against the

target labels. ALPS clusters these embeddings to

sample k sentences for each AL iteration. Last,

following Yuan et al. (2020), we use BERTKM as

a diversity baseline, where the l2 normalized BERT

output embeddings are used for clustering.
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Figure 1: Test accuracy during AL iterations using BALM with ENTROPY against RANDOM, ALPS, BADGE and

BERTKM acquisition functions. The dotted line denotes experiments with BERT and standard fine-tuning (SFT)

and the solid line with BERT-TAPT and FT+. We plot the median and standard deviation across five runs.

Models & Fine-tuning Methods We also eval-

uate (§6) two variants of the pretrained language

model; the original BERT model, used in Yuan

et al. (2020) and Ein-Dor et al. (2020)4, and our

adapted model BERT-TAPT (§3.1), and two fine-

tuning methods; our proposed fine-tuning approach

FT+ (§3.2) and standard BERT fine-tuning SFT.

5 Results

Figure 1 presents the results for all datasets 5. Our

proposed method BALM consists of the BERT-

TAPT model (§3.1), FT+ fine-tuning method (§3.2)

and ENTROPY acquisition (§3.3). For all exper-

iments with ENTROPY acquisition, we use MC

dropout with N = 5. We show that BALM consis-

tently outperforms all baselines across datasets.

Data Efficiency We first observe that BALM

achieves large data efficiency since it reaches the

4Ein-Dor et al. (2020) evaluate various acquisition func-
tions, including entropy with MC dropout, and use BERT with
the standard fine-tuning approach (SFT).

5We do not evaluate BADGE on AGNEWS because of the
increased time complexity of the algorithm: O(Cknd) for
a C-way classification task, k queries, n points in Dpool, and
d-dimensional BERT embeddings.

full-dataset performance within the 15% budget

for all datasets. The performance of BALM is

mostly notable in the smaller datasets. In TREC-

6, it achieves the goal accuracy with almost 10%

annotated data, while in DBPEDIA only in the first

iteration with 2% of the data. In the first AL it-

eration in IMDB, BALM results only in 2.5 points

of accuracy lower than the performance equivalent

to using 100% of the data, which it later achieves

after acquiring 15% of the data. In the larger SST-

2 and AGNEWS datasets, BALM is closer to the

baselines but still outperforms them, achieving the

full-dataset performance with 8% and 12% of the

data respectively.

Training Strategy We also observe that in all

datasets, the addition of our proposed pretraining

step (TAPT § 3.1) and fine-tuning technique (FT+

3.2) leads to large performance gains, especially in

the first AL iterations. This is particularly evident

in TREC-6, DBPEDIA and IMDB datasets, where

after the first AL iteration (i.e. equivalent to 2%

of training data) BALM with ENTROPY is 45, 30

and 12 points in accuracy, respectively, higher than

the ENTROPY baseline with BERT and SFT. This



is a rather interesting finding, since our simple ad-

ditions in the training strategy of the model proved

to be particularly effective and resulting in large

performance improvements.

Acquisition Strategy We finally observe that the

performance curves of the various acquisition func-

tions considered (i.e. dotted lines) are generally

close to each other, suggesting that the choice of

the acquisition strategy does not affect substantially

the AL performance. In other words, we conclude

that the training strategy is more important than

the acquisition strategy. We find that uncertainty

sampling with ENTROPY is generally the best per-

forming acquisition function, followed by BADGE.

Still, finding a universally well-performing acquisi-

tion function, independent of the training strategy,

is an open research question. Our findings show

that uncertainty sampling is the strongest approach,

with room for improvement over the competitive

random sampling baseline (§6).

6 Analysis & Discussion

Task-Adaptive Pretraining We present details

of TAPT (§3.1) and reflect on its effectiveness in the

AL pipeline. Following Gururangan et al. (2020),

we continue pretraining BERT for the MLM task

using all the unlabeled data Dpool for all datasets

separately. We plot the learning curves of BERT-

TAPT for all datasets in Figure 2. We first observe

that the masked LM loss is steadily decreasing for

DBPEDIA, IMDB and AGNEWS across optimization

steps, which correlates with the high early AL per-

formance gains of TAPT in these datasets (Fig. 1).

We also observe that the LM overfits in TREC-6 and

SST-2 datasets. We attribute this to the very small

training dataset of TREC-6 and the informal textual

style of SST-2. Although SST-2 includes approxi-

mately 67K of training data, the sentences are very

short (i.e. average length of 9.4 words per input

sentence). We hypothesize the LM overfits because

of the lack of long and diverse sentences. More

details on TAPT can be found in the Appendix A.2.

Few-shot Fine-tuning We highlight the impor-

tance of considering the few-shot learning problem

in the AL pipeline during the first iterations which

is often neglected in literature. This is more im-

portant when using pretrained LMs, since they are

overparameterized models that require adapting the

training scheme when low data resources are avail-

able to ensure robustness.
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Figure 2: Validation MLM loss during TAPT.
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Figure 3: Few-shot standard BERT fine-tuning.

To illustrate the inefficiency of standard fine-

tuning (SFT), we randomly undersample AGNEWS

and IMDB to form low, medium and high data set-

tings (i.e. 100, 1,000 and 10,000 training samples)

and train BERT for a fixed number of 3, 10, and 20

epochs. Figure 3 shows that SFT is suboptimal for

low data settings, indicating that more optimiza-

tion steps are needed for the model to adapt to the

few training samples (Mosbach et al., 2021; Zhang

et al., 2020). As the training samples increase fewer

epochs are often better. It is thus evident that there

is not a clearly optimal way to choose a predefined

number of epochs to train the model given the num-

ber of training examples. This motivates the need

to find a fine-tuning policy for AL that efficiently

adapts to the data resource setting of each iteration

(independent of the number of training examples or

dataset), which is mainly tackled by our proposed

fine-tuning approach FT+ (§3.2).

Ablation Study We also conduct an ablation

study to show that our proposed AL training meth-

ods, (i) the pretraining step (TAPT §3.1) and (ii) the

fine-tuning method (FT+ §3.2), provide large gains

compare to standard BERT fine-tuning (SFT) in

terms of accuracy, data efficiency and uncertainty

calibration. We therefore compare BERT with SFT,

BERT with FT+ and BERT-TAPT with FT+ (BALM).

Along with test accuracy, we also evaluate each

AL model on a benchmark of uncertainty estima-

tion metrics as proposed by Ovadia et al. (2019),
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Figure 4: BALM ablation study.

namely Brier score, negative log likelihood (NLL),

expected calibration error (ECE) and entropy. A

well-calibrated model should have high accuracy

and low values on the uncertainty metrics.

Figure 4 shows the results for the smallest and

largest datasets, TREC-6 and AGNEWS respectively.

For TREC-6, training BERT with our fine-tuning

approach FT+ provides large gains both in accuracy

and uncertainty calibration, showing how impor-

tant it is to fine-tune the LM for a larger number

of epochs in low resource settings. For the larger

dataset, AGNEWS, we see that BERT with SFT per-

forms equally to FT+ which is the ideal scenario.

We see that our fine-tuning approach does not de-

teriorate the performance of BERT because of the

large increase in warmup steps (see §3.2), showing

that our simple fix provides robust results in both

high and low resource settings.

After demonstrating that FT+ yields better re-

sults than SFT, we next compare BALM against

BERT with FT+. We observe that in both datasets

BERT-TAPT outperforms BERT, with this being

particularly evident in the early iterations. This

finding confirms our hypothesis that by implicitly

using the entire pool of unlabeled data in the extra

pretraining step (TAPT), we boost the performance

of the AL classification model using less data.

Performance of Acquisition Functions In our

BALM experiments so far, we showed results with
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Figure 5: Comparison of acquisition functions using

TAPT and FT+ in training BERT.

ENTROPY. We have also experimented with var-

ious uncertainty-based acquisition functions, i.e.

LEAST CONFIDENCE, BALD and BATCHBALD

(§3.3), and our findings show that all functions

provide similar performance, except for BALD

that slightly underperforms. This makes our ap-

proach agnostic to the selected uncertainty-based

acquisition method. We also evaluate our proposed

methods with our baseline acquisition functions,

i.e. RANDOM, ALPS, BERTKM and BADGE, since

our training strategy is orthogonal to the acquisition

strategy. We compare all acquisition functions with

BALM for AGNEWS and IMDB in Figure 5. We ob-

serve that in general uncertainty-based acquisition

performs better compared to diversity, while all ac-

quisition strategies have benefited from our BALM

training strategy (TAPT and FT+). We discuss the

efficiency of the methods in the Appendix A.3.

7 Conclusions & Future Work

We have presented Bayesian Active Learning with

pretrained language Models (BALM) consisting of

(i) an extra pretraining step with the unlabeled task

specific data, (ii) a simple yet effective fine-tuning

method for the downstream model and (iii) use of

MC dropout to acquire well-calibrated confidence

scores for uncertainty sampling. BALM accounts

for the few-shot learning phase of AL while still

adapts effectively to the high-resource setting of

the last iterations. Our findings also show that

the proposed training strategy is more effective in

improving AL performance that the selected acqui-

sition function. In the future, we aim to investigate

semi-supervised learning methods to leverage unla-

beled data during training the downstream model.
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A Appendix

A.1 Hyperparameters & Dataset Details

In this section we provide details of all the datasets

we used in this work and the hyperparparameters

used for training the model. For TREC-6, IMDB and

SST-2 we randomly sample 10% from the training

set to serve as the validation set, while for AGNEWS

we sample 5%. For the DBPEDIA dataset we under-

sample both training and validation datasets (from

the standard splits) to facilitate our AL simulation

(i.e. the original dataset consists of 560K train-

ing and 28K validation data examples). For all

datasets we use the standard test set, apart from the

SST-2 dataset that is taken from the GLUE bench-

mark (Wang et al., 2019) we use the development

set as the held-out test set.

For all datasets we train BERT-BASE (Devlin

et al., 2019) from the HuggingFace library (Wolf

et al., 2020) in Pytorch (Paszke et al., 2019). We

train all models with batch size 16, learning rate

2e− 5, no weight decay, AdamW optimizer with

epsilon 1e− 8. For all datasets we use maximum

sequenxe length of 128, except for IMDB and AG-

NEWS that contain longer input texts, where we use

256. To ensure reproducibility and fair comparison

between the various methods under evaluation, we

run all experiments with the same five seeds that

we randomly selected from the range [1, 9999].

MODEL TREC-6 DBPEDIA IMDB SST-2 AGNEWS

VALIDATION SET

BERT 94.4 99.1 90.7 93.7 94.4

BERT-TAPT 95.2 99.2 91.9 94.3 94.5

TEST SET

BERT 80.6 99.2 91.0 90.6 94.0

BERT-TAPT 77.2 99.2 91.9 90.8 94.2

Table 2: Accuracy with 100% of data over five runs

(different random seeds).

A.2 Task-Adaptive Pretraining (TAPT) &

Full-Dataset Performance

As discussed in §3.1 and §6, we continue training

the BERT-BASE (Devlin et al., 2019) pretrained

masked language model using the available data

Dpool. We explored various learning rates between

1e-4 and 1e-5 and found the latter to produce the

lowest validation loss. We trained each model (one

for each dataset) for up to 100K optimization steps,

we evaluated on Dval every 500 steps and saved

the checkpoint with the lowest validation loss. We

used the resulting model in our BALM experiments.



TREC-6 SST-2 IMDB DBPEDIA AGNEWS

RANDOM 0/0 0/0 0/0 0/0 0/0

ALPS 0/57 0/478 0/206 0/134 0/634

BADGE 0/63 0/23110 0/1059 0/192 -

BERTKM 0/47 0/2297 0/324 0/137 0/3651

ENTROPY 81/0 989/0 557/0 264/0 2911/0

LEAST CONFIDENCE 69/0 865/0 522/0 256/0 2607/0

BALD 69/0 797/0 524/0 256/0 2589/0

BATCHBALD 69/21 841/1141 450/104 256/482 2844/5611

Table 3: Runtimes (in seconds) for all datasets. In each cell of the table we present a tuple i/s where i is the

inference time and s the selection time. Inference time is the time for the model to perform a forward pass for

all the unlabeled data in Dpool and selection time is the time that each acquisition function requires to rank all

candidate data points and select k for annotation (for a single iteration). Since we cannot report the runtimes for

every model in the AL pipeline (at each iteration the size of Dpool changes), we provide the median.
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Figure 6: Learning curves of TAPT for various learning

rates.

We plot the learning curves of masked language

modeling task (TAPT) for three datasets and all

considered learning rates in Figure 6. We notice

that a smaller learning rate facilitates the training

of the MLM.

In Table 2 we provide the validation and test

accuracy of BERT and BERT-TAPT for all datasets.

We present the mean across runs with three random

seeds. For fine-tuning the models, we used the

proposed approach FT+ (§3.2).

A.3 Efficiency of Acquisition Functions

In this section we discuss the efficiency of the

eight acquisition functions considered in this work;

RANDOM, ALPS, BADGE, BERTKM, ENTROPY,

LEAST CONFIDENCE, BALD and BATCHBALD.

In Table 3 we provide the runtimes for all ac-

quisition functions and datasets. Each AL experi-

ments consists of multiple iterations and (therefore

multiple models), each with a different training

dataset Dlab and pool of unlabeled data Dpool. In

order to evaluate how computationally heavy is

each method, we provide the median of all the

models in one AL experiment. We calculate the

runtime of two types of functionalities. The first is

the inference time and stands for the forward pass

of each x ∈ Dpool to acquire confidence scores for

uncertainty sampling. RANDOM, ALPS, BADGE

and BERTKM do not require this step so it is only

applied of uncertainty-based acquisition where ac-

quiring uncertainty estimates with MC dropout is

needed. The second functionality is selection time

and measures how much time each acquisition func-

tion requires to rank and select the k data points

from Dpool to be labeled in the next step of the AL

pipeline. RANDOM, ENTROPY, LEAST CONFI-

DENCE and BALD perform simple equations to

rank the data points and therefore so do not require

selection time. On the other hand, ALPS, BADGE,

BERTKM and BATCHBALD perform iterative al-

gorithms that increase selection time. From all ac-

quisition functions ALPS and BERTKM are faster

because they do not require the inference step of

all the unlabeled data to the model. ENTROPY,

LEAST CONFIDENCE and BALD require the same



time for selecting data, which is equivalent for the

time needed to perform one forward pass of the en-

tire Dpool. Finally BADGE and BATCHBALD are

the most computationally heavy approaches, since

both algorithms require multiple computations for

the selection time. RANDOM has a total runtime of

zero seconds, as expected.


