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Abstract

We prove (under certain assumptions) the irreducibility of the limit σ2 of a sequence of
irreducible essentially self-dual Galois representations σk : GQ → GL4(Qp) (as k
approaches 2 in a p-adic sense) which mod p reduce (after semi-simplifying) to
1⊕ ρ ⊕ χ with ρ irreducible, two-dimensional of determinant χ , where χ is the mod p

cyclotomic character. More precisely, we assume that σk are crystalline (with a
particular choice of weights) and Siegel-ordinary at p. Such representations arise in the
study of p-adic families of Siegel modular forms and properties of their limits as k → 2
appear to be important in the context of the Paramodular Conjecture. The result is
deduced from the finiteness of two Selmer groups whose order is controlled by p-adic
L-values of an elliptic modular form (giving rise to ρ) which we assume are non-zero.

Keywords: Galois representations, The paramodular conjecture, p-adic Siegel modular
forms

Mathematics Subject Classification: 11F80, 11F46

1 Introduction

In [8] the authors studied the modularity of abelian surfaces with rational torsion. Let

A be an abelian surface over Q, let p be a prime and suppose that A has a rational

point of order p, and a polarization of degree prime to p. Then the (semi-simplified)

action of GQ := Gal(Q/Q) on A(Q)[p] is of the form 1 ⊕ ρ ⊕ χ , for χ the mod p

cyclotomic character. Assuming that ρ is irreducible, Serre’s conjecture (Theorem of

Khare-Wintenberger) implies that the mod p representation looks like the reduction of

that of a Saito–Kurakawa lift of an elliptic modular form f of weight 2. If End(A) = Z

then the p-adic Tate module ofA gives rise to an irreducible p-adic Galois representation.

The Paramodular Conjecture (formulated by Brumer and Kramer [15]) predicts that this

representation should be isomorphic to the Galois representation attached to a weight 2

Siegel modular form of paramodular level which is not in the space of Saito–Kurokawa

lifts. Establishing the modularity ofA by a Siegel modular form therefore requires proving

congruences between the Saito–Kurokawa lift SK (f ) and “non-lifted type (G)” Siegel

modular forms. The latter are cuspforms staying cuspidal under the transfer to GL4, and

are expected to be exactly the forms whose associated p-adic representation is irreducible.
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Such congruences for Saito–Kurokawa lifts have been proven by Brown, Agarwal and Li

[1,12,14] for holomorphic Siegel modular forms of congruence levelŴ2
0(N ) and paramod-

ular levelŴpara(N ) forweights k larger than 6 (see [14]Corollary 6.15).With this new result

[8] Theorem 10.2 can be generalized to allow ramification at a squarefree level N , and

establishes a so-called R = T result and the modularity of Fontaine–Laffaille represen-

tations that residually are of Saito–Kurokawa type (with an elliptic f of weight 2k − 2

for k ≥ 6). Different type of congruences have also been constructed by Sorensen, see

Sect. 5.2.

The methods used to prove these congruences unfortunately do not extend to weight

k = 2, the case of interest for the modularity of abelian surfaces. We propose to use

p-adic families to prove the relevant congruences in weight 2 (albeit a priori only to a p-

adic modular form—see below). For example, Skinner and Urban [32] proved that for an

ordinary elliptic form f the Ŵpara(N )-level holomorphic Saito–Kurokawa lift SK (f ) can be

p-adically interpolated by a semi-ordinary (also called Siegel-ordinary) family. It is plausi-

ble that their arguments could be adapted for Ŵ2
0(N )-level holomorphic Saito–Kurokawa

lifts. Such p-adic families have also been studied by Kawamura [22] and Makiyama [24].

As part of a work in progress we construct (under some assumptions) another Siegel-

ordinary p-adic family (of tame level either Ŵ2
0(N ) or Ŵpara(N )) interpolating the type of

congruences constructed by Brown or Sorensen. At classical weights k ≫ 0 its points

would correspond to irreducible p-adic Galois representations that are Siegel-ordinary

(see Definition 2.3) and whose semi-simplified residual representation is the mod p rep-

resentation associated to SK (f ).

One could then use this family to approach weight 2 via weights k ≫ 0, but k → 2

p-adically. As points of weight 2 for such a family are critical (in the sense that the

Up = Up,1Up,2-slope is at least one and therefore does not satisfy the small slope condition

in Theorem 7.1.1 of [2]; see Sect. 5.1 for definitions ofUp,1 andUp,2) it is not clear whether

this limit would correspond to a classical Siegel modular form.

In fact, modularity by p-adic Siegel modular forms was proved for certain abelian sur-

faces whose p-adic Galois representation is residually irreducible by Tilouine [38]. In a

sense this paper provides a necessary ingredient to proving such p-adic modularity for the

residually reducible case as explained below. Let us also mention that some strong poten-

tial modularity results in the residually irreducible situation have recently been proven in

[11].

One potential problem is that while the p-adic Galois representations attached to the

members of the family for k ≫ 0 are irreducible this is not a priori clear of the limit. This

property is on the onehandnecessary formodularity purposes (asTpA⊗Qp is irreducible).

On the other hand it allows one then to feed these ingredients into a machinery similar

to the one developed in [8] (modified appropriately for representations that are Siegel-

ordinary instead of Fontaine-Laffaille) and under suitable conditions show that TpA and

the limit Galois representation are in fact isomorphic, thus proving p-adic modularity of

A.

In this paper we introduce a new way of proving that under certain assumptions the

limit of irreducible Galois representations is itself irreducible. This method is based on

finiteness of Selmer groups and while we only apply it here in our specific situation (i.e.,

when the representations are residually of Saito–Kurokawa type, as desired for proving

the modularity of abelian surfaces with rational p-torsion) it is not difficult to see how
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it can be modified to work in other contexts, cf. our upcoming paper about a residually

reducible R = T result for GL2 in weight 1.

In other words, while our overarching goal is to provide ingredients to prove modu-

larity of abelian surfaces as explained above, the theorems proven in this paper could in

principle be treated completely independently as a result on limits of Galois representa-

tions. In particular, Siegel modular forms will be notably absent from our statements and

their presence will manifest itself only through certain conditions imposed on the Galois

representations.We thus consider a family (which is part of a “refined” rigid analytic fam-

ily in the sense of Ballaïche–Chenevier—see Sect. 3) of irreducible 4-dimensional p-adic

Galois representations σk indexed by a set of integers k > 2, k ≡ 2 (mod (p − 1)) which

approach 2 in the p-adic sense. Suppose that tr σk converge p-adically to some pseudo-

representation T when k → 2. We require that for each k the representation σk reduces

to somemod p representation whose semi-simplification is isomorphic to 1⊕χ ⊕ρ for an

irreducible 2-dimensional representation ρ and that it is crystalline and Siegel-ordinary.

We are interested in conditions guaranteeing the irreducibility of T .

The basic idea is not difficult to explain. First we use the irreducibility of σk to construct

Galois stable lattices in their representation spaces so that infinitely many of the σks

reduce mod p to a non-semi-simple residual representation (whose semi-simplification is

1⊕χ⊕ρ) with the same JordanHolder factor as a subrepresentation and the same Jordan–

Holder factor as a quotient. It is not possible to ensure that all σk reduce to the same

combination as σ k has three Jordan–Holder factors. Indeed, in general Ribet’s Lemma

only tells us that there are enough (non-split) extensions between different Jordan–Holder

factors to guarantee connectivity of a certain graph—see Sect. 4—and absent any other

assumptions (like for example lying in the Fontaine-Laffaille range which was used in

Corollary 4.3 of [8]) there is no way to tell which extension will arise. However, as there

are only finitely many such extensions possible, we get an infinite subsequence T of σk

with identical (non-split) reduction.

Now, if T was reducible, there are several ways in which it can split into the sum of

irreducible pseudo-representations. Let us discuss here the case of three Jordan–Holder

factors which can be regarded as the main result of this paper—see Theorem 3.3. In that

case as k ∈ T approaches 2 (p-adically) the representations σk become reducible modulo

pnk with nk tending to ∞. As the reduction of σk is non-split, we conclude that σk give

rise to elements in a certain Selmer group of arbitrary high order. Using symmetries built

into the Galois representation one shows that this Selmer group can only be one of two

possibilities. Then the Main Conjecture of Iwasawa Theory gives us that the orders of

these Selmer groups are controlled by specializations to weight 2 (at two different points)

of a certain p-adic L-function. Hence to guarantee that these Selmer groups are finite (i.e.,

thatT cannot be reducible) we impose a non-vanishing condition on these L-values. Aswe

a priori do not know for which of the possible extensions we get the infinite subsequence

T we need to control both of the L-values as above. See Sect. 4 for details.

Let us now state the main result of the paper. For an ordinary newform g =∑∞
n=1 an(g)q

n of weight 2 let L(g, s) denote the standard L-function of g and let Lp(g, 2)

be the p-adic L-value denoted by Lanp (g,ω−1, T = p) in Sect. 2 of [8]. Write N for the

prime-to-p conductor of ρ.
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Theorem 1.1 Assume N 
= 1 and that ρ|GK is absolutely irreducible for K =
Q(

√
(−1)(p−1)/2p). Suppose that L(g, 1)Lp(g, 2) 
= 0 for all p-ordinary newforms g of weight

2 and level dividing Np such that aℓ(g) ≡ tr ρ(Frobℓ) mod ̟ for all primes ℓ ∤ Np. Then

T is not of Saito–Kurokawa type (i.e., it does not split into 3 Jordan–Holder factors).

Apriori ifT is reducible it could also split into 2 or 4 components andwe deal with them

in Sects. 3 and 6. We are able to rule out all of them, albeit for the reduction type dealt

with in Sect. 6, the so called Yoshida type, our theorems require quite strong assumptions.

We would like to thank Adel Betina, Pol van Hoften, Chris Skinner, and Ariel Weiss

for helpful discussions related to the topics of this article and Andrew Sutherland for the

example in Sect. 5.2.Wewould also like to express our gratitude to the anonymous referee

for their careful reading of the original manuscript and numerous helpful suggestions.

2 Setup

Let p be an odd prime. Let E be a finite extension of Qp with integer ring O, uniformizer

̟ and residue field F. We fix an embedding Qp →֒ C. Write ǫ for the p-adic cyclotomic

character and χ for its mod ̟ reduction. Let N be a square-free positive integer with

p ∤ N . Let � be the set of primes of Q consisting of p and the primes dividing N . We

denote by G� the Galois group of the maximal Galois extension ofQ unramified outside

of the set �.

Consider a Galois representation ρ : G� → GL2(F) of which we assume that it is odd

and absolutely irreducible of determinant χ . Furthermore we assume that ρ is ordinary

and p-distinguished, in the sense that

ρ|Dp
∼=

[
η−1χ ∗

η

]
, (2.1)

where η is a non-trivial unramified character and that ρ|Ip is non-split.We further assume

that ρ is ramified at all primes dividing N and that ρ|Iℓ has a fixed line for all ℓ | N (or

equivalently that N is the prime-to-p-part of the conductor of ρ).

Let τ : G → GLn(O) be an n-dimensional representation of a group G or τ :

O[G] → O be an n-dimensional pseudo-representation ofG. For a definition of a pseudo-

representation, its dimension and basic properties we refer the reader to Sect. 1.2.1 of [5].

However, let us onlymentionhere that ann-dimensional pseudo-representation τ is called

reducible if τ = τ1+τ2 for some pseudo-representations τ1, τ2 (each necessarily of dimen-

sion smaller than n). A pseudo-representation that is not reducible is called irreducible.

In particular, if τ : G → GLn(O) is a representation, then T := tr τ is an n-dimensional

pseudo-representation and T is reducible if and only if τ is. Furthermore if τ is an n-

dimensional pseudo-representation and τ =
∑r

i=1 τi with each τi an irreducible pseudo-

representation, then this decomposition as a sum of irreducible pseudo-representations

is unique (up to reordering of the summands).

Now let G = G� . By composing a representation or pseudo-representation τ with the

reduction map O → F we obtain the reduction of τ which we will denote by τ . If τ is an

n-dimensional representation valued in GLn(E), one can always find aG�-stableO-lattice

� such that when we choose a basis of En to be a basis of � we obtain a representation

τ� valued in GLn(O). The isomorphism class of τ� and also of its reduction τ� depends

in general on the choice of �. However, the semi-simplification τ ss� (and hence also the
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pseudo-representation tr τ�) is independent of � and so it makes sense to drop � from

the notation.

Lemma 2.1 Let τ : G� → GLn(E) be a continuous representation and let V be the

representation space of τ . Suppose that there exists a subspace L ⊂ V of dimension r ≤ n

with the following two properties: L is stable under G� and G� acts on L via an irreducible

representation ψ : G� → GLr(E) with values in GLr(O). Let � be a G�-stable O-lattice

in V (�⊗O E = V ). Then � has a rank r freeO-submodule which is stable under G� and

on which G� acts via the representation ψ .

Proof Let �′ be a G� stable lattice in L. Then for some positive integer s we have that

�0 := ̟ s�′ ⊂ �. Then �0 is clearly a rank r free O-submodule of � on which G� acts

via ψ . ⊓⊔

Lemma 2.2 Let τ : G� → GLn(E) be an irreducible representation. Suppose that with

respect to some G�-stable O-lattice � of the representation space V of τ one has τ�
∼=[

τ1 ∗
τ2

]
for τi : G� → GLri (F), r1 + r2 = n. Then there exists a G�-stable O-lattice �′ of

the representation space V such that with respect to �′ we have τ�′ ∼=

[
τ1

∗ τ2

]
.

Proof For g ∈ G� write τ�(g) =
[
ag bg

cg dg

]
. Then cg is an r2 × r1 matrix whose entries

we denote by cij(g). Let S = {g ∈ G� | cg 
= 0}. Irreducibility of τ guarantees that S is

non-empty. For g ∈ S set mg := min{val̟ (cij(g)) | i, jsuch thatcij(g) 
= 0}. Furthermore

setm = ming∈S mg and note thatm ≥ 1 as τ� is upper-triangular. Then
[
1

̟−m

] [
ag bg

cg dg

] [
1

̟m

]
=

[
ag ̟mbg

̟−mcg dg

]
.

⊓⊔

In this article wewill be especially interested in 2-dimensional and 4-dimensional Galois

representations that are ordinary in a sense that we now define.

Definition 2.3 (1) A Galois representation τ : G� → GL2(E) will be called ordinary if

τ |Dp
∼=

[
ψ−1ǫk−1 ∗

ψ

]
for some positive integer k and some unramified characterψ .

(2) A Galois representation τ : G� → GL4(E) will be called Siegel-ordinary if

τ |Dp
∼=

⎡
⎢⎢⎢⎣

ψ−1ǫ2k−3 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ψ

⎤
⎥⎥⎥⎦ ,

for some positive integer k and some unramified Galois character ψ .

(3) A Galois representation τ : G� → GL4(E) will be called Borel-ordinary if

τ |Dp
∼=

⎡
⎢⎢⎢⎣

ψ−1ǫ2k−3 ∗ ∗ ∗
φ−1ǫk−1 ∗ ∗

φǫk−2 ∗
ψ

⎤
⎥⎥⎥⎦ ,
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for some positive integer k and some unramified Galois characters ψ and φ.

For later it will be useful to introduce the following notation. If α ∈ E×, then the

unramified character from Dp to E× that takes the arithmetic Frobenius to α will be

denoted by φα .

3 Irreducibility

3.1 Main assumptions

Assume we have a p-adic family of Galois representations in the sense of [5], i.e. we have

a rigid analytic space X over Qp and a 4-dimensional pseudo-representation T : G� →
O(X). We denote by σx : G� → GL4(E(x)) (for some finite extension E(x) of Qp) the

semi-simple representation of G� whose trace is the evaluation Tx of T at x ∈ X (for

existence see [35], Theorem 1). We are interested in the case when the family satisfies

nice p-adic Hodge properties for all points in a Zariski dense set Z ⊂ X and want to

deduce properties at a point x0 ∈ X\Z, in particular to control the ramification at p of

the corresponding Galois representation. The reader should think of X as (an affinoid

subdomain of) an eigenvariety parametrizing Siegel modular forms. We therefore also

assume the existence of a weight morphism w : X → W , where W is the rigid analytic

space overQp such that W(Cp) = Homcts((Z
×
p )

2,C×
p ).

More precisely, assume that we have data (X,T, {κn}, {Fn}, Z), a refined family in the

sense of [5] Definition 4.2.3, where n = 1, . . . 4 and κn and Fn are analytic functions in

O(X). For z ∈ Z we have 0 = κ1(z) < κ2(z) < κ3(z) < κ4(z) are the Hodge–Tate weights

of σz . Different to [5] we use arithmetic Frobenius conventions throughout, in particular

we say that Qp(1) has weight 1 and Sen polynomial X − 1. For the unramified character

φα defined above the eigenvalue of crystalline Frobenius on Dcris(φα) equals α.

The case of interest to us is where for a point z of weight w(z) = (w1, w2) with w1 ≥ w2

we have κ2(z) = w2 − 2, κ3(z) = w1 − 1 and κ4(z) = w1 + w2 − 3. We assume σz is

crystalline and the eigenvalues of ϕ on Dcris(σz) are given by (pκ1(z)F1(z), . . . , p
κ4(z)F4(z)).

Furthermore, suppose there exists an involution τ : O(X)[G�] → O(X)[G�] given by

τ (g) = �(g)g−1 for some character � : G� → O(X)× with �|Dp = ǫκ4(z) such that

T ◦ τ = T.

We also assume that for z ∈ Z the representation σz|Dp is Siegel-ordinary, i.e. that

σz|Dp
∼=

⎡
⎢⎢⎢⎣

ψ−1ǫκ4(z) ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ψ

⎤
⎥⎥⎥⎦ .

This is equivalent to demanding that |F1(z)| = 1 and then ψ = φF1(z). The existence of τ

then implies that F4(z) = F1(z)
−1. In addition we assume that σz is p-distinguished, i.e.,

ψ 
= 1.

Fix x0 ∈ X \ Z of weight w(x0) = (2, 2) and from now we reserve the notation E for the

field E(x0) and denote by O the ring of integers in E with uniformizer ̟ and residue field

F. Put T = Tx0 and σ2 := σx0 . We assume that T ≡ 1 + tr (ρ) + χ mod ̟ for ρ as in

Sect. 2 and that F2(x0) 
= 0.

Let S be a sequence of integers k ≡ 2 (mod pmk−1(p − 1)) with mk → ∞ as k → ∞.

We assume there exists a sequence of points zk ∈ Z converging to x0 with w(zk ) = (k, k)

for k ∈ S . Denote the corresponding family of Galois representations σk := σzk : G� →
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GL4(Ek ), wherewe setEk := E(zk ). ExtendingEk if necessarywemay assume thatO ⊂ Ok ,

whereOk is the ring of integers of Ek with uniformizer̟k . Then we define nk ∈ Z≥0 to be

the largest integer n such that tr σk ≡ T mod ̟ n. Note the convergence zk → x0 implies

nk → ∞ as k → ∞ but approaches 2 p-adically.

We assume that for each k ∈ S the representations σk have the following properties (of

which (2), (3) and (5) follow from the assumption made on T and so does (4) for k ≫ 0,

but we record them here again for the ease of reference):

(1) σk is irreducible,

(2) det σk = ǫ4k−6,

(3) σ∨
k

∼= σk (3 − 2k),

(4) σ ss
k

∼= 1 ⊕ ρ ⊕ χ ,

(5) σk |Dp is crystalline with weights 2k − 3, k − 1, k − 2, 0 and σk is Siegel-ordinary at p,

i.e.,

σk |Dp
∼=

⎡
⎢⎢⎢⎣

φ−1
βk

ǫ2k−3 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

φβk

⎤
⎥⎥⎥⎦ ,

for βk ∈ O×
k
and we assume that βk 
≡ 1 mod ̟k , i.e., σ k is p-distinguished;

(6) If ℓ ∈ � − {p} then σk |Iℓ is unipotent (see Remark 4.5 for a potential weakening of

this condition).

We refer the reader to Theorem 5.1 for a relation between these properties of σk and

Siegel modular forms.

Lemma 3.1 We have

(i) T |Dp = φ−1
β ǫ + φβ + tr γ for β = F1(x0) and a continuous representation γ : Dp →

GL2(O).

(ii) The pseudo-representation T (or rather σ2) has Hodge–Tate–Sen weights 0,0,1,1.

(iii) Furthermore, if � is any character that occurs in the decomposition of T |Dp into

pseudo-representations then we must have �|Ip = ǫ or �|Ip = 1.

Proof For (i) we use the Siegel-ordinarity of the σz for z ∈ Z and continuity.

For (ii) we apply [5] Lemma 7.5.12 and deduce that the Hodge–Tate–Sen weights in

weight 2 are 0,0,1,1.

For (iii) first note that the statement is clear if� = φβ or� = φ−1
β ǫ. So we now consider

the case when γ |ssDp
= �⊕� ′ for some character� ′. Part (ii) tells us that� is Hodge–Tate

of weight 0 or 1, so equal to a finite order character (not necessarily unramified) or the

product of such a character and ǫ. We want to use the crystallinity of σz for z ∈ Z to

deduce that � is crystalline. Results of Kisin and Bellaïche–Chenevier allow to continue

crystalline periods for the smallest Hodge–Tate weight. Note that either φβ or φ−1
β ǫ has

the same Hodge–Tate weight as � . To be able to attribute the crystalline period to �

(rather than φβ or φ−1
β ǫ) we use the Siegel-ordinary and p-distinguishedness assumptions

we made on σz for z ∈ Z:

As in [6] proof of Theorem 4.3 (which uses geometric Frobenius convention, so consid-

ers representations dual to the oneswe have here) we consider the sheafM corresponding
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to O(X)[Dp]/ kerT (cf. [5] Lemma 4.3.7) defined on an open connected affinoid neigh-

bourhood U of x0. We can quotient M by a subsheaf L corresponding to the maximal

submodule on which Dp acts by φF4ǫ
κ4 . The quotient sheaf M̃/L is generically of rank

3 and its semi-simplification specializes at x0 to � ⊕ � ′ ⊕ φβ . As in the proof of [6]

Theorem 7.2 Siegel-ordinarity further tells us that M̃/L has a torsion-free subsheaf N

of generic rank 2 such that the specialisations σ ′
z at z ∈ Z are 2-dimensional crystalline

representations with Hodge–Tate weights κ2(z), κ3(z) and with crystalline period for the

appropriate Hodge–Tate weight, i.e. Dcris(σ
′
z)

ϕ=Fi(z)p
κi (z) 
= 0 for i = 2 or 3. (Note that for

k ∈ S we have κ2(zk ) = k − 2 and κ3(zk ) = k − 1.) The semi-simplification of the sheaf

N specialized at x0 (which we denote by N
ss
x0

:= (Nx0 ⊗ E(x0))
ss) equals � ⊕ � ′.

We apply [5] Theorem 3.3.3(i) to the locally free strict transform N ′ of N along the

birational morphism π : X ′ → X given by [5] Lemma 3.4.2. This gives Dcris(N
′
x′ ⊗

E(x′))ϕ=Fi(x
′)pκi (x

′) 
= 0 for any x′ ∈ π−1(x0). By comparing traces one can check (see

proof of [5] Lemma 7.8.11) that (N ′
x′ ⊗ Qp)

ss ∼= (Nx0 ⊗ Qp)
ss, and so this implies

Dcris(N
ss
x0
)ϕ=Fi(x0)p

κi (x0) 
= 0.

Since by assumption F2(x0) 
= 0 (and so also F3(x0) 
= 0) this means that one of the

characters � or � ′ is crystalline, so equal to a power of the cyclotomic character times

a finite order unramified character. As discussed before this power must be 0 or 1. As

T |Dp = T |Dp ◦ τ with τ (g) = ǫ(g)g−1 we get �� ′ = ǫ. So we are done. ⊓⊔

3.2 Possible splitting types of T

Now suppose that T is reducible. Then T is in one of the following cases:

(i) T = T1 + T2 + T3 + T4, where each Ti is a character;

(ii) T = T1 + T2 + T3, where T1 and T3 are characters and T2 is an irreducible

pseudo-representation of dimension 2 (we refer to this type of splitting as the Saito–

Kurokawa type);

(iii) T = T1+T2, whereT1,T2 are both irreducible pseudo-representations of dimension

2 (we refer to this type of splitting as the Yoshida type);

(iv) T = T1 + T2, where T1 is an irreducible pseudo-representation of dimension 3 and

T2 is a character.

Proposition 3.2 Cases (i) and (iv) cannot occur.

Proof Case (i) cannot occur because σ ss
k

∼= 1 ⊕ ρ ⊕ χ for every k ∈ S , so also T =
1 + tr ρ + χ and ρ is irreducible (so also tr ρ is irreducible as a pseudo-representation).

Let us now show that T is not as in case (iv). Suppose T is as in case (iv). Then T =
ξ + tr ρ0, where ξ : G� → O× is a character and ρ0 is a 3-dimensional irreducible

representation. AsT = T ◦τ , wemust have ξ |Ip = ǫξ |−1
Ip

. This contradicts Lemma 3.1(iii).

⊓⊔

For an ordinary newform g =
∑∞

n=1 an(g)q
n of weight 2 let L(g, s) denote the standard

L-function of g and let Lp(g, 2) be the p-adic L-value denoted by Lanp (g,ω−1, T = p) in

Sect. 2 of [8]. The proof of the following theorem will be given in the next section.

Theorem 3.3 Assume N 
= 1 and that ρ|GK is absolutely irreducible for K =
Q(

√
(−1)(p−1)/2p). Suppose that L(g, 1)Lp(g, 2) 
= 0 for all p-ordinary newforms g of weight
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2 and level dividing Np such that aℓ(g) ≡ tr ρ(Frobℓ) mod ̟ for all primes ℓ ∤ Np. Then

T is not of Saito–Kurokawa type.

Note that there are only finitely many (possibly none) forms g as in Theorem 3.3.

Example 3.4 To demonstrate that the conditions in the first sentence of the Theorem

can be checked to hold in practice consider N = 5 ∗ 79 and p = 3 and let ρ be the

3-torsion of the elliptic curve with Cremona label 395c1 (see [36, Elliptic Curve 395.a1]).

This elliptic curve E is semistable, ordinary at 3, and its 3-torsion has an irreducible Galois

representation which is ramified at both 5 and 79 (as 3 does not divide the ℓ-valuations

of the minimal discriminant for these two primes). To show that ρ|Q(
√

−3) is absolutely

irreducible we can argue as in the proof of [42] Theorem 5.2. Using MAGMA [10] we

check that there is only one other weight 2 modular form of level dividing pN = 1185

congruent modulo primes above 3 to the form corresponding to E. This form has level

1185 and corresponds to the elliptic curve with Cremona lavel 1185b1 (see [36, Elliptic

Curve 1185.e1]).

By consulting LMFDB [36] we check that both modular forms have non-vanishing

central L-value. Using the pAdicLseries command in Sage [37] we calculated Lp(g, 2) in

both cases and checked that the two power series in Z3[[T ]] do not vanish when putting

T = 3.

In Sect. 6 we discuss some conditions that guarantee that T is not of Yoshida type

either. All these results combined would guarantee that T is in fact irreducible, however,

the assumptions allowing us to rule out the Yoshida type are quite strong (cf. Remark 6.2).

4 Ruling out Saito–Kurokawa type

We keep the notation and assumptions of Sects. 2, 3.1 and Theorem 3.3. In this section

we will prove Theorem 3.3. Recall that by assumption (4) we have σ ss
k = 1 ⊕ ρ ⊕ χ for

every k ∈ S . Set τ1 = 1, τ2 = ρ, τ3 = χ . The compactness of G� guarantees that there

exists a G�-stable Ok-lattice � inside the representation space of σk . In other words σk

can be conjugated (over Ek ) to a representation σk,� with entries inOk . Its reduction mod

̟k has the above semi-simplification. This means that we have a filtration of G�-stable

subspaces in the space of σ k,� of the form

0 ⊂ V1 ⊂ V2 ⊂ σ k,�

with V1
∼= τγ (1), V2/V1

∼= τγ (2) as well as σ k,�/V2
∼= τγ (3) for some permutation γ ∈ S3.

In other words there exists a matrixM = Mγ ∈ GL4(Fk ) such that

Mσ k,�M
−1 ∼=

⎡
⎢⎣

τγ (1) ∗ ∗
τγ (2) ∗

τγ (3)

⎤
⎥⎦ .

Using the fact that the natural map O×
k

→ F×
k

is surjective we see that GL4(Ok ) →
GL4(Fk ) is also surjective, hencewe can liftM to amatrixM ∈ GL4(Ok ). Then conjugating

σk,� byM (or in other words changing an Ok-basis of the lattice �, but not changing the

lattice itself) we get an (isomorphic over Ok ) representation σk,� with the above upper-

https://www.lmfdb.org/EllipticCurve/Q/395c1/
https://www.lmfdb.org/EllipticCurve/Q/1185/e/1
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triangular reduction. So, we can conclude that there exists a lattice � such that

σ k,� =

⎡
⎢⎣

τγ (1) ∗ ∗
τγ (2) ∗

τγ (3)

⎤
⎥⎦ . (4.1)

Now, for a different lattice �′ we get by the same argument again a representation

σ k,�′ as in (4.1) but possibly with a different γ . The permutation γ need not be uniquely

determined by the choice of � as we do not a priori know that the representation σ k,� is

non-semi-simple. Nevertheless, given � such a γ always exists (as explained above). So

each � determines a subset Ŵ(�) ⊂ S3 of permutations.

Lemma 4.1 Let k ∈ S . Then there exists a G�-stable lattice� in the representation space

of σk and γ ∈ Ŵ(�) with γ (3) = 2 such that

σ k,� =

⎡
⎢⎣

τγ (1) ∗1 ∗2
τγ (2) ∗3

ρ

⎤
⎥⎦

is indecomposable and

[
τγ (2) ∗3

ρ

]
is non-semisimple.

Proof Consider the graph G whose vertices are elements of the set V = {1, ρ,χ} and

where we draw a directed edge from ρ′ ∈ V to ρ′′ ∈ V if there exists a G�-stable lattice

�′ such that σ k,�′ has a subquotient isomorphic to a non-semi-simple representation of

the form

[
ρ′ x

ρ′′

]
. Then by a theorem of Bellaïche for any two ρ′, ρ′′ ∈ V , there exists a

directed path from ρ′ to ρ′′ (see Corollaire 1 in [4]). In particular theremust be at least one

edge originating at ρ and at least one edge ending at ρ. In fact we only use the existence of

an edge ending at ρ. Hence there exists a lattice � such that at least one of the following

is true:

σ k,� =

⎡
⎢⎣
1 ∗0 ∗

ρ ∗
χ

⎤
⎥⎦ or

⎡
⎢⎣

χ ∗ ∗
1 ∗0

ρ

⎤
⎥⎦ or

⎡
⎢⎣

χ ∗0 ∗
ρ ∗

1

⎤
⎥⎦ or

⎡
⎢⎣
1 ∗ ∗

χ ∗0
ρ

⎤
⎥⎦

with ∗0 non-trivial (this exhausts all the cases where there is an edge ending at ρ).

This proves that either

(i) there exists a lattice � such that

σ k,� =

⎡
⎢⎣

χ a b

1 c

ρ

⎤
⎥⎦

with

[
1 c

ρ

]
non-semi-simple, or

(ii) there exists a lattice � such that

σ k,� =

⎡
⎢⎣
1 a b

χ c

ρ

⎤
⎥⎦
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with

[
χ c

ρ

]
non-semi-simple, or

(iii) there exists a lattice � and a permutation γ ∈ Ŵ(�) with 2 = γ (2) such that

σ k,� =

⎡
⎢⎣

τγ (1) a b

τγ (2) c

τγ (3)

⎤
⎥⎦

and

[
τγ (1) a

τγ (2)

]
is non-semisimple.

First assume that we are in case (i) and suppose that σ k,� is decomposable, i.e., that

σ k,� =
[
1 c

ρ

]
⊕ χ (recall that the class given by c is non-split). As we know that σ k,� has

a submodule on whichG� operates by χ we can apply Theorem 4.1 in [8] to obtain a new

lattice �′ for which

σ k,�′ =

⎡
⎢⎣

χ ∗ ∗
1 c

ρ

⎤
⎥⎦ ≇

[
1 c

ρ

]
⊕ χ .

Case (ii) is handled in the same way.

Now suppose that we are in case (iii). Then by Lemma 2.2 there exists a lattice �′ so

that with respect to �′ we get

σ k,�′ =

⎡
⎢⎣

τγ (3) ∗ ∗
τγ (1) a

τγ (2)

⎤
⎥⎦ .

Defining a new permutation γ ′ by γ ′(1) = γ (3), γ ′(2) = γ (1) and γ ′(3) = γ (2), we thus

have a lattice �′ and γ ′ ∈ Ŵ(�′) such that

σ k,�′ =

⎡
⎢⎣

τγ ′(1) ∗ ∗
τγ ′(2) a

τγ ′(3)

⎤
⎥⎦

with

[
τγ ′(2) a

τγ ′(3)

]
non-semi-simple. If σ k,�′ is decomposable, then the same argument

using Theorem 4.1 in [8] yields yet another lattice (for the same γ ′) for which the repre-

sentation is indecomposable. Here we have that 2 = γ ′(3). ⊓⊔

For � and γ as in Lemma 4.1 we define xk by
[
τγ (2) ∗

ρ

]
=

[
τγ (2) xk

ρ

]
.

We note that of course xk depends not only on � but also on the choice of a basis for �,

however, its extension class [xk ] ∈ H1(Q,Hom(ρ, τγ (2))) does not depend on the choice

of basis.

For the rest of the section assume thatT = T1+T2+T3 withT1, T2, T3 where�1 := T1

and �2 := T3 are characters and T2 is two-dimensional and irreducible. We assume that

�1 = 1, �2 = χ and T 2 = tr ρ. Our goal is to show that these assumptions lead to a

contradiction, and thus proveTheorem 3.3. SinceT2 is irreduciblewe get by [35]Theorem
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1 that T2 = tr ρ̃ for some irreducible 2-dimensional representation ρ̃ : G� → GL2(E)

reducing to ρ.

Lemma 4.2 The representation ρ̃ is ordinary.

Proof By Lemma 3.1 we have σ2|ssDp
= φ−1

β ǫ ⊕φβ ⊕γ , where γ is two-dimensional. Since

β 
≡ 1mod̟ by our assumption (5), we cannot have�1|Dp ,�2|Dp ∈ {φ−1
β ǫ,φβ}. Hence it

must be the case that ρ̃|ssDp
∼= φ−1

β ǫ ⊕ φβ . Suppose ρ̃|Dp
∼=

[
φβ ∗
0 φ−1

β ǫ

]
. Note that ρ̃ ∼= ρ is

irreducible, so in particular well-defined and we have by assumption (see (2.1)) that ρ|Dp

does not have an unramified subrepresentation of dimension 1. Thus neither can ρ̃|Dp .

Hence we get that ρ̃|Dp
∼=

[
φ−1

β ǫ ∗
0 φβ

]
as desired. ⊓⊔

Recall that for every k ∈ S we write nk for the largest integer such that tr σk ≡ T

(mod ̟ nk ). Note that under the assumptions from Sect. 3.1 one clearly has nk → ∞ as k

approaches 2 p-adically.

Lemma 4.3 Let k ∈ S , J = {�1, ρ̃,�2} and let � be a lattice from Lemma 4.1. Let

γ ∈ Ŵ(�) with γ (3) = 2 and let xk be determined by the pair (�, γ ) (and a choice of a

basis for �) so that

σ k := σ k,� =

⎡
⎢⎣

τγ (1) ∗ ∗
τγ (2) xk

τγ (3)

⎤
⎥⎦

is indecomposablewithnon-semi-simple 3-dimensional quotient

[
τγ (2) xk

τγ (3)

]
(cf. Lemma4.1).

Then

σk,�
∼=Ok

⎡
⎢⎣

τ̃1 yk zk

τ̃2 xk

τ̃3

⎤
⎥⎦ (mod ̟ nk ).

Here τ̃i are distinct elements ofJ and τ̃i = τγ (i) mod̟ and xk = xk mod̟k . In particular

the class [xk ] ∈ H1(Q,Hom(τ̃3, τ̃2) ⊗ Ok/̟
nk ) has the property that ̟ nk−1[xk ] 
= 0.

Proof This follows from Remarks (a) and (d) in [39] (cf. also Theorem 1.1 in [13]).

The last statement follows directly from the fact that the quotient

[
τγ (2) xk

τγ (3)

]
is not

semi-simple. ⊓⊔

Lemma 4.4 There exists an ordinary newform g of weight 2 and level dividing Np such

that ρ̃ = ρg .

Proof We first note that by Serre’s Conjecture (Theorem of Khare-Wintenberger) ρ is

modular by a formofweight 2 and levelN . By Lemma4.2we have that ρ̃|Dp
∼=

[
φ−1

β ǫ ∗
0 φβ

]
,

i.e., ρ̃ is an ordinary deformation of ρ. In particular, its Hodge–Tate weights are 1 and

0. Furthermore, the assumption that ρ|GK be absolutely irreducible (with K as in The-

orem 3.3) guarantees that ρ̃ is modular by some ordinary newform g of weight 2 by a



T. Berger, K. Klosin Res. Number Theory            (2021) 7:41 Page 13 of 25    41 

generalization of a theorem of Wiles due to Diamond—see Theorem 5.3 in [17]. The

p-part of the level of g is p or 1 (see e.g., Lemma 3.26 in [16]). For primes ℓ | N the

level is at most ℓ due to our unipotency assumption (6). Since ρ is ramified at ℓ this

means that V
Iℓ
ρ̃ is 1-dimensional. As we are also assuming that the residual reduction V

Iℓ
ρ

is 1-dimensional, the Artin conductors of ρ and ρ̃ agree (as their valuations are given by

dimVρ̃ −dimV
Iℓ
ρ̃ +sw(ρ̃) and dimVρ −dimV

Iℓ
ρ +sw(ρ), respectively, and sw(ρ) = sw(ρ̃)

by Serre). The Artin conductor equals ℓ since ρ is only tamely ramified at ℓ (as we assume

V
Iℓ
ρ is 1-dimensional and det(ρ) is unramified). ⊓⊔

Remark 4.5 (1) The reader may note that if no g as in the statement of Theorem 3.3

exists then Lemma 4.4 already gives a contradiction to the assumption that T is of

Saito–Kurokawa type.

(2) Note that if we weakened the unipotency assumption (6) to require it only for primes

ℓ ≡ 1 mod p one would obtain modularity by a form of level dividing N 2p in

Lemma 4.4. Consequently, Theorem3.3would still holdwith this weaker unipotency

assumption as long as we replace level dividing Np by level dividing N 2p in its

statement.

(3) Similar analyses of reducibility ideals for families approximating holomorphic

paramodular Saito–Kurokawa lifts were carried out in [32] and [6] in character-

istic zero (necessarily under different assumptions, in particular for L(g, 1) = 0).

In the following we present arguments working in characteristic p. However, it is

possible that a characteristic zero approach would also yield our result.

In the following we assume that E is large enough to contain the eigenvalues of g . Write

Vg for the representation space of ρg and let V+
g ⊂ Vg be the one-dimensional subspace

on which Ip acts via ǫ. Let Tg ⊂ Vg be any G�-stable lattice in Vg . The following Lemma

follows from the fact that any two G�-stable lattices are homothetic.

Lemma 4.6 Let τ : G� → GL2(E) be residually irreducible. Let �,�′ be two G�-stable

lattices in the representation space of τ . Then τ�
∼= τ�′ (over O). In other words, � and �′

are isomorphic as O[G�]-modules.

In particular, the action of G� on Tg/̟Tg (which we denote by ρg,Tg
) is isomorphic to

ρg
∼= ρ as the latter representation is irreducible. Furthermore, by Lemma 4.6 we get that

the isomorphism class of the restriction of the action of G� to Ip on Tg is independent

of the choice of Tg inside the representation space of ρg . More precisely, we have the

following result.

Lemma 4.7 One has ρg,Tg |Ip ∼=O

[
ǫ ∗
1

]
.

Proof By Lemma 4.6 it is enough to show that there exists a G�-stable lattice �0 such

that ρg,�0 |Ip =
[
ǫ x

1

]
. For this see proof of Proposition 6 of [19]. ⊓⊔

Write Wg for Vg/Tg
∼= ρg,Tg ⊗ E/O. By Lemma 4.7 we know that there exist rank one

free O-submodules T+
g and T−

g of Tg such that Tg = T+
g ⊕ T−

g as O-modules and that if

e1 ∈ T+
g and e2 ∈ T−

g form a basis of Tg then in the basis {e1, e2} one has ρg,Tg |Ip =
[
ǫ x

1

]
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with x 
≡ 0 mod ̟ (as ρg |Ip = ρ|Ip is non-split). One clearly has T+
g ⊗O E = V+

g . Set

W+
g := V+

g /T+
g

∼= T+
g ⊗O E/O.

Following [32] 3.1.3 we define Greenberg-style Selmer groups

Seli := ker

(
H1(G� ,Wg ⊗ �−1

i )
resIp−−→ H1(Ip, (Wg/W

+
g ) ⊗ �−1

i )

)
, i = 1, 2.

Lemma 4.8 One has �1 = 1 and �2 = ǫ.

Proof By assumption (6) we know that �1 and �2 are unramified away from p. Since

�1 = 1 and �2 = χ we know by Lemma 3.1(iii) that �1 is unramified everywhere, hence

trivial. As �1�2 = ǫ we get �2 = ǫ. ⊓⊔

Proposition 4.9 The groups Seli, i = 1, 2 are finite.

Proof Recall

L(g, s) =
∏

ℓ∤N

(1 − aℓ(g)ℓ
−s + ℓ−2s+1)−1

∏

ℓ|N
(1 − aℓ(g)ℓ

−s)−1 for Re(s) ≫ 0.

Let LN (g, s) be defined in the same way but omitting the Euler factors at primes ℓ | N .

By Theorem 4.6.17 in [25] we get that the ℓ-eigenvalue aℓ(g) of g equals 0 or ±1, hence

1 − aℓ(g)ℓ
−i 
= 0 for i = 1, 2. This implies that L(g, i) 
= 0 if and only if LN (g, i) 
= 0 for

i ∈ {1, 2}. By [33] Theorem 3.36 we have #Sel1 ≤ #O/LNalg(g, 1).

In the notation of [33] we are in the case m = 0 and ap(g) − 1 ∈ O× due to our

p-distinguishedness assumption 2.1 on ρ (which implies that ρIp (Frobp) = η(Frobp) ≡
ap(g) 
≡ 1 mod ̟ ). Note that we assume N 
= 1 in Theorem 3.3, so there exists an ℓ

for which ρ|Iℓ 
= 1. As explained in [31] pages 187/8 this (together with ρ irreducible)

also makes redundant the assumption in [33] Theorem 3.36 that the image of ρg contains

SL2(Zp).

For i = 2 we use the argument from the proof of [8] Proposition 2.10: We consider the

cyclotomic Main Conjecture of Iwasawa theory for GL2 (in particular the bound proved

by [21] Theorem 17.4 with the assumption on the image of ρg relaxed as discussed above)

for the Teichmueller twist g ⊗ ω−1 and use the control theorem ( [8] Theorem 2.11) to

specialize the cyclotomic variable at T = p (corresponding to s = 2). We deduce that

#Sel2 ≤ #O/LNp (g, 2).

We note that the assumption in [8] Proposition 2.10 that p 
= 3 can be removed as long

as ap(f ) 
≡ 1 mod ̟ . Let us explain the modifications necessary to the proof of that

Proposition (with notation as in [loc.cit.]). We set g ′ = g ⊗ ω−1 (note that g ′ is denoted

by g in [8] and our current g is denoted by f there) and have

ρg ′ |Dp =
[
φǫω−1 ∗

φ−1ω−1

]
,

where φ is unramified at p with φ(Frobp) = ap(g). This gives usM[x]− ∼= (E/O)(φ−1ǫ−1)

andM−[x]∗(1) = E/O(φǫ2), from which we see that

(M−[x])∗(1)Ip =

⎧
⎨
⎩
F(φ) p = 3

0 p 
= 3
(4.2)
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For an arbitrary p, we denote by K = M−[(x,̟ )] the kernel of multiplication by ̟ :

0 → K → M−[x]
·̟−→ M−[x] → 0. (4.3)

From the sequence (4.3) we obtain the corresponding long exact sequence

0 → KDp → M−[x]Dp
·̟−→ M−[x]Dp → H1(Qp, K ) → H1(Qp,M

−[x])
·̟−→ H1(Qp,M

−[x]) → H2(Qp, K ). (4.4)

By [28], Theorem 1.4.1(2) we get

H2(Qp, K ) ∼= Hom(H0(Qp, K
∗(1)),F).

As K ∗(1) = F(φω2) we see that

H0(Qp, K
∗(1)) =

⎧
⎨
⎩
0 if ap(g) 
≡ 1 (mod ̟ ) or p 
= 3

F if ap(g) ≡ 1 (mod ̟ ) and p = 3
. (4.5)

From now on assume that ap(g) 
≡ 1 (mod ̟ ) or p 
= 3 (note that for the sake of the

Proposition we always have ap(g) 
≡ 1 by our p-distinguishedness assumption). Then (4.5)

implies that the map H1(Qp,M
−[x])

·̟−→ H1(Qp,M
−[x]) is surjective, so H1(Qp,M

−[x])

is̟ -divisible. It follows from the dimension argument in the proof of Lemma 3.18 in [33]

that the corank of H1(Qp,M
−[x]) is one hence we conclude that H1(Qp,M

−[x]) ∼= E/O.

Now consider the inflation-restriction sequence

0 → H1(Dp/Ip,M
−[x]Ip ) → H1(Qp,M

−[x]) → H1(Ip,M
−[x])Dp

→ H2(Dp/Ip,M
−[x]Ip ). (4.6)

The first and the last group are zero sinceM−[x]Ip = (E/O)(ǫ−1)Ip = 0. So, we get

H1(Qp,M
−[x]) ∼= H1(Ip,M

−[x])Dp .

So, finally we get

H1(Ip,M
−[x])Dp = H1(Qp,M

−[x]) = E/O

recovering the conclusion of [33], Lemma 3.18 in this case. With this lemma in place the

rest of arguments in Proposition 2.10 of [8] remain unchanged. ⊓⊔

As the representations σk,� are valued in Ok , rather than O we need to introduce some

auxiliary Selmer groups. For k ∈ S and r ∈ Z+ we set

Seli,k,r := ker
(
H1(G� , Tg,k,r ⊗ �−1

i )
resp−−→ H1(Ip, (Tg,k,r/T

+
g,k,r

) ⊗ �−1
i )

)
, i = 1, 2,

where T ?
g,k,r

= T ?
g ⊗ Ok/̟

rOk for ? ∈ {+,∅}.
Note that for k = 2 (note that O2 = O) we have a natural map

Seli,2,r → Seli[̟
r] (4.7)

We claim that this map is injective.

We have the following commutative diagram (for i = 1, 2) with exact rows:

0 Seli,2,r H1(G� , Tg,2,r ⊗ �−1
i )

resp

∼ c �→̟−rc

H1(Ip,
Tg,2,r

T+
g,2,r

⊗ �−1
i )

c �→̟−rc

0 K H1(G� ,Wg ⊗ �−1
i )[̟ r]

resp
H1(Ip,

Wg

W+
g

⊗ �−1
i )[̟ r]
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where K is defined as the kernel of the restriction map and recall thatWg = Vg/Tg . The

map c �→ ̟−rc gives an isomorphism Tg,2,r
∼= Wg [̟

r] and then irreducibility of ρg

guarantees that

H1(G� ,Wg ⊗ �−1
i [̟ r]) = H1(G� ,Wg ⊗ �−1

i )[̟ r]. (4.8)

This gives the isomorphism on the second vertical arrow. As any c ∈ Seli,2,r viewed inside

H1(G� ,Wg ⊗ �−1
i )[̟ r] via the isomorphism of the middle arrow is killed under the

restriction map by commutativity, we conclude that Seli,2,r ⊂ K . On the other hand K is

clearly a subgroup of Seli[̟
r].

Let� be a lattice as in Lemma4.1, let γ ∈ Ŵ(�) and let xk be determined by� and γ (and

a choice of a basis for �). This (after possibly making a change of basis of � which does

not affect the chosen basis of the residual representation) determines xk as in Lemma 4.3.

From now on we fix a basis of � (which is a certain re-ordering of the basis chosen so far)

to ensure a certain convenient order of the diagonal pieces (mod ̟ nk ), namely we want

�1 to be first followed by ρ̃ and �2. This means that in that basis σk mod ̟ nk may no

longer be upper-triangular and in that basis we write

σk =

⎡
⎢⎣

�1 ak bk

dk ρ̃ ck

ek fk �2

⎤
⎥⎦ (mod ̟ nk )

with ak =
[
a1
k
a2
k

]
, dk =

[
d1
k
d2
k

]t
, ck =

[
c1
k
c2
k

]t
and fk =

[
f 1
k
f 2
k

]
. As 2 = γ (3) (cf.

Lemma 4.1), we conclude that xk = ak or f k . Indeed, if γ (1) = 1 and γ (2) = 3 then in the

basis B of � that was used to define xk we have

σ k,B =

⎡
⎢⎣
1 ∗ ∗

χ xk

ρ

⎤
⎥⎦ .

By conjugating by an appropriate permutation matrix we obtain

σ k,B′ =

⎡
⎢⎣
1 ∗ ∗

ρ

xk χ

⎤
⎥⎦ .

So we get xk = f k . If γ (1) = 3 and γ (2) = 1, then in the basis B as above we have

σ k,B =

⎡
⎢⎣

χ ∗ ∗
1 xk

ρ

⎤
⎥⎦ .

So, conjugating by another permutation matrix we obtain

σ k,B′ =

⎡
⎢⎣
1 xk

ρ

∗ ∗ χ

⎤
⎥⎦ .

In this case we get xk = ak .

Proposition 4.10 If xk = f k , then [xk ] ∈ Sel1,k,nk . If xk = ak , then [xk ] ∈ Sel2,k,nk . In

either case ̟ nk−1[xk ] 
= 0.
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Proof Write

σk =

⎡
⎢⎣

�1 ak bk

dk ρ̃ ck

ek fk �2

⎤
⎥⎦ (mod ̟ nk )

as before with ak =
[
a1
k
a2
k

]
, dk =

[
d1
k
d2
k

]t
, ck =

[
c1
k
c2
k

]t
and fk =

[
f 1
k
f 2
k

]
. By Siegel-

ordinarity we have

σk |Dp
∼=Ek

⎡
⎢⎢⎢⎣

φ−1
β ǫ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

φβ

⎤
⎥⎥⎥⎦ .

Furthermore, by Lemma 4.2 we have ρ̃|Dp =
[
φ−1

β ǫ h

φβ

]
. Thus in particular

(σk |Dp (mod ̟ nk ))ss = �1 ⊕ �2 ⊕ φ−1
β ǫ ⊕ φβ (mod ̟ nk ).

Conjugating σk by a permutation matrix we see that

σk |Dp
∼=Ok

⎡
⎢⎢⎢⎣

φ−1
β ǫ d1

k
c1
k

h

a1
k

�1 bk a2
k

f 1
k

ek �2 f 2
k

0 d2
k

c2
k

φβ

⎤
⎥⎥⎥⎦ (mod ̟ nk ).

To complete the proof of Proposition 4.10 we need several lemmas. ⊓⊔

Lemma 4.11 One has

• If xk = ak , then a1
k
gives rise to an extension of Dp-modules

[
�1 a1

k

φ−1
β ǫ

]
mod ̟ nk ,

which splits, i.e., [a1
k
] = 0.

• If xk = f k , then f 1
k
gives rise to an extension of Dp-modules

[
�2 f 1

k

φ−1
β ǫ

]
mod ̟ nk ,

which splits, i.e., [f 1
k
] = 0.

Proof Assume that xk = ak , i.e., that σk =

⎡
⎢⎣

�2 yk zk

�1 ak

ρ̃

⎤
⎥⎦ mod ̟ nk as in Lemma 4.3.

First note that (after possibly changing to an appropriate basis for the ρ̃-piece and using

Lemma 4.7) Siegel-ordinarity implies that

σk |Dp =

⎡
⎢⎢⎢⎣

�2 yk z1
k

z2
k

�1 a1
k

a2
k

φ−1
β ǫ h

φβ

⎤
⎥⎥⎥⎦ (mod ̟ nk ). (4.9)

Hence we see that there indeed is a rank 2 free Ok/̟
nk [Dp]-subquotient S =[

�1 a1
k

φ−1
β ǫ

]
as claimed in the Lemma. It remains to show that S splits. Assume it does

not. Let V be the representation space for σk . By Siegel-ordinarity it has a Dp-stable line

L on which Dp acts via φ−1
β ǫ. Let � be a G�-stable lattice giving σk such that σk |Dp mod
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̟ nk has the form (4.9). Then we see by Lemma 2.1 that this�must have aDp-stable rank

one submodule withDp action by φ−1
β ǫ, hence finally �k := � mod ̟ nk must have a free

Ok/̟
nk -submodule �0 of rank one on which Dp acts by φ−1

β ǫ.

We now claim that the subquotient S also has a free Ok/̟
nk -submodule which is

stabilized by Dp and on which Dp acts via φ−1
β ǫ. Indeed, write B = {e1, . . . , e4} for an

Ok/̟
nk -basis of �k such that with respect to that basis we have σk |Dp in form (4.9).

Write �′ = (Ok/̟
nk )e1 ⊕ (Ok/̟

nk )e2 ⊕ (Ok/̟
nk )e3 and �′′ := (Ok/̟

nk )e4. We note

that �′ is stable under the action of Dp. We first want to show that �0 ⊂ �′. Let v0 ∈ �0

be an Ok/̟
nk -module generator. Using the fact that B is a basis we can decompose v0

uniquely as v0 = v′
0 + v′′

0 with v′
0 ∈ �′ and v′′

0 ∈ �′′. We want to show that v′′
0 = 0. Let

g ∈ Ip be such that χ (g) 
= 1. Then g · v0 = φ−1
β ǫ(g)v0 = ǫ(g)v0. On the other hand

g · v0 = g · v′
0 + g · v′′

0 . We have that g · v′
0 ∈ �′ and g · v′′

0 = φβ (g)v
′′
0 + v′ = v′′

0 + v′ for

some v′ ∈ �′. So we have

ǫ(g)v′
0 + ǫ(g)v′′

0 = ǫ(g)v0 = g · v0 = g · v′
0 + v′′

0 + v′ =⇒ ǫ(g)v′′
0 − v′′

0 ∈ �′ ∩ �′′ = 0.

Sinceχ (g) 
= 1, we see that ǫ(g)−1 ∈ (Ok/̟
nk )×, which implies that v′′

0 = 0. So�0 ⊂ �′.

Now set �′′ = (Ok/̟
nk )e1. This is a Dp-stable submodule of �′ on which Dp acts via

�2. Notice that we have S = �′/�′′ as Dp-modules. Clearly the image of �0 ⊂ �′ in S is

the desired Dp-stable Ok/̟
nk -submodule of S on which Dp acts via φ−1

β ǫ. We just need

to show that this image is free of rank one over O/̟ nk . Suppose this is not the case, i.e.,

that �0 ∩ �′′ 
= 0, so 0 
= w0 := ̟ sv0 ∈ �′′ for some 0 ≤ s < nk . Let d ∈ Dp be such that

�1(d) 
≡ φ−1
β ǫ(d) mod ̟ . Then we get φ−1

β ǫ(d)w0 = d · w0 = �1(d)w0, which implies

w0 = 0, a contradiction. This now proves the claim about S.

In other words there must exist a matrix A =
[
a b

c d

]
∈ GL2(Ok ) such that

[
�1 a1

k

φ−1
β ǫ

]
A = A

[
φ−1

β ǫ ∗
�1

]
(mod ̟ nk ).

Suppose that [a1
k
] 
= 0, i.e., that there exists g ∈ Dp such that �1(g) = φ−1

β ǫ(g) = 1

but a1
k
(g) 
= 0. Then comparing the upper left entries of both sides evaluated at g we

get a + a1
k
(g)c = a, from which we get that c ≡ 0 mod ̟ . For the same entry, but for a

general element g ′ ∈ Dp such that φ
−1
β ǫ(g ′) 
≡ �1(g

′) (mod̟ ), we get�1(g
′)a+ca1

k
(g ′) =

aφ−1
β ǫ(g ′). Reducing this equation mod ̟ we thus conclude that a ≡ 0 (mod ̟ ). This is

a contradiction since A is invertible.

The other case, i.e., where xk = f k is handled similarly using the fact that �1|Dp , �2|Dp ,

φ−1
β ǫ, φβ are all pairwise distinct mod ̟ . This finishes the proof of Lemma 4.11. ⊓⊔

We are now ready to complete the proof of Proposition 4.10. Recall that ρ̃ = ρg .

Suppose that xk = ak or xk = fk . In the first case σk mod ̟ nk has a submodule

τ =
[
�1 ak

ρ̃

]
which is non-split mod ̟ as [xk ] 
= 0. In the latter case σk mod ̟ nk has

a quotient τ =
[
�2 ∗

ρ̃

]
, i.e., σk mod ̟ nk has a quotient τ =

[
ρ̃

fk �2

]
which is non-split

mod ̟ as [xk ] 
= 0. Thus ak (resp. fk ) gives rise to a class in

H1(G� ,Hom(Tg,k,nk ,Ok/̟
nkOk (�i))) for i = 1 (resp. i = 2)
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such that the class is not annihilated by ̟ nk−1. By Lemma 4.11 we must have τ |Dp =⎡
⎢⎣

�1 0 a2
k

0 φ−1
β ǫ h

0 0 φβ

⎤
⎥⎦ if xk = ak and τ |Dp =

⎡
⎢⎣

φ−1
β ǫ h 0

0 φβ 0

0 f 2
k

�2

⎤
⎥⎦ in case xk = fk .

We now focus on xk = ak , the other case being analogous. We will show that for

every γ ∈ Ip the homomorphism ak (γ ) kills T
+
g,k,nk

. Indeed, in the basis giving rise to τ

as above, the module Tg,k,nk corresponds to vectors

⎡
⎢⎣
0

α

β

⎤
⎥⎦ while the submodule T+

g,k,nk
of

Tg,k,nk corresponds to vectors of the form

⎡
⎢⎣
0

α

0

⎤
⎥⎦ ∈ Tg,k,nk , as on these vectors Ip acts via ǫ.

Note that in the basis which gives the above form of τ we have ak =
[
0 a2

k

]
, while T+

g,k,nk

is given again by the vectors of the form

⎡
⎢⎣
0

α

0

⎤
⎥⎦ ∈ Tg,k,nk .

By the discussion above we conclude that the inverse of the isomorphism ψ :

Ok/̟
nk (�1) ⊗ T∨

g,k,nk
→ Hom(Tg,k,nk ,Ok/̟

nk (�1)) carries ak (γ ) into the subspace

Ok/̟
nk (�1) ⊗ (T+

g,k,nk
)′ ⊂ Ok/̟

nk (�1) ⊗ T∨
g,k,nk

, where as above (T+
g,k,nk

)′ denotes the

submodule of T∨
g,k,nk

consisting of functionals which kill T+
g,k,nk

.

Note that since �1�2 = ǫ, we get �1 ⊗ ρ∨
g

∼= �−1
2 ǫ ⊗ ρ∨

g
∼= �−1

2 ⊗ ρ∨
g (1). Under these

isomorphisms the module Ok/̟
nk (�1) ⊗ (T+

g,k,nk
)′ gets mapped to Ok/̟

nk (�−1
2 ǫ) ⊗

(T+
g,k,nk

)′ and finally toOk/̟
nk (�−1

2 )⊗ (T+
g,k,nk

)′(1). Finally (by essential self-duality of ρg )

there is an isomorphism of G�-modules ψ ′ : ρg → ρ∨
g (1). We note that T+

g,k,nk
is the

unique direct summand of Tg,k,nk which is stable under Ip and such that Ip acts on it by

ǫ. Hence ψ ′ (as it is G�-equivariant) must carry T+
g,k,nk

onto the unique direct summand

of T∨
g,k,nk

(1) with the same property, i.e., ψ ′(T+
g,k,nk

) = X ⊗ ǫ where X is the unique direct

summand of T∨
g,k,nk

on which Ip acts trivially.

Let φ ∈ (T+
g,k,nk

)′. Let γ ∈ Ip, v =
[
v1

v2

]
∈ Tg,k,nk . (We suppress the 0 from

⎡
⎢⎣
0

v1

v2

⎤
⎥⎦.) Then

(γ ·φ)(v) = φ(ρg (γ
−1)v) = φ

([
ǫ(γ )−1 h(γ −1)

1

]
v

)
= φ

([
ǫ(γ )−1v1 + h(γ −1)v2

v2

])

= φ

([
ǫ(γ )−1v1 + h(γ −1)v2 − v1

0

]
+ v

)
= φ(v).

Hence Ip acts trivially on (T+
g,k,nk

)′, i.e., we must have X = (T+
g,k,nk

)′. In other words

ψ ′ carries T+
g,k,nk

onto (T+
g,k,nk

)′(1). This proves that for γ ∈ Ip we have that ak (γ ) is

mapped under ψ−1 into Ok/̟
nk (�1) ⊗ (T+

g,k,nk
)′ ∼= Ok/̟

nk (�−1
2 ) ⊗ (T+

g,k,nk
)′(1) and

further mapped under (ψ ′)−1 into the the direct summand Ok/̟
nk (�−1

2 ) ⊗ T+
g,k,nk

⊂
Ok/̟

nk (�−1
2 ) ⊗ Tg,k,nk . Hence we get [ak ] ∈ Sel2,k,nk .

The case xk = f k is handled in an analogous way. Finally the fact that ̟ nk−1[xk ] 
= 0

follows from Lemma 4.3. ⊓⊔
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Corollary 4.12 If xk = f k , then there exists an element x′
k

∈ Sel1 such that ̟
nk−1x′

k

= 0.

If, on the other hand, xk = ak , then there exists an element x′
k

∈ Sel2 such that ̟
nk−1x′

k

=

0.

Proof First note that as the formation of Selmer groups commutes with direct sums of

Galois modules andOk/̟
r = (O/̟ r)s where s = [Ok : O] one has Seli,k,nk =

(
Seli,2,nk

)s
.

If xk = f k then by Proposition 4.10 we get that [xk ] ∈ Sel1,k,nk is such that̟ nk−1[xk ] 
= 0.

Thus there must exist an element x′
k

∈ Sel1,2,nk which is not annihilated by ̟ nk−1. As we

have an inclusion Sel1,2,nk →֒ Sel1[̟
nk ], we can regard x′

k
as an element of Sel1 which is

not killed by ̟ nk−1. The other case is analogous. ⊓⊔

We are now ready to finish the proof of Theorem 3.3, i.e., that the pseudo-representation

T is not of Saito–Kurokawa type. Indeed, we will now arrive at a contradiction. Since by

Lemma 4.1 for every k ∈ S there exists xk ∈ {ak , f k} such that [xk ] gives rise to a non-split
extension of the corresponding Jordan–Holder blocks of 1⊕ρ ⊕χ , there existsA ∈ {a, f }
and an infinite subsequence T ⊂ S such that for all k ∈ T we have that [xk ] = [Ak ] is

such a non-split extension. Fix such an A. Then Proposition 4.10 gives us an extension

[Ak ] ∈ Seli,k,nk for i = 1 or 2 such that ̟ nk−1[Ak ] 
= 0. Set i(A) = 1 if the extension [Ak ]

lies in Sel1,k,nk and i(A) = 2 if the extension [Ak ] lies in Sel2,k,nk . Then by Corollary 4.12

we get an element A′
k

∈ Seli(A) not annihilated by ̟ nk−1. As nk tends to ∞ for k ∈ T , we

see that Seli(A) must be infinite. Thus we obtain a contradiction to Proposition 4.9.

5 Siegel modular forms and paramodular conjecture

In this section, which is an interlude and not part of the logical sequence of the paper,

we discuss some automorphic results and a potential application to the Paramodular

Conjecture to motivate the results of this paper.

5.1 Siegel modular forms

We recall some facts about Siegel modular forms and their associated Galois representa-

tions. ByArthur’s classification (see [3] and [18]) cuspidal automorphic representations for

GSp4(AQ) fall into different types. Cuspidal automorphic representations whose transfer

to GL4 stays cuspidal are called of “general type” or type (G).

One can attach p-adic Galois representations to algebraic automorphic representations

π for certain π∞ (e.g. holomorphic limit of discrete series). For type (G) representations

these Galois representations are expected to be irreducible (see [41] for a summary of

what’s known and results in the low weight case). Other types in the classification are

known to be associated to reducible p-adic Galois representations, see [11] Lemma 2.9.1.

Particular examples of such types are the Saito–Kurokawa lifts and Yoshida lifts of elliptic

modular forms, whose associated Galois representations have trace of Saito–Kurokawa or

Yoshida type respectively. Schmidt [30] proved that holomorphic Siegel modular forms of

paramodular level are either of type (G) or Saito–Kurokawa lifts, while other CAP types

or Yoshida lifts do not occur.

We denote by Up,1 (resp. Up,2) the Hecke operators associated to diag(1, 1, p, p) (resp.

diag(1, p, p2, p)). For π of sufficiently high weight (i.e. corresponding to classical Siegel

eigenforms of weights k1 ≥ k2 ≥ 3) we have the following result about properties of the

associated Galois representations (for a more detailed statement see [11] Theorem 2.7.1):
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Theorem 5.1 (Laumon, Weissauer, Sorensen, Mok, Faltings-Chai, Urban) Suppose π is

a cuspidal automorphic representation for GSp4(AQ) of weight k1 ≥ k2 ≥ 3. Then there is

a continuous semi-simple representation ρπ : GQ → GSp4(Qp) with

ρ∨
π

∼= ρπ (3 − k1 − k2)

satisfying the following properties:

(1) For each prime ℓ 
= p we have local-global compatibility up to semi-simplification

with the local Langlands correspondence proved by Gan-Takeda. In particular, if π

is unramified at ℓ then so is ρπ and if π is of Iwahori level at ℓ then ρπ |Iℓ is unipotent.
(2) If ρπ is irreducible then for each prime ℓ 
= p one has local-global compatibility up

to Frobenius semi-simplification.

(3) ρπ |Dp is de Rham with Hodge–Tate weights k1 + k2 − 3, k1 − 1, k2 − 2, 0.

(4) Assume that π is Siegel-ordinary at p (i.e λp,1 is a p-adic unit, λp,2 has finite p-

valuation, where λp,i is the Up,i-eigenvalue of π for i = 1, 2), then ρπ |Dp is Siegel-

ordinary in the sense of Definition 2.4 with the unramified character having λp,1 as

value at Frobp.

(5) If π is unramified at p then the p-adic representation ρπ is crystalline at p. If π is also

Siegel-ordinary then the characteristic polynomial of Frobenius acting onDcris(ρπ |Dp )

equals the Hecke polynomial. In particular, the eigenvalues are

λp,1, λ
−1
p,1λp,2p

k2−2, λp,1λ
−1
p,2p

k1−1, λ−1
p,1p

k1+k2−3.

Suppose now that ρ as in Sect. 2 equals ρf for f ∈ S2(Np). If f is ordinary it lies in a Hida

family of eigenforms fk . Brown et al. [1,12,14] then prove that there exist holomorphic

Siegel modular eigenforms Fk for k ∈ S with S as in Sect. 3 of Iwahori level N (level

Ŵ
(2)
0 (N ) or Ŵpara(N ) ) that are congruent to the Saito–Kurokawa lifts SK (fk ) modulo ̟

and σFk is irreducible (see e.g. [1] Corollary 7.5). We expect to be able to prove that we

can take these eigenforms to be Siegel ordinary and then the theorem above shows that

the associated Galois representations σFk satisfy the conditions (1)–(6) in Sect. 3.1. To

establish that the tr σFk interpolate p-adically is work in progress.

The pseudo-representation of the (Siegel-ordinary, tame level N ) eigenvariety (see [32]

and [2]) would then give rise to T : G� → O(X) for an affinoid X containing the limit

point x0 of weight (2, 2). One obtains a Zariski dense subset Z ⊂ X of classical points

that are old at p such that (X,T, {κn}, {Fn}, Z) is a refined family in the sense of Bellaïche–

Chenevier. By the above theorem the function F1 = F−1
4 interpolates the Up,1-eigenvalue

λp,1, F2 = F−1
3 interpolates λ−1

p,1λp,2, so our assumption F2(x0) 
= 0 would correspond to

the Up,2-slope of the limit form being finite.

5.2 Discussion of applicability to the paramodular conjecture

For an elliptic modular form f of weight 2k − 2 a holomorphic Saito–Kurokawa lift exists

under the following conditions on f and k : for Ŵ2
0(N )-level k has to be even, for Ŵpara(N )-

level the sign of the functional equation of f has to be −1 (see [29]).

Suppose ρ = ρf for an ordinary newform f of level N . For Theorem 3.3 we need to

assume that L(f, 1) 
= 0. Continuing our discussion from the introduction about Saito–

Kurokawa congruences, we note that in the case that L(f, 1) 
= 0 we would therefore need

to consider congruences with holomorphicŴ2
0(N )-level Saito–Kurokawa lifts. However, a
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differentmethod to theoneusedbyBrownet al. (pointedout tous byPol vanHoften) could

be used to prove the required congruences for paramodular level: Using the arguments

from the proof of [34] TheoremDone should be able to prove congruences for the generic

(as opposed to the holomorphic) Saito–Kurokawa lift, for which the conditions on k and

the root number are reversed.

Once the congruence between the generic Saito–Kurokawa lift and a type (G) form has

been proved, one could then switch to the holomorphic element of the same packet. If

such a congruence could be proved in weight 2 this would also explain the example of

the abelian surface of conductor 997 mentioned in [8] (which involves an elliptic modular

form f with root number ǫ = 1 and L(f, 1) = 0).

To demonstrate that examples with L(f, 1) 
= 0 occur when studying the modularity of

abelian surfaces we thank Andrew Sutherland for providing us with the following abelian

surface: Let A be the Jacobian of the genus 2 curve

C : y2 + (x + 1)y = −2x6 + x5 − x4 + 9x3 − 2x2 + 2x − 9

(see [36, Genus 2 Curve 1870.a] and [9]). Then A has conductor 1870 = 2 ∗ 5 ∗ 11 ∗ 17

and comparing values on Frobℓ for ℓ < 106 strongly suggests that

A(Q)[3] ∼= 1 ⊕ ρf ⊕ χ

for f the unique weight 2 newform of level Ŵ0(17) corresponding to the isogeny class of

rank 0 elliptic curves overQ with conductor 17.

6 Ruling out Yoshida type

Recall that σ2 is the representation associated withT (cf. Sect. 3.1). In this section wework

under the assumptions of Sect. 3 and show that σ2 is not the direct sum of two irreducible

two-dimensional representations under some additional assumptions.

For a positive integerN we will write S
(2)
2 (Ŵpara(N )) for weight 2 genus 2 Siegel modular

forms of paramodular level N .

Proposition 6.1 Suppose at least one of the following holds:

(I) One has ℓ 
≡ ±1mod p for all ℓ | N and σ2 is Borel-ordinary at p,

(II) One has ℓ 
≡ ±1mod p for all ℓ | N and σ2 is crystalline at p.

(III) One has p > 3 and σ2 = σF for some classical Siegel modular form F ∈ S
(2)
2 (Ŵpara(N ))

which has distinct roots for its Hecke polynomial at p.

Then σ2 is not of Yoshida type.

Proof Assume that in factσ2 = ρ1⊕ρ2withρ1, ρ2 irreducible andρ1 = ρ andρss
2 = 1⊕χ .

By Lemma 3.1(i) we have (σ2|Dp )
ss = φ−1

β ǫ ⊕ φβ ⊕ γ , which as in Lemma 4.2 implies

that ρ1 is ordinary, i.e., that ρ1|Dp
∼=E

[
φ−1

β ǫ ∗
φβ

]
. By Lemma 3.1(ii) the Hodge–Tate–Sen

weights of σ2 are 0,0,1,1.

Proof of (I): As σ2 is Borel-ordinary, this forces ρ2|Dp to be ordinary, i.e., ρ2|Dp
∼=[

φ−1
α ǫ ∗

φα

]
for some α ∈ O×. On the other hand since ρ2 is irreducible there exists a

G�-stable lattice � in the space of ρ2 such that with respect to that lattice we have

ρ2,� =
[
1 a

χ

]
≇ 1 ⊕ χ . (6.1)

http://www.lmfdb.org/Genus2Curve/Q/1870/a/226270/1
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By Lemma 2.1, the lattice � must have a Dp-stable line on which Dp acts via φ−1
α ǫ, so

ρ2,�|Dp
∼=

[
φ

−1
α χ ∗

φα

]
. By comparing with the form (6.1) and using that χ is ramified we

conclude that φα = 1, so in fact ρ2,�|Dp
∼=

[
χ ∗
1

]
. Thus ρ2|Dp

∼= 1⊕χ . This in particular

implies that ρ2 splits when restricted to Ip. Hence a gives rise to a class in

H1
�(Q,F(−1)) := ker(H1(G� ,F(−1))

resp→ H1(Ip,F(−1))).

Since ℓ 
≡ ±1modp for all ℓ | N weuse Lemma6.3 in [7] to conclude thatH1
�(Q,F(−1)) =

ker(H1(G� ,F(−1)) →
∏

ℓ∈� H1(Iℓ,F(−1))). This part of the class group ofQ(μp) is zero

by Proposition 6.16 in [40]. This implies that ρ2,� is split which leads to a contradiction.

Proof of (II): As before there exists a G�-stable lattice � such that with respect to that

lattice we have ρ2,� =
[
1 a

χ

]
≇ 1 ⊕ χ . Since σ2 is crystalline and its Hodge–Tate–Sen

weights are 0,0,1,1, it is in the Fontaine–Laffaille range. Hence so is ρ2. This implies (see

e.g. [7] Lemma 6.1) that the extension given by a gives rise to a non-zero element in

H1
�(Q,F(−1)), which again gives a contradiction as H1

�(Q,F(−1)) = 0.

Proof of (III): We have σ2 = σF for some classical Siegel modular form F ∈
S
(2)
2 (Ŵpara(N )). We can assume that F is not a Saito–Kurokawa lift (as then tr σF would

not be of Yoshida type). By [30] this means that F is of type (G). The assumption on the

roots of the Hecke polynomial implies by [20] Theorem 4.1 or [26] Proposition 4.16 that

σ2 is crystalline at p. If ℓ 
≡ ±1 mod p for all ℓ | N then we get a contradiction as in (I) and

(II). Without this assumption we argue as in the proof of [8] Theorem 8.6, i.e. apply [27]

Theorem C and [23] Theorem 7.1 to deduce that F would have to be of Yoshida type, i.e.

not of type (G), a contradiction. ⊓⊔

Remark 6.2 Note that the key issue in the Yoshida case is ruling out that σ2 is the sum

of an (ordinary) 2-dimensional Galois representation associated to a classical form (with

associated mod p-representation ρ) and a 2-dimensional Galois representation that is a

priori not de Rham.

It is worth noting that whilst we are able to rule out that σ2 is of Saito–Kurokawa

type only using properties of the representations σk for k ∈ S the Yoshida type case

requires additional information aboutσ2. In particular, while for both the Saito–Kurokawa

and the Yoshida type we assume crystallinity of the representations σk , in case (II) of

Proposition 6.1 we also need to assume that σ2 itself is crystalline. On the other hand,

work in progress by Ariel Weiss shows that a classical Siegel-ordinary type (G) eigenform

has irreducible Galois representation. This would allow us to drop the assumption in (III)

on the distinctness of the roots of the Hecke polynomial.
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