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Abstract

Despite the high accuracy of pretrained trans-
former networks in text classification, a per-
sisting issue is their significant complexity
that makes them hard to interpret. Recent re-
search has focused on developing feature scor-
ing methods for identifying which parts of the
input are most important for the model to make
a particular prediction and use it as an expla-
nation (i.e. rationale). A limitation of these
approaches is that they assume that a partic-
ular feature scoring method should be used
across all instances in a dataset using a prede-
fined fixed length, which might not be optimal
across all instances. To address this, we pro-
pose a method for extracting variable-length
explanations using a set of different feature
scoring methods at instance-level. Our method
is inspired by word erasure approaches which
assume that the most faithful rationale for a
prediction should be the one with the highest
divergence between the model’s output distri-
bution using the full text and the text after re-
moving the rationale for a particular instance.
Evaluation on four standard text classification
datasets shows that our method consistently
provides more faithful explanations compared
to previous fixed-length and fixed-feature scor-
ing methods for rationale extraction.1

1 Introduction

Large pre-trained transformer-based language mod-
els such as BERT (Devlin et al., 2019), currently
dominate performance across language understand-
ing benchmarks (Wang et al., 2018). These devel-
opments have opened up new challenges on how
to extract faithful explanations (i.e. rationales2)
that accurately represent the true reasons behind
their predictions when adapted to downstream tasks
(Jacovi and Goldberg, 2020).

1Code for experiments will be released.
2We use these terms interchangeably throughout the paper.

Recent studies use feature scoring methods such
as gradient and attention scores (Arras et al., 2016;
Sundararajan et al., 2017; Jain and Wallace, 2019)
to identify important (i.e. salient) segments of the
input and extract them as rationales (Jain et al.,
2020; Treviso and Martins, 2020). However, a lim-
itation of these approaches is that they set an a
priori fixed rationale length (i.e. the ratio of a ra-
tionale compared to the full input sequence) across
instances. We hypothesize that a fixed ratio can ei-
ther not suffice for explaining a model’s prediction
in certain instances in the dataset or in some cases
provides a larger number of tokens than needed,
thus reducing the faithfulness of a rationale. Addi-
tionally, these approaches extract rationales using
a single feature scoring method across a dataset
which might not be the best for every instance (Ja-
covi and Goldberg, 2020; Atanasova et al., 2020).

Motivated by these limitations, we propose a
method for extracting the best variable-length ra-
tionale from a set of different feature scoring meth-
ods, for each instance in a dataset. We achieve
this by computing differences between a model’s
output distributions obtained using the full input
sequence and the input without the rationale respec-
tively. Our method is based on the assumption that
by removing important tokens from the sequence,
we should observe large differences in the model’s
confidence for the correct class (Nguyen, 2018;
Serrano and Smith, 2019) resulting into more faith-
ful rationales (Atanasova et al., 2020; Chen and Ji,
2020).

The contributions of our paper are as follows:

• We propose a method for extracting variable-
length rationales with variable feature scoring
methods at each instance in a dataset,;

• We empirically demonstrate that rationales
generated with our proposed approach, are on
average shorter and more faithful compared
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to longer rationales from any single feature
scoring method;

• We show that we are able to select the feature
scoring methods that leads to more faithful ra-
tionales at instance level, from a set of feature
scoring methods, irrespective of the rationale
length.

2 Background and Related Work

2.1 Rationale Extraction

Given a model M, an input x = [x1, . . . , xT ] and
a prediction Y which represents a distribution over
classes, rationale extraction methods seek to iden-
tify the most important (i.e. salient) subset R ∈ x

of the input for explaining the model’s prediction.
There are two common approaches for extracting

rationales. The first consists of two modules jointly
trained on an end task (Lei et al., 2016; Bastings
et al., 2019; Chalkidis et al., 2021). The first mod-
ule extracts the rationale (i.e., typically by learning
to select which inputs should be masked) and the
second module is trained using only the rationale.
The second approach consists of using feature scor-
ing methods (i.e. salience metrics) to first identify
important parts of the input and then extract the ra-
tionales from an already trained model (Jain et al.,
2020; Treviso and Martins, 2020).

A limitation of the first approach is that the mod-
els are hard to train compared to the latter and
often do not reach high accuracy (Jain et al., 2020).
Regarding the latter approach, a limitation is that
the same feature scoring method is applied to all
instances in a given dataset, irrespective if a fea-
ture scoring method is not the best for a particular
instance using a predefined fixed rationale length.

2.2 Computing Input Importance

Feature scoring methods Ω compute input impor-
tance scores ω for each token in the sequence x,
such that ω = Ω(M,x,Y). High scores indicate
that the associated tokens contributed more towards
a model’s prediction.

A common approach to computing ω is by cal-
culating the gradients of the prediction with respect
to the input (Kindermans et al., 2016; Li et al.,
2016; Arras et al., 2016; Sundararajan et al., 2017;
Bastings and Filippova, 2020). Jain et al. (2020)
use attention weights to attribute token importance
for rationale extraction, while Treviso and Martins
(2020) propose sparse attention as indicators of in-
put token importance. Li et al. (2016) compute

input importance scores by measuring the differ-
ence in a model’s prediction between keeping and
omitting each token. Kim et al. (2020) also sug-
gest input marginalisation as an alternative to to-
ken omission. Another way is to use sparse linear
meta-models that are easier to interpret (Ribeiro
et al., 2016; Lundberg and Lee, 2017). Atanasova
et al. (2020) however show that sparse linear meta-
models are not as faithful as gradient-based ap-
proaches.

2.3 Evaluating Explanation Faithfulness

Having extracted a rationale, we typically need
to evaluate how faithful that explanation is for a
model’s prediction. Several studies evaluate the
faithfulness of explanations by training a separate
classifier on an end-task using only the rationales
as input (Jain et al., 2020; Treviso and Martins,
2020). The classifiers are inherently faithful, as
they are trained only on the rationales (Jain et al.,
2020). Other studies conduct comparative analyses
on the ability of feature scoring methods to identify
important tokens by using erasure as their basis
(Samek et al., 2017; Arras et al., 2017; Nguyen,
2018; Serrano and Smith, 2019; Atanasova et al.,
2020; Vashishth et al., 2019; Grimsley et al., 2020;
Chen and Ji, 2020). The intuition is that by remov-
ing the most important tokens, we expect to see a
larger difference in the output probabilities, com-
pared to removing a less important token leading
to drops in classification accuracy (Robnik-Šikonja
and Kononenko, 2008; Nguyen, 2018; Atanasova
et al., 2020). Nguyen (2018) and Serrano and Smith
(2019) for example, count the fraction of tokens
needed to be removed to cause a prediction switch
for M (i.e. decision flip). The lower the fraction of
tokens needed for a decision flip, the more faithful
the rationale by a feature scoring method is.

3 Methodology

Our aim is to address the “one-size-fits-all” ap-
proach of previous work on rationale extraction
with feature scoring methods that typically extracts
fixed-length rationales using the same feature scor-
ing method across all instances in a dataset.

Inspired by word erasure approaches (Nguyen,
2018; Serrano and Smith, 2019), we remove se-
quentially the highest ranked tokens by a given
feature scoring method from the sequence (reduced
input) and add them to the rationale. We record the
difference δ in a model’s output distribution with



using the full text and the reduced input. Our main
assumption is that a sufficiently faithful rationale
is the one that will cause the largest δ (Atanasova
et al., 2020; Chen and Ji, 2020). Following this as-
sumption, we can extract rationales of variable (1)
length; (2) feature scoring method; and (3) type.3

3.1 Extracting Variable-Length Rationales

Our method consists of the following steps for ex-
tracting variable length rationales using a single
feature scoring method for a single input sequence
(see Algorithm 1):

1. We first compute the reference output prob-
ability distribution passing the full input x
through model M, Y = M(x);

2. We subsequently compute input importance
scores ω = Ω(M,x,Y) for the entire input
sequence using a feature scoring method Ω;

3. We rank all input tokens x by their impor-
tance scores ω in decreasing order, such that
xranked = argsort(x,ω). For CONTIGUOUS

rationales, we first split the input sequence
into n-grams and rank them by decreasing
importance (arg sortn−gram(x,ω));

4. We then iterate through input tokens until
we reach the max rationale length N (up-
per bound). For TOPK rationales, we begin
by retrieving the input tokens {1, ..., n} from
xranked at each step n of the iteration. For
CONTIGUOUS rationales, we extract the top
n-gram;

5. We then mask the top-n tokens or top n-gram,
depending on the type of rationale, to obtain
xmasked. The masked input sequence xmasked

is then passed from the model M, to obtain
the output distribution Ym;

6. We compute and record the divergence δ

of distribution Ym from Y , such that δ =
∆(Y,Ym). For computing δ we experi-
ment with the following divergence metrics
(∆): (a) Kullback-Leibler (KL) ; (b) Jensen-
Shannon divergence (JSD) ; (c) Perplexity
(PERP.) and (d) Predicted Class Probability
(CLASSDIFF).4

3Similar to Jain et al. (2020), we consider two rationale
types: (a) TOPK tokens ranked by a feature scoring method,
treating each word in the input sequence independently; and
(b) CONTIGUOUS span of input tokens of length K with the
highest overall score computed by a feature scoring method.

4We describe the metrics in detail in Appx. B

Algorithm 1: Compute Variable-Length
Rationale K for TOPK type

Input: x ;M ; Ω ; N
Output: R, δmax

δmax = 0
/* output distribution for x */

Y =M(x)
/* compute feature importance */

ω = Ω(M,x)
/* rank input tokens by ω */

xranked = argsort(x,ω);
xmasked = x

for n← 1 in N do
indmasked = xranked[n]
xmasked[indmasked] = [MASK]
/* output distribution for

xmasked */

Ym =M(xmasked);
/* compute divergence δ between

output distributions */

δ = ∆ (Y,Ym);
if δ > δmax then

δmax = δ;
R ← xmasked[indmasked]

end

end

7. Finally, we extract the rationale R with length
K with K ≤ N at step n where we recorded
the highest divergence δ.5

3.2 Instance-level Feature Scoring Selection

Rationales are often extracted and evaluated using
a single feature scoring method across all instances
in a dataset (Serrano and Smith, 2019; Nguyen,
2018; Treviso and Martins, 2020; Jain et al., 2020).
However, Atanasova et al. (2020) demonstrated that
there is no clear best feature scoring method across
text classification tasks, which might also hold for
different instances in the same dataset (Jacovi and
Goldberg, 2020).

Given a set of different feature scoring meth-
ods {Ω1, . . . ,Ωk}, we first extract rationales R =
[RΩ1

, . . . ,RΩk
] using Algorithm 1 and select

the one with highest δmax (hereby denoted by
FEATmax(δ)).

3.3 Instance-level Rationale Type Selection

In a similar way, our approach can also be used to
select between different rationale types (i.e. con-
tiguous or TopK) for each instance in the dataset,
hereby denoted by TYPEmax(δ). Finally, our ap-
proach is flexible and can be easily modified to sup-
port fixed-length rationales by directly computing

5We also experimented with using δ−δmax ≤ threshold
resulting into reduced performance (see Appx. D).



δ between the original input and the input without
the fixed length rationale.

A benefit of our method compared to Jain et al.
(2020) and Treviso and Martins (2020), is that we
do not need to train separate classifiers over the ra-
tionales to evaluate the faithfulness of explanations.
The primary reason behind this is that we are inter-
ested in finding whether a rationale is faithful for
model M, and not to form inherently faithful clas-
sifiers (Jain et al., 2020). Finally, another important
benefit of our approach is that we evaluate ratio-
nales at instance level rather than globally (across
a dataset).

4 Experimental Setup

4.1 Tasks

For our experiments we use the following datasets
(details in Figure 1):

SST: Binary sentiment classification without
neutral sentences (Socher et al., 2013).

AG: News articles categorized in Science, Sports,
Business, and World topics (Del Corso et al., 2005).

Evidence Inference (EV.INF.): Abstract-only
biomedical articles describing randomized con-
trolled trials. The task is to infer the relationship
between a given intervention and comparator with
respect to an outcome (Lehman et al., 2019).

MultiRC (M.RC): A reading comprehension
task composed of questions with multiple correct
answers that depend on information from multiple
sentences (Khashabi et al., 2018). Similar to DeY-
oung et al. (2020) and Jain et al. (2020) we convert
this to a binary classification task where each ratio-
nale/question/answer triplet forms an instance and
each candidate answer is labeled as True or False.

4.2 Models

Similar to Jain et al. (2020), we use BERT (Devlin
et al., 2019) for (SST, AG); SCIBERT (Beltagy
et al., 2019) for EV.INF. and ROBERTA (Liu et al.,
2019) for M.RC. See Appx. A for hyperparame-
ters.

4.3 Feature Scoring Methods

We opt using a random baseline and four other fea-
ture scoring methods (to compute input importance
scores) as in Jain et al. (2020) and Serrano and
Smith (2019). All scores are normalized (sum up
to 1).

DATA |W | C
SPLITS

TRAIN/DEV/TEST
F1

SST 18 2 6,920 / 872 / 1,821 90.7 ± 0.1
AG 36 4 102,000 / 18,000 / 7,600 92.7 ± 0.2
EV.INF. 363 3 5,789 / 684 / 720 80.6 ± 0.6
M.RC 305 2 24,029 / 3,214 / 4,848 75.9 ± 0.4

Table 1: Dataset statistics including average words at
instance (|W |), number of classes (C) and data splits.

Random (RAND): Random allocation of token
importance.

Attention (α): Token importance corresponding
to normalized attention scores (Jain et al., 2020).

Scaled Attention (α∇α): Scales the attention
scores αi with their corresponding gradients
∇αi =

∂ŷ
∂αi

(Serrano and Smith, 2019) .

InputXGrad (x∇x): Attributes input impor-
tance by multiplying the gradient of the input by
the input with respect to the predicted class, where
∇xi =

∂ŷ
∂xi

(Kindermans et al., 2016; Atanasova
et al., 2020) .

Integrated Gradients (IG): Ranking words by
computing the integral of the gradients taken along
a straight path from a baseline input to the original
input, where the baseline is the zero embedding
vector (Sundararajan et al., 2017).

4.4 Evaluating Explanation Faithfulness

F1 macro: F1 macro performance of model M
when masking the rationale in the original input
(x\R) similar to (Arras et al., 2017). Larger drops
in F1 scores indicate that the extracted rationale is
more faithful.

Word Relevance: Following Arras et al. (2017),
we also mask input tokens one-by-one in decreas-
ing order ranked by a feature scoring method, and
record at each step the model’s performance.

We do not conduct human experiments to eval-
uate explanation faithfulness since that is only rel-
evant to explanation plausibility (how understand-
able by humans a rationale is (Jacovi and Goldberg,
2020)) and in practice faithfulness and plausibility
do not correlate (Atanasova et al., 2020).

5 Results

Table 2 presents the predictive performance (macro
F1) of each model M obtained by masking the ra-
tionale from the full input. Rationales are extracted
using our proposed approaches consisting of: (1)



SST AG EV.INF M.RC AVG

FULL INPUT 90.7 92.7 80.6 75.9 85.0
N 20% 20% 10% 20%

LEN FEAT SCORING TOPK CONT TOPK CONT TOPK CONT TOPK CONT

FIXED (K=N)

FIXED-RAND 84.3 84.8 90.6 90.6 76.3 78.4 60.0 46.0 76.2
FIXED-α 69.7 74.5 77.3 87.4 46.0 59.0 36.8 45.3 62.0

FIXED-α∇α 72.1 76.1 79.9 87.3 36.0 59.3 38.6 43.3 61.6
FIXED-x∇x 83.5 83.7 88.5 88.7 71.7 74.4 46.6 45.1 72.8
FIXED-IG 83.5 82.9 88.0 89.4 72.0 75.5 51.0 44.8 73.4

OURS

FIXED (K=N) VAR-FEAT 61.8 67.4 70.9 83.5 28.3 53.7 37.5 40.7 55.5

VAR (K≤N)

FIXED-RAND 85.9 86.8 91.3 91.3 78.8 80.3 66.4 52.5 79.2
FIXED-α 71.1 74.8 77.7 87.3 36.8 50.1 38.3 43.1 59.9

FIXED-α∇α 72.8 76.0 79.9 86.5 32.6 48.8 39.1 42.9 59.8
FIXED-x∇x 84.0 83.5 88.6 88.9 70.0 66.5 48.0 45.3 71.8
FIXED-IG 84.0 83.0 88.2 89.5 71.0 73.7 51.1 47.0 73.4

VAR (K≤N)
VAR-FEAT 64.0 67.7 71.5 83.0 27.5 44.5 36.6 40.5 54.4

VAR-FEAT+TYPE 59.9 70.4 26.0 36.2 48.1

Table 2: Macro F1 scores for measuring the faithfulness of explanations by masking the rationale (x\R) (lower
is better). K and N denote the rationale length per instance and its upper bound respectively. FIXED and VAR

indicate fixed and variable (i.e. different per instance) length, feature scoring method or type.

fixed length, fixed type and variable feature scor-
ing method per instance; (2) variable length, fixed
feature scoring method and fixed type; (3) variable
length, variable feature scoring method and fixed
type; and (4) variable length, variable feature scor-
ing method and variable type (bottom part of the
table). As a baseline, we use fixed length, fixed fea-
ture scoring methods (RAND, α, α∇α, x∇x and
IG) and type (top-part of the table). For reference,
we also present the predictive performance of M
using the full input text.6

Results demonstrate that using a fixed feature
scoring method can be sub-optimal, as performance
is incosistent across rationale types and datasets.
For example α produces lower F1 scores in SST
with TOPK, but is outperformed by x∇x and CON-
TIGUOUS rationales in M.RC. This shows that
there is no single best feature scoring method
across datasets and instances (Jacovi and Gold-
berg, 2020; Atanasova et al., 2020) and strengthens
our assumption that selecting the best feature scor-
ing method per instance can improve faithfulness.
Varying the feature scoring method (VAR-FEAT)
and keeping the rationale length and type fixed, con-
sistently yields lower F1 scores compared to our
baseline (F1 score of 55.5 on average compared to
61.6 with α∇α). This highlights the effectiveness
of our approach in selecting a better feature scoring
method for each instance in a dataset.

6For brevity, we present results using JSD to compute the
divergence δ between the predictive distributions using the
full input and the input with the masked rationale (see §3).
We obtain similar performance using other divergence metrics
(e.g. KL). For a full stack of results, see Appx. E.

Varying the rationale length (VAR-LEN) and
keeping fixed the feature scoring method and type
across instance in a dataset improves faithfulness
in some cases, but overall results are comparable.
For example in SST with α varying the rationale
length results in F1 scores of 71.1 compared to 69.7
with the fixed length. In short sequence datasets
(SST, AG) this happens because the extracted ratio-
nales from our proposed approach are on average
only a token shorter (approx. 4% shorter) than the
fixed length rationales.7 We argue that where per-
formances are comparable, having more concise
rationales helps explain better a model’s prediction,
by omitting unnecessary information (see §7).

In datasets where sequence lengths are longer
(EV.INF. , M.RC) we record higher drops in F1
performance, despite of our rationales being shorter
by 3-4% (approx. 14 tokens) on EV.INF. and 7-
12% (approx. 30 tokens) with M.RC. For example
in EV.INF. with α∇α and TOPK rationale type, our
shorter variable length rationales result in a drop of
2.4 points (F1 of 32.6 compared to 36.0). Results
demonstrate that having longer rationales can some-
times be detrimental to explanation faithfulness, as
they can contain context that is not supportive of a
model’s prediction (see §7).

Using both VAR-LEN and VAR-FEAT, results in
consistently lower F1 macro scores compared to
our baseline (54.4 on average compared to 61.6).
Comparing though against fixed length rationales
with VAR-FEAT, we can assume that it is not as

7We include the computed rationale lengths with our ap-
proach in Appx. C.



(a) SST (b) EV.INF (c) AG (d) M.RC

Figure 1: F1 macro performance with removal of important tokens in decreasing order, for different feature scoring
methods and OURS denoting that we select rationales from the best feature scoring method at each instance in the
dataset.

effective in SST and AG. This is justified by the
performances of the variable length rationales with
a fixed feature scoring method in these datasets,
which are comparable to fixed length rationales
due to the similar number of tokens that comprise
them as discussed previously.

We also observe that TOPK rationales result in
lower F1 macro scores compared to CONTIGU-
OUS. We hypothesize that the model attends in
most instances to sparse segments of the input
rather than contiguous ones when making a pre-
diction. Accounting for rationale type (VAR-LEN +
VAR-FEAT + VAR-TYPE), we obtain more faithful
rationales across all datasets (consistent drops in
F1 performance). In SST for example we obtain F1
scores of 59.9 compared to 69.7, when comparing
against fixed length rationales with TOPK and α.
In M.RC we hypothesize that F1 macro drops are
lower, 36.2 compared to 36.8 with TOPK and α,
due to the baseline already providing competitive
performance. Results confirm our hypothesis that
flexible rationale extraction per instance is better
than a one-size-fits-all fixed approach.

6 Quantitative Analysis

Computational Efficiency: Our approach of ex-
tracting variable-length rationales can impose a
computational overhead, when computing δ at each
token until we reach N . This entails N forward
passes, for each feature scoring method Ω (being
similar to evaluating feature scoring methods by
counting decision flips). We can improve efficien-
cies by simply using larger increments (more than
one token) when calculating δ (Atanasova et al.,
2020). For example we repeated experiments using
2% increments (such that we calculate δ every {2%,
4%, .. , N} of the sequence), resulting in F1 macro
average performance of 54.6 with VAR-LEN and
VAR-FEAT compared to 54.4 when computing δ at

every token. A 2% increment in datasets such as
M.RC, can reduce the number of forward passes
and time by a factor of 6. We include results with a
more thorough analysis in Appx. F.

Variable Feature Scoring Method at Different

Rationale Lengths: In Figure 1 we use Word
Relevance (Arras et al., 2017) to examine the effec-
tiveness of our approach in selecting the best fixed-
length rationale for each instance in a dataset, from
a list of feature scoring methods with increasing
rationale lengths. For our approach to be successful
in extracting faithful rationales, we expect lower F1
macro performance than any single feature scoring
method irrespective of the rationale length.

Results suggest that our approach successfully
selects the most faithful rationale for each instance
in the dataset, irrespective of the rationale length.
For example in EV.INF., with just 30 tokens re-
moved the best performing feature scoring method
(α∇α) results in F1 macro scores of approximately
45% compared to 40% by selecting the best feature
scoring method at each instance.

Rationale Length and Faithfulness: Similar to
Jain et al. (2020), we hypothesize that the infor-
mation a rationale holds and its length correlate.
Figure 2 shows F1 macro scores for; (1) our base-
line of fixed length (FIXED-LEN) rationales from
fixed feature scoring methods (FIXED-FEAT) and
(2) our variable length (VAR-LEN) rationales from
the best feature scoring method at each instance
(VAR-FEAT). For our approach to be successful,
we expect lower F1 macro scores with a masked
rationale (more faithful) compared to the baseline,
irrespective of the upper bound N .8

8We also conduct this experiment with average informa-
tion difference (Robnik-Šikonja and Kononenko, 2008) as an
alternative to F1, observing similar outcomes. We include
results in Appx. G.3



(a) SST (b) EV.INF (c) AG (d) M.RC

Figure 2: F1 macro scores for our proposed variable-length rationales from the best feature scoring method (OURS,
VAR-LEN + VAR-FEAT) and our baseline of fixed length (FIXED-LEN), fixed feature scoring method (FIXED-
FEAT) across different rationale ratios (for CONTIGUOUS rationale types). For our approach the upper bound N is
the same as the fixed rationale length K.

We first notice that our VAR-LEN + VAR-FEAT

rationales are more faithful (lower F1 macro scores)
compared to our baseline, across all datasets and
rationale lengths. This suggests that our approach
is successful in extracting the best variable-length
rationales for each instance in the dataset, irrespec-
tive of the selected upper bound. What is partic-
ularly surprising is that with M.RC there is a de-
crease in information difference with longer ratio-
nale lengths, which is counter-intuitive. We hypoth-
esize this is due to the rationales containing tokens
that are not supportive of the predicted classes and
as such reducing performance. We would expect
that by increasing further the rationale length, that
we would notice an increase in information differ-
ence. Nevertheless, our proposed approach (VAR-
LEN + VAR-FEAT) still manages to yield rationales
that result in larger drops in F1 scores and are as
such more faithful.

Increasing the Number of Feature Scoring

Methods: We now examine how the effective-
ness of our approach for finding the best rationales
at each instance, is affected by the number of fea-
ture scoring methods. Figure 3 shows F1 macro
performance of our approach (VAR-LEN + VAR-
FEAT) with increasing numbers of feature scoring
methods. We expect that for our approach to be
successful, F1 macro performance should degrade
when masking the rationale with an increasing set
of feature scoring methods (increased options for
importance rankings per instance).

As expected by increasing our ranking choices,
we are able to retrieve more faithful rationales per
instance. This is reflected on the decreases across
all datasets in F1 macro performance with increas-
ing options of feature scoring methods. For exam-
ple with AG, performance drops from 76.8 with
2 feature scoring methods to 71.5 with 4. This

Figure 3: F1 macro performance of variable length,
variable feature scoring method rationales (VAR-LEN

+ VAR-FEAT) with increased options of feature scoring
methodes per instance, for TOPK type rationales.

highlights: (1) the effectiveness of our approach in
selecting the feature scoring method that results to
the more faithful rationale and (2) that there is no
single best feature scoring method for all instances
in a dataset (Atanasova et al., 2020).

7 Qualitative Analysis

Table 3 demonstrates examples of rationales ex-
tracted with our proposed approach (VAR-LEN +
VAR-FEAT) and fixed length rationales from a vari-
able feature scoring method (FIXED-LEN + VAR-
FEAT), to perform a qualitative comparison be-
tween fixed and variable-length rationales.

Concise rationales: Examples 1 and 2 present
examples from the datasets AG and EV.INF. re-
spectively, where the model has predicted the cor-
rect label. In Example 1, our approach extracts
a rationale that is 6 tokens shorter than the fixed-
length one. We hypothesize that this is due to the
model having sufficient information to predict a
class with 6 fewer tokens and as such not requiring
any additional information.

This is more evident in Example 2 where the



Example 1 Data.:AG Id: test_97

[FIXED-LEN + VAR-FEAT]: ... in quarterly profit , raised its full - year forecast and said it plans to enter the fast - growing Chinese market ,

sending its shares higher. ...

[VAR-LEN + VAR-FEAT (Ours)]: ... in quarterly profit , raised its full - year forecast and said it plans to enter the fast - growing Chinese market ,

sending its shares higher. ...
[Predicted Topic || Actual Topic]: Business || Business

Example 2 Data.:EV.INF. Id: 4598102_3

[FIXED-LEN + VAR-FEAT]: ... and week 8 ( P = 0.007 ) compared with the control group . PANSS - negative scores in the aripiprazole group

also decreased significantly at week 4 ( P = 0.005 ) and week 8 ( P < 0.001 ) compared with the control group . ...
[VAR-LEN + VAR-FEAT (Ours)]: ... and week 8 ( P = 0.007 ) compared with the control group . PANSS - negative scores in the aripiprazole group
also decreased significantly at week 4 ( P = 0.005 ) and week 8 ( P < 0.001 ) compared with the control group . ...
[Intervention || Comparator || Outcome]: Adjunctive aripiprazole || No additional treatment || PANSS-negative scores at week 4 and 8
[Predicted relationship || Actual relationship]: Decreased significantly || Decreased significantly

Example 3 Data.:EV.INF. Id: 3162205_2

[FIXED-LEN + VAR-FEAT]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The control sides treated with an autograft

showed significantly better Lenke scores than the study sides treated with β - CPP at 3 and 6 months postoperatively , but there was no

difference between the two sides at 12 months . The fusion ..

[VAR-LEN + VAR-FEAT (Ours)]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The control sides treated with an autograft

showed significantly better Lenke scores than the study sides treated with β - CPP at 3 and 6 months postoperatively , but there was no difference
between the two sides at 12 months . The fusion ..
[Intervention || Comparator || Outcome]: Porous β-calcium pyrophosphate (β-CPP) plus autograft || Autograft alone || Lenke scores at 12 months
[Predicted relationship || Actual relationship]: Increased significantly || No significant difference

Example 4 Data.:SST Id: test_1039

[FIXED-LEN + VAR-FEAT]: It ’s just incredibly dull.

[VAR-LEN + VAR-FEAT (Ours)]: It ’s just incredibly dull.
[Predicted Label || Actual Label]: Negative || Negative

Table 3: True examples of extracted rationales with our proposed approach of variable-length (VAR-LEN) and
fixed-length FIXED-FEAT rationales from the best feature scoring method (VAR-FEAT) at instance-level.

variable-length is formed of only 2 tokens, “de-
creased significantly”, a phrase which directly cor-
relates with the task of inferring relationships. Ob-
serving other examples from EV.INF., we have no-
ticed that where a reported relationship is specif-
ically stated in the input sequence, our approach
generates shorter than average rationales. Since
our approach is based on observing the model’s
behavior, we hypothesize that the model places too
much importance on such phrases, often neglecting
the surrounding context. Whilst here the model
predicted correctly, our variable-length rationales
can be more informative when a model does not.

Error analysis: Example 3 presents such a case
from the dataset EV.INF., where the model has
predicted falsely that “Lenke scores at 12 months”
increased significantly instead of no significant dif-
ference. If we consider the fixed length rationale,
we can observe that the correct answer is included
in the extracted rationale, however our model pre-
dicted wrong. We argue that this restricts our under-
standing of the model’s reasoning behind an incor-
rect prediction. On the contrary, our variable-length
rationale highlights something directly related to
its prediction. Albeit the wrong prediction, our ap-
proach provides a more concise rationale, making
it is easier to interpret the model’s reasoning.

When a fixed length is not sufficient: Example
4 presents a different scenario, where the fixed
length rationale for SST is at 20% whilst the up-
per bound N for our variable-length rationale is at
40%. The intuition is that in certain cases a fixed
rationale length might not suffice for all instances
to explain a prediction. We argue that our proposed
approach highlighted something more informative
for the task (“incredibly dull”), compared to the
fixed length rationale (“incredibly”), due to remov-
ing the restriction of a pre-defined fixed length.

8 Conclusions

We propose a methodology for extracting vari-
able length rationales from the best feature scor-
ing method and rationale type at instance level.
We achieve this by computing the difference in
a model’s prediction with full text and a reduced
input resulting from rankings of feature scoring
methods. We demonstrate that without defining a
feature scoring method, a rationale type or a ratio-
nale length we can obtain consistently more faithful
rationales. We show that our approach is flexible by
decomposing it and showing consistent improve-
ments in explanation faithfulness quantitatively and
qualitatively. We consider applying our approach
to other tasks, such as machine translation and sum-
marization, an interesting direction for future work.
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A Model Hyperparameters

Table 4 presents the hyper-parameters used to train
the models across different datasets, along with F1
macro performance on the development set. Mod-
els where finetuned across 3 runs for 5 epochs. We
implement our models using the Huggingface li-
brary (Wolf et al., 2019) and use default parameters
of the ADAMW optimiser apart from the learning
rates. We use a linear scheduler with 10% of the
steps in the first epoch as warmup steps. Experi-
ments are run on a single Nvidia Tesla V100 GPU.

B Divergence metrics (∆)

To compute the value δ for how much Ym differs
from Y , we consider four divergence measures ∆,
also previously used in literature (Robnik-Šikonja
and Kononenko, 2008; Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019), together with a ran-
dom baseline:

Random Selection (RAND-SELECT) : Ran-
domly selecting the best feature scoring method
at each instance.

Kullback Leibler (KL) : A non-symmetric di-
vergence measure of how a particular distribution
divergences from a reference distribution:

KL(Y||Y∗) = Y(log(Y − log(Ym)) (1)

Jensen-Shannon (JSD) : A symmetric diver-
gence metric based on the KL divergence of two
distributions from their mean:

JSD(Y||Ym) =
1

2
(KL(Y||µ)+

1

2
(KL(Ym||µ))

(2)
where µ is the average distribution of Y and Ym.

DATASET MODEL lrm lrc F1
SST BERT-BASE 1E-5 1E-4 90.7 ± 0.2
AG BERT-BASE 1E-5 1E-4 93.3 ± 0.0
EV.INF. SCIBERT 1E-5 1E-4 82.5 ± 0.9
M.RC ROBERTA-BASE 1E-5 1E-4 76.3 ± 0.2

Table 4: Model and their hyper-parameters for each
dataset, including learning rate for the model (lrm) and
the classifier layer (lrc) and F1 macro scores on the de-
velopment set across three runs.

(%) FEAT SST AG EV.INF. M.RC

T
O

P
K

α 16 ± 6 16 ± 4 6 ± 3 9 ± 7

x∇x 16 ± 6 16 ± 4 7 ± 3 13 ± 7

α∇α 16 ± 5 16 ± 4 6 ± 3 10 ± 8

IG 16 ± 5 16 ± 4 7 ± 3 14 ± 6

C
O

N
T

α 15 ± 6 15 ± 5 6 ± 3 8 ± 6

x∇x 16 ± 6 15 ± 5 6 ± 3 10 ± 7

α∇α 16 ± 6 15 ± 5 6 ± 3 9 ± 7

IG 16 ± 6 15 ± 5 6 ± 3 11 ± 7

Table 5: Average variable rationale lengths computed
using JSD, across instances with standard deviation for
TOPK and CONTIGUOUS rationale types.9

Perplexity (PERP.) : A measure of how well a
model can predict a sample, where:

P (Y||Ym) = expH(Y,Ym) (3)

where we consider Y as the ground truth and
H(Y||Ym) is the Cross Entropy Loss.

Class Difference (CLASSDIFF) : The direct dif-
ference between the predicted class probability
from the model with full text (x) and the same
class probability with reduced text (x\R) :

P (Y||Ym) = Y[class]− Ym[class] (4)

where class = arg max(Y).

C Computed variable lengths

In Table 5 we present the average computed ratio-
nale lengths using JSD across each feature scoring
method, for each dataset and rationale type. To ex-
tract rationales we use an upper bound N equal to
the fixed rationale length K (as indicated in Table
2 and as defined by (Jain et al., 2020)).

We first observe that rationales extracted with
our proposed approach are on average shorter than
the a priori set rationale ratio. In datasets such as
SST and AG where we have short sequences on
average (See Table 1), these differences are negli-
gible, as a 4% decrease translates to approximately
having a single token less in the rationale. Observ-
ing the standard deviations we also see that there
are instances which exhaust the upper bound (20%)
to form a rationale and also instances which require

9In SST the standard deviations exceed 20% due to a num-
ber of instances being shorter than 4 tokens. As such removing
a single token is recorded as higher than 20%. Similarly the
true recorded fixed ratio is actually higher than 20%



far less than the predefined ratio. This strengthens
our initial hypothesis that certain instances might
not require as many tokens to successfully explain
a prediction.

In datasets with longer sequences lengths on av-
erage (EV.INF. and M.RC) such differences are
more evident. For example with α and CONTIGU-
OUS rationales in M.RC, our proposed approach re-
sults in rationales which are on average 12% shorter
than the fixed length rationales. This translates to
approximately 37 less tokens to form a rationale.
What is particularly interesting is that by observ-
ing the standard deviations for M.RC and EV.INF.,
we notice that the vast majority of instances does
not exhaust the upper bound N to form a rationale.
We consider this particularly important for longer
sequences, as often when acquiring an explanation
for a model’s prediction it is desirable to avoid a
noisy interpretation of why a model predicted a
particular class.

D Alternative formulation of

variable-length rationales

We also examined introducing a thresholding ap-
proach in early experimentation when extracting
variable length rationales, whereby δprev−δmax <

thresh, similar to early stopping to avoid exhaust-
ing the upper bound N . Early results suggested that
for datasets with shorter length sequences (SST
and AG) this approach performed worse albeit com-
parably. In datasets with longer sequence lengths
(EV.INF. and M.RC), the threshold approach per-
formed poorly. On a closer inspection this was
attributed to finding a threshold too early in the
sequence thus not capturing all the necessary in-
formation. We experimented with JSD and the
following thresholds : {1e-4, 1e-3, 1e-2}.

We considered using patience to avoid such
naive thresholding, however the computation time
would increase significantly. The reason being
that we conduct experiments at instance-level, in
batches. Introducing patience, would entail that
we conduct it using a single instance at a time thus
increasing computations by the batch size. As such
we have not conducted this approach as it would
be computationally expensive.

E Comparing divergence metrics

We first compare the effectiveness of divergence
metrics in computing a variable rationale length
and selecting the best feature scoring method at

instance level. Table 7 presents F1 macro scores
for our proposed variable length rationales from the
best feature scoring method at instance level (VAR-
DIVMETRICS). For completion we also include
a baseline, whereby we randomly select a feature
scoring method as best at each instance (RAND-
SELECT).

Results suggest that the best performing diver-
gence metrics (used to compute δ) are JSD and KL
with an average F1 macro of 55.2. JSD appears to
be more consistent, as it manages to outperform the
other divergence metrics in 5 out 8 instances, whilst
being second in 2. As expected the random selec-
tion baseline, fails to perform comparably with any
of the divergence metrics. As such, we presented
results in the main body of our work with δ calcu-
lated using JSD for clarity, with the full stack of
results in Appendix G.

F Reducing Time Complexities

Selecting the best variable length rationale at each
instance in a dataset can be computationally expen-
sive when we compute δ for every token, being
similar to counting decision flips (Nguyen, 2018;
Serrano and Smith, 2019; Atanasova et al., 2020).
This takes into consideration that we have to per-
form a forward pass for every token until we reach
N tokens, for each feature attribution approach Ω.
In the following segments we describe approaches
to reduce computational times.

Reducing search granularity: Similar to
Atanasova et al. (2020), we can reduce sig-
nificantly computation times by reducing the
granularity of our search. In our implementation
(see Algo. 1) we describe masking each token or
n-gram sequentially, which can be altered to skip
tokens. For example, consider a sequence with
200 tokens and an upper-bound N = 20% and as
such Nt = 40. Instead of computing δ for each
token, we can compute it for every 5 tokens and
as such reducing complexity by 5. Similarly we
can compute δ at every 2% of the sequence until
we reach N . For example for EV.INF., where
N =10% we compute δ at every {2%, 4%, . . .
10%} thus keeping the forward passes constant
across instances.

In Table 6, we present average F1 macro perfor-
mance across datasets and rationale types, when
computing δ at every 2% and 5% of tokens in a
sequence using JSD. We compare against: (1) our
best performing baseline FIXED-α∇α (top of the



LEN FEAT SCORING δ@ AVG. F1

FIXED FIXED-α∇α - 61.6

OURS

FIXED VAR-FEAT - 55.5

VAR VAR-FEAT

TOKEN 54.4

2% 54.6

5% 55.0

Table 6: Average F1 macro scores (across datasets and
rationale types) on the test set, with masked rationale
(x\R) as model M input. δ@ shows the increments
at which we calculate δ (using JSD) when extracting a
variable length rationale at each instance.

table) ; (2) fixed length rationales (FIXED-LEN)
from the best feature scoring method at each in-
stance (VAR-FEAT) and (3) our proposed approach
of variable length (VAR-LEN) rationales from the
best feature scoring method (VAR-FEAT with δ

computed at each token (δ@TOKEN), every 2%
(δ@2%) and every 5% (δ@5%) until we reach N .

Results suggest that by computing δ at each to-
ken yields the most faithful rationales, with the
incremental 2% approach resulting in similar per-
formance. This is encouraging considering the
computational time saved by calculating δ incre-
mentaly. For example in M.RC, computing δ at
each token until we reach N requires on average
approximately 60 forward passes (when N=20%),
compared to 10 with the 2% increment.

Combining feature scoring rankings: We con-
sidered further reducing our computation time by
merging importance scores from all feature scoring
methods. The intuition is that we obtain a com-
bined ranking and avoid selecting the best feature
scoring method at each instance and computing
a variable length for all feature scoring methods.
We attempted this by averaging the normalized
importance scores for each sequence from all the
feature scoring methods, however as expected re-
sults where not comparable (63.2 average F1 macro
compared to 54.4) with our proposed approach or
even our best performing baseline.

G Additional Results

G.1 F1 model-macro

In Table 8 we also examine a variation of F1
macro, F1 model-macro, whereby the true labels
are model’s M predictions with full text (x). The
intuition is that a lower F1 model-macro score indi-

cates that a rationale is more faithful as the model
struggles to predict with a masked input x\R, what
it had predicted with full text.

We again observe similar outcomes to Table 7
with F1 macro results. JSD performs better than the
remainder of the metrics, with KL and CLASSDIFF

being the closest competitors to JSD.

G.2 F1 macro Full Results

In Table 7 we present results across the tested diver-
gence metrics. As expected the baseline of random
selection (RAND-SELECT) performs poorly, with
the rest of divergence metrics performing compara-
bly. JSD is better on average and performs the best
in the majority of cases. In Tables 9, 10 and 11 we
present the detailed results for the other divergence
metrics under study.

G.3 Average Information Difference

We also conduct experiments for comparing our
baseline fixed-length rationales with a fixed feature
attribution, with our variable-length rationales from
the best feature scoring methods using Average In-
formation Difference (Av.I.D). Av.I.D. This met-
ric measures the information loss between the pre-
dicted class probability using the full input (x) and
the input with the rationale masked (x\R) (Robnik-
Šikonja and Kononenko, 2008):

Av.I.D =
1

D

D∑
log

2
p(y|x)− log

2
p(y|x\R) (5)

where, D is the number of documents in a dataset,
p(y|x) the predicted class probability using the full
input and p(y|x\R) the predicted class probability
by masking the rationale. The intuition is that by
masking the rationale in an instance (i.e. a model’s
explanation) we should observe high information
loss. Therefore, the higher the Av.ID, the more
faithful a rationale. We present results in Figure 4,
observing similar performance between F1 macro
and Av.I.D.



DIVMETRICS SST AG EV.INF M.RC AVG.

K N (UPPER-BOUND) 20% 20% 10% 20%
TYPE TOPK CONT TOPK CONT TOPK CONT TOPK CONT

VAR (K ≤N)

RAND-SELECT 85.9 86.9 91.5 91.5 78.6 80.6 66.3 52.5 79.2
KL 64.0 67.5 72.0 83.2 26.3 45.0 36.7 40.4 54.4

JSD 64.0 67.7 71.5 83.0 27.5 44.5 36.6 40.5 54.4

PERP. 64.6 68.1 72.3 83.6 26.9 44.7 37.3 41.2 54.8
CLASSDIFF. 64.5 68.0 72.1 83.3 26.4 45.0 36.7 40.5 54.6

Table 7: F1 macro scores on the test set, with masked rationale (x\R) as model M input. K represents the rationale
length, with VAR denoting that our approach computes at each instance a rationale length. DIVMETRICS indicates
the divergence metric (∆) used compute δ, which from we select the best feature scoring method at instance level
(see §3). We also include random selection (RAND-SELECT) as a baseline. Bold and underlined values indicate
the best and second best respectively, across each dataset and rationale type (lower is better).

DIVMETRICS SST AG EV.INF M.RC AVG.

K N (UPPER-BOUND) 20% 20% 10% 20%
TYPE TOPK CONT TOPK CONT TOPK CONT TOPK CONT

VAR (K≤N)

RAND-SELECT 82.1 90.3 96.7 96.3 94.2 95.4 79.1 59.3 86.7
KL 51.1 64.3 70.9 84.0 17.2 39.0 19.8 27.7 46.8
JSD 51.2 64.2 70.5 83.8 17.0 38.8 19.7 27.7 46.6

PERP. 51.7 64.6 71.4 84.5 17.5 38.8 23.2 30.8 47.8
CLASSDIFF. 51.4 64.7 71.0 84.1 16.8 38.8 19.7 27.7 46.8

Table 8: F1 model-macro scores on the test set (F1 model-macro with full text is 100%), with masked rationale
(x\R) as model M input. K represents the rationale length, with VAR denoting that our approach computes at
each instance a rationale length. DIVMETRICS indicates the divergence metric (∆) used compute δ, which from
we select the best feature scoring method at instance level (see §3). We also include random selection (RAND-
SELECT) as a baseline. Bold and underlined values indicate the best and second best respectively, across each
dataset and rationale type (lower is better).

(a) SST (b) EV.INF (c) AG (d) M.RC

Figure 4: F1 macro and Av.ID scores for our proposed variable-length rationales from the best feature scoring
method (OURS, VAR-LEN + VAR-FEAT) and our baseline of fixed length (FIXED-LEN), fixed feature scoring
method (FIXED-FEAT) across different rationale ratios (for CONTIGUOUS rationale types). For our approach the
upper bound N is the same as the fixed rationale length K.



SST AG EV.INF M.RC AVG

FULL INPUT 90.7 92.7 80.6 75.9 85.0
N 20% 20% 10% 20%

LEN FEAT SCORING TOPK CONT TOPK CONT TOPK CONT TOPK CONT

FIXED (K=N)

FIXED-RAND 84.3 84.8 90.6 90.6 76.3 78.4 60.0 46.0 76.2
FIXED-α 69.7 74.5 77.3 87.4 46.0 59.0 36.8 45.3 62.0

FIXED-α∇α 72.1 76.1 79.9 87.3 36.0 59.3 38.6 43.3 61.6
FIXED-x∇x 83.5 83.7 88.5 88.7 71.7 74.4 46.6 45.1 72.8
FIXED-IG 83.5 82.9 88.0 89.4 72.0 75.5 51.0 44.8 73.4

OURS

FIXED VAR-FEAT 61.9 67.4 71.0 83.5 28.2 53.7 37.4 40.7 55.5

VAR (K≤N)

FIXED-RAND 85.9 86.8 91.3 91.3 78.8 80.3 66.4 52.5 79.2
FIXED-α 71.0 74.9 78.0 87.4 36.3 50.0 38.5 43.1 59.9

FIXED-x∇x 83.9 83.5 88.6 88.9 70.2 66.9 48.0 45.2 71.9
FIXED-α∇α 72.5 75.5 80.1 86.7 32.3 49.1 39.7 43.7 60.0

FIXED-IG 83.9 83.2 88.2 89.6 71.3 73.7 51.0 47.1 73.5
VAR (K≤N) VAR-FEAT 64.0 67.5 72.0 83.2 26.3 45.0 36.7 40.4 54.4

Table 9: Macro F1 scores for measuring the faithfulness of explanations by masking the rationale (x\R) (lower
is better). K and N denote the rationale length per instance and its upper bound respectively. FIXED and VAR

indicate fixed and variable (i.e. different per instance) length, feature scoring method or type. δ measured using
KL.

SST AG EV.INF M.RC AVG

FULL INPUT 90.7 92.7 80.6 75.9 85.0
N 20% 20% 10% 20%

LEN FEAT SCORING TOPK CONT TOPK CONT TOPK CONT TOPK CONT

FIXED (K=N)

FIXED-RAND 84.3 84.8 90.6 90.6 76.3 78.4 60.0 46.0 76.2
FIXED-α 69.7 74.5 77.3 87.4 46.0 59.0 36.8 45.3 62.0

FIXED-α∇α 72.1 76.1 79.9 87.3 36.0 59.3 38.6 43.3 61.6
FIXED-x∇x 83.5 83.7 88.5 88.7 71.7 74.4 46.6 45.1 72.8
FIXED-IG 83.5 82.9 88.0 89.4 72.0 75.5 51.0 44.8 73.4

OURS

FIXED (K=N) VAR-FEAT 61.8 67.3 71.0 83.6 28.5 53.8 37.5 40.7 55.5

VAR (K≤N)

FIXED-RAND 85.9 86.8 91.3 91.3 78.8 80.3 66.4 52.5 79.2
FIXED-α 72.5 76.0 78.5 87.6 38.9 51.3 43.6 45.6 61.8

FIXED-x∇x 84.3 83.9 88.6 89.0 69.5 68.1 49.5 46.9 72.5
FIXED- α∇α 73.4 76.7 80.4 86.9 33.6 50.0 41.4 44.5 60.9

FIXED-IG 83.9 83.2 88.3 89.6 71.5 74.4 52.5 47.9 73.9
VAR (K≤N) VAR-FEAT 64.6 68.1 72.3 83.6 26.9 44.7 37.3 41.2 54.8

Table 10: Macro F1 scores for measuring the faithfulness of explanations by masking the rationale (x\R) (lower
is better). K and N denote the rationale length per instance and its upper bound respectively. FIXED and VAR

indicate fixed and variable (i.e. different per instance) length, feature scoring method or type. δ measured using
perplexity (PERP.).



SST AG EV.INF M.RC AVG

FULL INPUT 90.7 92.7 80.6 75.9 85.0
N 20% 20% 10% 20%

LEN FEAT SCORING TOPK CONT TOPK CONT TOPK CONT TOPK CONT

FIXED (K=N)

FIXED-RAND 84.3 84.8 90.6 90.6 76.3 78.4 60.0 46.0 76.2
FIXED-α 69.7 74.5 77.3 87.4 46.0 59.0 36.8 45.3 62.0

FIXED-α∇α 72.1 76.1 79.9 87.3 36.0 59.3 38.6 43.3 61.6
FIXED-x∇x 83.5 83.7 88.5 88.7 71.7 74.4 46.6 45.1 72.8
FIXED-IG 83.5 82.9 88.0 89.4 72.0 75.5 51.0 44.8 73.4

OURS

FIXED (K=N) VAR-FEAT 61.8 67.3 71.0 83.6 28.3 53.8 37.5 40.7 55.5

VAR (K≤N)

FIXED-RAND 85.9 86.8 91.3 91.3 78.8 80.3 66.4 52.5 79.2
FIXED-α 71.6 75.0 78.0 87.4 36.3 50.1 38.4 43.1 60.0

FIXED-x∇x 84.2 83.6 88.7 89.0 70.2 66.9 48.1 45.4 72.0
FIXED-α∇α 72.8 75.8 80.3 86.6 32.4 49.5 39.8 43.6 60.1

FIXED-IG 84.1 83.2 88.3 89.6 71.0 73.2 51.2 47.2 73.5
VAR (K≤N) VAR-FEAT 64.5 68.0 72.1 83.3 26.4 45.0 36.7 40.5 54.6

Table 11: Macro F1 scores for measuring the faithfulness of explanations by masking the rationale (x\R) (lower
is better). K and N denote the rationale length per instance and its upper bound respectively. FIXED and VAR

indicate fixed and variable (i.e. different per instance) length, feature scoring method or type. δ measured using
predicted class difference (CLASS-DIFF).


