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Abstract

In the iron and steel industry, electric arc furnaces (EAFs) are used in the melting and refining process of

metals. They are known to demand large amounts of reactive power and cause significant power quality (PQ)

problems due to their highly non-linear time varying voltage-current characteristic. Several EAF models have

been proposed with the purpose to predict the voltage and current waveforms, to assess the performance of

different compensating devices such as static var compensator, synchronous static compensator, active power

filters, and –still under study– energy storage systems, and also for planning the installation of iron and

steel facilities considering existing real data from similar facilities. An important aspect of these models is

related to the estimation of their parameters. This paper presents a new method to estimate the parameters

of an EAF model. The method utilizes a multiple-input multiple-output regressor based on support vector

machine, that maps from voltage characteristics of the electric arc to the values of the model parameters.

The multidimensional support vector regressor (M-SVR) is designed in the training phase, using data from

several simulations of the EAF model. These simulations are carried out adjusting the parameters of the

model within the search space, and considering the real arc current as input to the model. Then, in the

validation phase, for the real voltage waveform, the estimated parameters are obtained using each regressor

of the M-SVR. The proposed method is validated by the comparison between the waveforms obtained using

the EAF model with actual data from a steel plant. Results show that the relative error between the

fundamental component of the current and voltage, for real and simulated waveforms, are 2.1% and 6.3%

respectively.

Keywords: Parameter estimation, ac electric arc furnaces, power quality problems, support vector

machine, multivariate regression.

∗Corresponding author
Email addresses: jjmarulanda@utp.edu.co (J. Marulanda-Durango), andreses1@utp.edu.co (A. Escobar-Mej́ıa),
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1. Introduction

Electric arc furnaces (EAFs) have been widely used in the steelmaking industry to melt metallic scraps

and refining metals. The electrical energy demand can be up to 150 MW [1], and is converted to heat by the

electric arc established between electrodes and the melting scrap. The high temperature (reaching several

thousand degrees celsius), generates enough heat to melt the scrap [2].

It is well known that the operation of an arc furnace causes power quality (PQ) problems (e.g., harmonics,

interharmonics, voltage fluctuations, flickers, etc) in the supply network [3], [4]. This is mainly produced

by both its intrinsic nonlinearity and the randomness associated with boring and melting periods [5], [6].

In order to predict and minimize the PQ disturbances, it is necessary for electric utilities and customers

to implement strategies to solve PQ problem. Innovative approaches are related to absorption prediction

and these techniques require an accurate EAF model. However, modeling is not a straightforward task and

requires complex algorithms for parameter estimation [7].

Different techniques have been reported in the literature for modeling the electric arc. In [1], a variable

resistor and an inductor connected in series, and a current source to inject harmonics are used to model

the electric arc at the primary side of the EAF’s transformer. The model is based on field measurements

of voltage and current. In [2], the electric arc is modeled as a resistor in series with an inductor, and a

parallel-connected capacitor to reduce the error of the model compared to the measured parameters. The arc

resistance is modeled as a nonlinear time-variant resistance considering stochastic variation of both the arc

length [8] and the arc voltage [9]. In [10] and [11], a time domain model, based on a non-linear differential

equation derived from the energy conservation principle, is proposed. Two previous electric arc models have

merged into a single model in [12] to generate a new time domain exponential and hyperbolic model. Several

models use a low frequency chaotic signal to take into consideration the chaotic dynamics of an electric arc

[13–16]. Other models also include deterministic signals, like a sine function [12], [17], or a stochastic signal,

like as band-limited white noise [12], [17], [18], to account for fluctuations in the electric arc length. A

nonlinear conductance function based on cubic spline interpolation and field measurements of voltages and

currents is used in [19] to model an electric arc in the steady-state. A frequency-domain model is proposed

in [20] for iterative harmonic analysis. In [21], an electric arc model has been presented, based on hidden

Markov theory, to generate different operating points of the voltage-current (v− i) characteristic in the form

of probability distribution. Other approaches for modeling the dynamic v− i relationship of the electric arc,

include the use of radial basis function neural networks [22–26], and neuro-fuzzy rule-based networks [3].

It is worth noting that an important aspect of the electric arc models is related to the estimation of

their parameters. In [8], the parameters of the model are determined using a trial and error procedure

by matching the simulated active power and short-term flicker severity (Pst) with real measurements. An

empirical relationship that relates transformer taps and the distance between electrodes is used in [2], to
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determine the values of the arc impedance. In [1], the resistor and inductor values are constantly updated,

by computing the magnitude and the angle of the current and voltage at the fundamental frequency. In

[15] the tuning process of the model parameters consists of finding values in a search space that minimize

an objective function. In [7] and [9], a two-step optimization technique based on a genetic algorithm has

been proposed to estimate the parameters of the nonlinear time-varying electric arc model, incorporating

the stochastic variation of the arc length. A differential evolution algorithm is used in [11] to estimate the

values of the parameters of the nonlinear differential equation that relates the arc conductance, arc current

and arc length. A parameter estimation of the Generalized Cassie-Mayr EAF model [27] is presented in [28],

using the least-mean square method with real current and voltage measurements. In [29], the interior-point

method is used to identify the electric arc parameters of the power balance equation for the mathematical

model derived in [10], this is achieved finding a closed form analytical solution of the equation. In [30] a set

of parameters of the model are chosen by determining the power factor for a particular case study.

This paper proposes a novel method based on support vector machines (SVMs) to estimate the parameters

of an electric arc model. The SVM is used for building a multiple-input multiple-output regressors called

support vector regression (M-SVR). The main motivations to use the M-SVR method are advantages such

as: the ability to estimate the parameters with limited data, robust predictions when nonlinearities and noise

appear in the system [31], and considering all the inputs and outputs together to construct each regressor.

The electric arc model, based on chaotic dynamics, is implemented in Matlab/Simulink and is used to get

several voltage waveforms, using different values for the model parameters in each simulation. The values

of each set of parameters are obtained using latyn hypercube sampling (LHS) [32]. Data from simulation

are then used to design the M-SVR, that maps from the voltage characteristics of the electric arc to the

values of the electric arc model parameters. The characteristics are computed using the short-time Fourier

transform (STFT), considering the harmonics and interharmonics of the obtained voltage waveforms. The

hyperparameters of the M-SVR have been adjusted using the differential evolution (DE) algorithm [33].

Once the M-SVR has been designed, the parameter estimation for a real voltage waveform is achieved by

mapping its characteristic to the values of the parameters. This is achieved using each regressor of the

multidimensional regressor. The proposed method here have some advantages over the proposals in [7] and

[9] such as: compact solution by considering all the parameters at the same time, and fast response once

the M-SVR has been designed.

This paper is organized as follows. Section 2 presents the description of the EAF power system and the

real measurements used for the parameters estimation. Section 3 presents a description of the non-linear

time-varying electric arc model, while the proposed method to estimate the model parameters is described

in Section 4. Also, this section provides a description of the M-SVR. The validation of the proposed method

is presented in Section 5, and finally conclusions and remarks are given in Section 6.
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Figure 1: Single-phase diagram of the EAF power system under study.

2. EAF power system and real data

Fig. 1 shows the single-phase diagram of the power system used for to connect a 40 tonnes EAF

with the power grid. The distribution network is modeled using an equivalent Thevenin circuit. The

Thevenin equivalent comprises a three-phase stiff voltage source in series with a Thevenin impedance ZT∠θ,

computed from the short-circuit power at the point of common coupling (PCC). The EAF is connected

to the distribution network through two power transformer: a high voltage/medium voltage (HV/MV) T1

transformer, and medium voltage/low voltage (MV/LV) called EAF transformer, which has a tap changer

in the secondary winding to set the power delivered to the furnace. The electrodes are connected to the

secondary side of EAF transformer through of flexible cables and bus tubes, which constitutes nearly of 75%

of the total impedance of EAF facility. The parameters of the EAF power system shown in Fig. 1 are listed

in Appendix A.

In this study, real measurements of line current and phase voltage taken at the secondary side of the

EAF transformer during the melting stage of the EAF operation, are used for the parameters estimation of

the electric arc model. A PQ meter (AEMC 8333 Power Pad III) connected at phase A of the secondary

windings of EAF transformer, was used to measure 100 cycles at 50 Hz, and at a sampling rate of 256

samples per cycle.

Considering [1], the magnitude and the angle of the sinusoidal internal phase voltage vs are found by

using the current and phase voltage measurements referred at the HV side of the transformer T1, and

considering the leakage reactance and the turn ratio of both transformers. The sinusoidal internal voltage

vs is computed by extracting the fundamental component of the resulting voltage obtained by summing the

phase voltage at the PCC and the voltage drop on the Thevenin impedance, which is caused by line current.

This calculation is done before estimating the electric arc model parameters.

The current and voltage measurements are necessary to be normalized for the convergence algorithms of

the M-SVR, using 1000 A and 1000 V as a base.
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Figure 2: Block diagram of the dynamic behavior of electric arc including chaotic signal.

3. Electric arc model

In this paper the dynamic model of the electric arc presented in [14] is used. The electric arc is modeled

as a current controlled voltage source that comprises two stages as illustrated in Fig. 2: a non-linear dynamic

v−i characteristic of the electric arc (first stage) and a chaotic voltage fluctuation (second stage) to represent

the flicker effect in the voltage waveforms at the PCC.

Initially, the radius of the electric arc r(t) is calculated using the non-linear differential equation derived

from the energy conservation principle as follows:

k1r
n + k2r

dr

dt
=

k3
rm+2

i2arc, (1)

where iarc is the arc current, k1 is proportional to the power transmitted as heat to the external en-

vironment, the parameter k2 is proportional to the internal energy of the electric arc, and the parameter

k3 is inversely proportional to the resistivity of the arc column [10]. Notice that, k1, k2 and k3 depends

on the energy of the electric arc, being equal to the product of the arc voltage and the arc current. The

parameters m and n enable different v − i characteristics. The possible combinations of these parameters

for the different stages of the arcing process are found in [10]. The deterministic electric arc voltage vd(t) is

obtained from r(t) using

vd =
k3

rm+2
iarc. (2)

At the second stage, the instantaneous values computed for vd(t) are modulated in amplitude through a

low frequency chaotic signal. The modulated signal is the electric arc voltage and is referred as varc(t),

varc = vd(1 + wx), (3)
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where w is the gain factor of a low frequency chaotic signal x(t), generated by Chua’s circuit, whose

equations are given by [34]:

dx

dt
=























sα(y − κx+ ρ− κ), if x < −1

sα(y − ρx), if −1 ≤ x ≤ −1

sα(y − κx− ρ+ κ), if x > 1

dy

dt
= s(x− y + z)

dz

dt
= −sδy (4)

where x(t), y(t) and z(t) are the state variables, s is a time scale factor used for adjusting the frequency

of x(t), and w is the gain factor of x(t) that is related with the severity of the voltage fluctuations caused

by arc length variation [7]. Following the idea presented in [15], the values of ρ, κ, α and δ, are adjusted in

a range of values that produce the chaotic behavior of Chua’s circuit [15].

The voltage signal varc(t) is connected to the electrical power system as a current controlled voltage

source. In practice, the voltage measurements are taken at the secondary side of the EAF transformer. The

simulated voltage at this place is referred as v(t), and according to the circuit shown in Fig. 2, its value is

calculated as

v = Rciarc + Lc
diarc
dt

+ varc, (5)

where Rc and Lc are the resistance and inductance respectively, of the secondary circuit including flexible

cables, bus tubes and the impedance of the electrode, and in this study they are part of the parameters to

be estimated. The electric arc model is implemented in Matlab/Simulink. In brief, the arc furnace model

behaves a current controlled voltage source, which takes as input the arc current. With this current and the

estimated parameters, the arc voltage v(t) is calculated every time-step.

4. Parameter estimation of the electric arc model

This section presents the proposed method used to estimate the parameters of the electric arc model

described in Section 3. First, a short description of the M-SVR is given in subsection 4.1. Then, subsection

4.2 explains the differential evolution algorithm used to determine the hyperparameters of the M-SVR.

Finally, a detailed description of the proposed method to estimate the parameters of the electric arc model

is presented in subsection 4.3.
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4.1. Multidimensional regression based on SVM

This subsection provides a description of the SVM regression-based method for multiple-input multiple-

output. This method was initially proposed in [31], and is called support vector multiregressor or M-SVR.

The objective of the multidimensional regression problem is to find the mapping between an input vector

x ∈ R
d and an observable output vector y ∈ R

Q, from a given set of independent and identically distributed

(i.i.d.) samples {(xi,yi)}
N
i=1. The relationship between x and y is assumed as follows

y = W⊤φ(x) + b, (6)

where W =
[

w1, . . . ,wQ
]

, b =
[

b1, . . . , bQ
]⊤

, with a vector wj ∈ R
H and a constant bj , for every output

(j = 1, . . . , Q). The function φ(·) refers to a non-linear transformation to a higher-dimensional Hilbert space

H, where H ≫ d.

In the M-SVR, the parameters wj and bj are found by minimizing the convex functional,

J =
1

2

Q
∑

j=1

‖wj‖2 + C
N
∑

i=1

L(ui), (7)

where the hyperparameter C is a regularization constant, L(·) is the Vapnik ǫ− insensitive loss-function,

with ui = ‖ei‖, and ei = yi−W⊤φ(xi)−b. As a loss function L(·), authors in [31] use a quadratic function

with respect to a hyperparameter ǫ, as follows

L(ui) =











0, ui < ǫ

(ui − ǫ)2, ui ≥ ǫ.

(8)

where ǫ 6= 0. By using the Representer Theorem [35], the solution of the problem above is expressed

in terms of the vector of coefficients βj ∈ R
n for each output [31], which relates to the original vectors wj

through wj = Φ⊤βj , where Φ = [φ(x1), . . . ,φ(xN )]⊤.

An iterative reweighted least squares procedure is proposed in [31] to minimize J , in order to calculate

the set of regressors β =
[

β1, . . . ,βQ
]

and b. To compute the regressors at the (p+ 1)th iteration, initially

is necessary to calculated the descending direction of J , based on the optimal solution of its quadratic

approximation, refer as βs and bs and given by [31]





βs

(bs)⊤



 =





K+D−1
a 1

a⊤K 1⊤a





−1 



Y

a⊤Y,



 (9)
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where K ∈ R
N×N is a kernel matrix with entries k(x,x′) = φ(x)⊤φ(x′) computed from a so called

kernel function k, and Y = [y1, . . . ,yN ]
⊤
. The kernel function generalizes the inner product between φ(x),

and φ(x′). 1 Also, in (9), a = [a1, · · · , aN ]⊤, and Da ∈ R
N×N is a diagonal matrix with entries {ai}

N
i=1.

The weights ai are computed using

ai =
C

up
i

dL

du

∣

∣

∣

∣

up

i

=











0, up
i < ǫ

2C(up

i
−ǫ)

up

i

, up
i ≥ ǫ

(10)

where up
i = ‖epi ‖. The next step solution βp+1 and bp+1, can be estimated by:





βp+1

(bp+1)⊤



 =





βp

(bp)⊤



+ ηp





βs − βp

(bs − bp)⊤



 , (11)

where the value of ηp is computed using a backtracking algorithm, in which, if Jp+1 > Jp, then ηp is

multiplied by a positive constant less that one, and the regressors βp+1 and bp+1 are computed again, until

a decrease is achieved in Jp+1. The algorithm stops when Jp+1−Jp < tolerance. In this paper, the tolerance

is set to 10−9.

Finally, once the optimal regressors have been calculated, the prediction ŷ for a new input vector x can

be computed as

ŷ = β⊤kx + b, (12)

where kx ∈ R
N is a vector with entries given by k = {k(xi,x)}

N
i=1. The kernel function that is used in

this paper is the radial basis function (RBF) kernel given as

k(x,x′) = exp

(

−
‖x− x′‖2

2σ2

)

, (13)

where the hyperparameter σ2 is usually known as the bandwidth [36].

4.2. Differential evolution algorithm

As described in subsection 4.1, the M-SVR has the hyperparameters C, ǫ, σ, which should be optimized

in order to let the M-SVR estimate the parameter of the electric arc model. In this paper, the differential

evolution (DE) algorithm is used to determine the values of these hyperparameters.

1In the sense that the kernel is not necessarily a Mercer kernel, this is, one that can be written as an inner product. See

Ref. [36].
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The DE algorithm was proposed in 1997 by Storn and Price [33] as a metaheuristics optimization al-

gorithm, which maintains a population of potential solutions in the search space by applying the idea of

survival of the fittest. In this case, the search space is formed by predefined intervals for values of M-SVR

hyperparameters. The main advantages of DE is its convenient implementation, lack of a differentiable cost

function, good converge properties, and few control variables to achieve the minimization.

The DE algorithm makes use of three main rules: mutation, crossover, and selection. Initially, a popu-

lation of size Np is generated. Each individual of the population has the following structure:

hg = [Cg, ǫg, σg] (14)

where g represent the gth generation.

The mutation rule creates a mutant vector in each generation following the rule:

ĥg+1 = h
g
1 + F (hg

2 − h
g
3) (15)

where F is a mutation factor in the range [0, 1.2], and h
g
1, h

g
2, h

g
3, are three random vectors taken from

the population in the gth generation.

The crossover rule generates a trial vector hg+1, where each one of its entries are computed as follows:

hg+1
j =











ĥg+1
j , if ϑ ≤ CR

hg
j , otherwise

(16)

for j = 1, 2, 3. ϑ is a random variable which follows a normal distribution in the range [0, 1], and CR is

know as crossover constant.

The selection rule compares the value of the objective function (OF) for the trial vector and the OF for

the target vector hg, and select the best solution that is stored in the population for the next generation

(g + 1), as follow

hg+1 =











hg+1, if OF(hg+1) ≤ OF(hg)

hg, otherwise

(17)

The above procedure is repeated for each individual of the population. The algorithm stops when the

number of maximum generations gmax defined by the user is reached. The OF is defined in the following

subsection, after introducing the proposed method.
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4.3. Proposed method

The proposed method used to estimate the parameters of the electric arc model, requires voltage and

current real measurements at the secondary side of the EAF transformer. The 100 cycles of measurements

are divided into the first 70 cycles for training, and the last 30 cycles for testing, as shown in Fig. 3.

Training set Test set
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0

100

(b)

C
u
rr
en

t
[k
A
]

Figure 3: (a) Real measurements of voltage v(t), (continuous lines) training data, (dashed lines) testing data. (b) Real

measurements of current i(t), (continuous lines) training data, (dashed lines) testing data.

The method is implemented in the following steps as indicated in the flowchart diagram in Fig. 4.

In the first step, the training measurements of the electric arc current are used as input to the electric

arc model described in Section 3 (see Fig. 2), in order to get a considerable number of simulated voltage

waveforms at the secondary side of EAF transformer v(t), using different values for the model parameters

in each simulation. The vector y = [y1, . . . , yQ]
⊤

comprises the Q parameters of the electric arc model to

be estimated. Using LHS, are generated N different samples for the vector y, where each entry of y are

within the predefined intervals for values of electric arc parameters. In this paper the LHS is used instead

of random sampling because the LHS gives good coverage of the space, and are evenly distributed in each

one-dimensional projection [32]. Each sample of y is refer as yi (i = 1, . . . , N). A matrix Y ∈ R
N×Q is used

to group the vectors {y⊤
i }

N
i=1, each row in Y correspond to a vector y⊤

i .

For the training measurements of the electric arc current and for each vector of parameters yi of the

electric arc model, a simulation of the electric arc model described in Section 3 is executed. On each waveform

of v(t) obtained in each run of the model, a set of characteristics are extract to construct the input vectors

{xi}
N
i=1 for the M-SVR algorithm. The characteristics used in this paper consist of the harmonics and

interharmonics of the voltage waveform, obtained using the STFT [1]. It is worth noting that in this

10



Start

Define the tolerance limits

for each parameter

Obtain N samples of the

vectors {yi}
N
i=1 using LHS

Import training

measurements of current

Run N times

the electric arc model

Compute the vectors {xi}
N
i=1 for each

simulated voltage waveform v̂(t)

Import training

measurements of voltage

Compute the vector

of characteristics xreal

Compute the values of the hyperparameters

C, ǫ, and σ, using the DE algorithm

Compute the matrix β and the vector b,

of the M-SVR
{xi,yi}

N
i=1

Compute the parameters of the

electric arc model (ŷ), using (12)

Import test

measurements of voltage

Run the electric

arc model

End

Figure 4: Flowchart diagram of the proposed method.

paper, current and voltage measurements at a fundamental frequency of 50 Hz have been considered. The

spectrogram is computed over the voltage waveform using the STFT, where each segment of the signal is

windowed with a Hamming window of 5−Hz resolution, with an overlap of 90% between the segments (see

Fig. 5).
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Figure 5: Windowing of the voltage v(t). (Continuos lines) nth window. (Dashed lines) Next window, sliding on the right the

nth window by one cycle.

Let Nw be the number of segments or windows in which the voltage signal is segmented. To account

for the harmonics and interharmonics of the voltage waveform, the STFT is computed with frequencies

between the range of 5 to 650 Hz, with steps of 5 Hz for 5 Hz to 100 Hz, and 50 Hz for larger frequencies

[37]. The spectrogram for v(t) is a matrix of dimensions 31×Nw, which is labeled as Si, where the subscript

i is related to the subscript i in the vector yi. In the rows of Si, 31 refer to the number of frequency

components. For each frequency value, the mean of the magnitude of the spectrogram Si is compute across

the Nw columns, transforming the matrix Si into a vector of dimension 31. This vector is named as xi.

Considering the description given in Section 4.1 for the M-SVR, the value of d is 31. In summary, for each

vector of parameters {yi}
N
i=1 a vector of characteristics {xi}

N
i=1 is computed as explained above.

The second step consists of finding the values of the hyperparameters C, ǫ and σ, for the M-SVR. The

hyperparameters are computed using the dataset {(xi,yi)}
N
i=1, the training measurements of real current

and voltage at the secondary side of EAF transformer, and the DE algorithm. As explained in the last

subsection, the fitness of the target vector and the trial vector in the DE algorithm, is computed through

the OF using (17). In this paper, the OF is calculated as the mean value of the rooted sum of the squared

errors, which is the root mean square (RMS) value of the real measured of training voltage at the secondary

side of EAF transformer VRMS(real), and the corresponding RMS value of estimated voltage VRMS(est) given

by the simulation of the EAF model, hence

OF =
1

Nc

√

√

√

√

Nc
∑

i=1

(VRMS(est),i − VRMS(real),i)2 (18)

where VRMS(real),i is the RMS value of real measured data, VRMS(est),i is the RMS value of simulated

data, corresponding to the ith cycle, and Nc is the number of cycles of the measured voltage. The simulated
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voltage v(t) related to the target vector hg is obtained as follows: given fixed values of Cg, ǫg and σg (the

entries of the target vector), and the dataset {(xi,yi)}
N
i=1 simulated from the electric arc model, are compute

β and b using the iterative algorithm explained in subsection 4.1. It is worth noting that, the Matlab source

code for computing β is available in [38], for further information. Then, the vector of characteristic xreal is

compute from real measurements of training voltage as explained above. By substituting the values of β, b

and xreal in (12), the vector ŷ that contains the Q parameters of the electric arc model is estimated. With

these parameters and the the training measurements of real current, is run a simulation of the EAF model

to obtained the simulated voltage v(t) related to the target vector hg. The same procedure is repeated to

get the simulated voltage related to the entries of the trial vector hg+1. The DE algorithm is stopped when

is reached the maximum of generations gmax.

The values of the hyperparameters of the M-SVR are adjusted with the corresponding entries of the last

target vector. With the optimal values of the hyperparameters of the M-SVR, and the dataset {(xi,yi)}
N
i=1,

are computed the matrix β and the vector b, to use in the testing stage.

Finally, given β, b, and an input vector xreal, it is possible to predict an output vector ŷ using (12). The

input vector xreal represents the characteristics of the real testing voltage waveforms computed using the

STFT, and the vector ŷ represents the Q estimated parameters of the EAF model. This estimated values

for the electric arc model parameters, are used to get the simulate current and voltage waveform at the

secondary side of the EAF transformer.

5. Validation of the proposed approach

This section are divided as following: In subsection 5.1 are designed the M-SVR using the training

measurements. Then, the subsection 5.2 presents the estimated parameters, and the voltage and current

generated by simulation of the model, and its comparison with real test measurements. Finally, in sub-

section 5.3 is presented a sensitive analysis of the proposed method, based on the input noise on the test

measurements.

5.1. Design of the M-SVR using the training measurements

As explained in Section 3, the electric arc model is represented by the parametric equations (1), (2), (3),

and (4). These equations require the estimation of the parameters {k1, k2, k3,m, n, s, δ, ω, ρ, κ, α,Rc, Lc}.

Now, the following consideration can be applied, in order to reduce the number of parameters to be estimated:

the parameters m and n depend on the operating stage of the EAF (boring, melting and refining), therefore,

to represent the melting stage of the EAF m = 0 and n = 2 [39]. This corresponds to the stage where

real measurements of the current and the voltage are taken. In the Chua’s circuit is a common practice

to set the values of ρ, κ and α, to produce a chaotic behavior in the circuit by means of the parameter δ

13



Table 1: Range of variation of EAF model parameters.

Parameter Lower Limit Upper Limit

k1 3000 7000

k2 1 5

k3 4.5 12

s 17 39

δ 14 20

w 0.1 0.5

Rc 1× 10−4 10× 10−4

Lc 1× 10−6 10× 10−6

[15], [40]. Therefore in (4), the values of ρ, κ and α are fixed as −1/7, 2/7, and 10, respectively, whereas

δ and s are estimated within the ranges [14, 20] and [17, 39], respectively, to produce a low-frequency

chaotic signal (within the 0.5 to 25 Hz range) in the circuit solution [15]. After adjusting the values of

n, m, ρ, κ and α, the parameters of the electric arc model to be estimated are {k1, k2, k3, s, δ, ω,Rc, Lc}.

Considering the description given for the M-SVR in subsection 4.1, the output vector of the M-SVR is

ŷ = [k1, k2, k3, s, δ, w,Rc, Lc]
⊤.

As mentioned in subsection 4.3, the vectors yi are generated using LHS within the space of possible

values for each parameter, which is bounded by lower and upper limits. The values of the limits are chosen

based on typical data available in [14–16], and [39]. The lower and upper limits for each parameter are listed

in Table 1.

To compute the hyperparameters of the M-SVR, are set NP = 30, F = 0.8, CR = 0.5, and gmax = 30 in

the DE algorithm. The hyperparameters are searched in the ranges C = {1, . . . , 100}, ǫ = {10−6, . . . , 10−3},

and σ = {1, . . . , 50}. The training dataset {(xi,yi)}
N
i=1 are computed following the proposed method

described in subsection 4.3. Different values have been considered for the number of training samples N ,

in order to determine their effect on the estimated model parameters. For each value of N are estimated

the parameters of the electric arc model, related to the training measurements. With these parameters

the electric arc model is adjusted, in order to estimate the voltage waveform. The estimated voltage are

compared with the training measurements of real voltage through the objective function. In Fig. 6, are

shown the values of the OF for different values of the training set size N .

According to the results shown in the Fig. 6, the training samples size used to design the algorithm

is related to its performance. If we used a number of samples lower than 60, the values obtained for the

objective function are larger than 5, and reduced near to 4.75, when the number of samples is major to 100.

We also noted that the best value for the OF is obtained when the training set size is equal to N = 70.
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Figure 6: Relation between the OF and the training set size N .
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Figure 7: Best value of the OF obtained in each generation, using the DE algorithm.

Based on the above, the proposed method operates satisfactorily with short training size, around 60 to 100

samples.

The results reported in the rest of this paper are obtained with N = 70. The values obtained for the

hyperparameters are C = 47.83, ǫ = 10−6 and σ = 9.35. Fig. 7 shows the best values of the OF in each

generation. It can be seen that, the value of the OF decreases as the number of iteration increases, until it

reaches a value 4.18 after the iteration 15. Once the hyperparameters has been calculated, the martrix β

and the vector b for the M-SVR are computed with the training data set, as explained in Section 4.1.

5.2. Estimated voltage and current using the testing measurements

In this part, the test measurements are used. For the test measurements of real voltage, its characteristics

are computed to obtain the input vector xreal. The estimate parameters of the electric are model (ŷ) are

obtained by replacing the values of the matrix β and the vector b (computed in the training phase), and

xreal in (2). Table 2 lists the values of the parameters estimated from the output of the M-SVR.
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Table 2: Estimated EAF model parameter with test measurements.

k1 k2 k3 s δ w Rc Lc

Estimated value 7001.3 5.04 7.8 24.6 21.32 0.13 6.26× 10−4 10× 10−6

−

+
vs

Rs Ls PCC T1

42 MVA
115kV/11V

∆/Y

EAF
Transformer

30 MVA
11kV/760V

∆/∆

Rc Lc iarc(t)

−
+ varc(t)

+

−

v(t)
f(ŷ)

Electric arc model

Figure 8: Single-phase diagram of the EAF power system implemented in Matlab/Simulink.

With the estimated parameters, is run a simulation of the EAF circuit shown in Fig. 8, implemented in

Matlab/Simulink. The internal voltage vs is computed as explained in Section 2. The simulated arc current

are used as an input of the electric arc model, represented by the function f(ŷ), and the phase voltage at

the secondary side of the EAF transformer are computed at each step-time of the simulation.

In Fig. 9 ten cycles of the real (solid line) and simulated (dotted line) phase voltage at the secondary

side of the EAF transformer are shown. In Fig 10 the real data current waveform (solid line), and the

simulated current (dotted line) are shown. In Fig. 11 the RMS values in each cycle of the real (solid line)

and simulated (dotted line) voltage waveform are shown. In Fig. 12 the RMS values for real (solid line) and

simulated (dotted line) electric arc current are shown.

As it can been seen, the results obtained show that the simulated waveforms of voltage and current are

similar to the real waveforms. In particular, the values estimated for the parameters allow the simulation

of voltage and current with RMS values very similar to the corresponding real values, for each one of the

cycles of the test data.

The mean value of the percentage error in the RMS value of voltage and current has been calculated as,

Ex =
1

Nc

Nc
∑

i=1

|XRMS(est),i −XRMS(real),i|

XRMS(real),i
· 100% (19)

where XRMS(real),i is the RMS value of real measured data, XRMS(est),i is the RMS value of simulated

data, corresponding to the ith cycle. X can represent the voltage or current, and Nc is the number of its

cycles. The values of Ex obtained for voltage and current are, Ev = 5.68%, and Ei = 4.5%, respectively.

In Fig. 13 are show the v−i characteristic from real (solid line) and simulated (dotted line) measurements

data. As it can be seen in Figures (9), (10), and (13), the electric arc model is able to represent the non-
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Figure 9: Ten cycles of voltage waveform at the secondary side of the EAF transformer, corresponding to the real data (solid

line) and simulated data (dotted line) with the estimated parameters.

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

−100

−50

0

50

100

Time [s]

C
u
rr
en

ts
[k
A
]

real est

Figure 10: Ten cycles of electric arc current waveform, corresponding to the real data (solid line) and simulated data (dotted

line) with the estimated parameters.
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Figure 11: RMS values of voltage at secondary side of EAF transformer in each cycle corresponding to the real data (solid

line) and simulated data (dotted line) with the estimated parameters.
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Figure 12: RMS values of electric arc current in each cycle corresponding to the real data (solid line) and simulated data

(dotted line) with the estimated parameters.
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Figure 13: v− i characteristics, corresponding to the real data (solid line), and simulated data (dotted line) with the estimated

parameters, during the melting stage of the EAF operation.

linear and time varying nature of the real current and voltage waveform, even during waveform distortion

instants.

Fig. 14 shows the components of the characteristic vector, computed as explained in subsection 4.3,

for the real (solid line) and simulated (dotted line) voltage. The figure is illustrated over the frequency

range [5, 650] Hz. Fig. 15 shows the comparison between the entries from the characteristic vectors of the

real (solid line) and simulated (dotted line) current waveform. Notice how the approximation by using the

M-SVR is particularly accurate for the largest component, which corresponds to the fundamental frequency

of 50 Hz. As shown in Table 3, the relative error between the component at 50 Hz of the characteristic

vectors of voltage and current are 6.3%, and 2.1%, respectively, which validates the proper performance of

the M-SVR, despite the chaotic dynamic of the EAF operation.

One of the main problems caused by the EAF operation is due to the injection of harmonics and inter-
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Table 3: Comparison between the fundamental component of the characteristic vectors of the real and simulated voltage and

current.

signal real simulated relative error

current 75.21 kA/Hz 73.58 kA/Hz 2.1%

voltage 58.43 V/Hz 54.69 V/Hz 6.3%
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Figure 14: Characteristics of voltage waveform at the secondary side of the EAF transformer, corresponding to the real data

(solid line), and simulated data (dotted line) with the estimated parameters.

harmonics in the electrical power system. The total harmonic distortion (THD) index is used to quantify

the distortion present in a signal. The THD has been computed using the spectrum of voltages and currents

shown in Fig. 14 and Fig. 15, with the following equation

THD =









1

x10

√

√

√

√

√

32
∑

k=1,
k 6=10

x2
k









· 100% (20)

where xk (k = 1, . . . , 32) corresponds to each entry of the characteristic vector, x10 corresponds to the

main component at the frequency of 50 Hz, and 32 is the number of entries of the characteristic vector. For

real voltage measurements the THD is 66.3%, whereas for the simulated voltage is 64.9%. In the case of

the current, the THD is 62.2% for real current measurements and 61.9% for the currents obtained with the

model. It is worth noting that the high THDs are due to the harmonics and interharmonics that has the

spectrum of the signals. As can be seen, the THD is similar between the real and simulated signals, with

a relative error of 1.8% for the voltage and 0.4% for the current. This indicates the functionality of the

method to estimated the parameters of the model.

Although in this article, the results shown correspond to current and voltage measurements taken in

the melting phase of the EAF operation, the proposed method is valid to estimate the arc furnace model
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Figure 15: Characteristics of electric arc current waveform, corresponding to the real data (solid line), and simulated data

(dotted line) with the estimated parameters.

parameters in the refining stage.

The computation time in each step of the proposed method has been computed using a desktop computer

with an Intel(R) Core(TM) processor i5-4210U CPU @ 2.40 GHz. The calculation time is divided into

training time and validation time. The training time comprises 68.94 microseconds for the calculation of

each vector of parameters using LHS, 4.6 milliseconds for computed each characteristic vector, and 1.25

seconds to evaluated the OF function, given by (18), for each iteration of the DE algorithm. The last task

consumes most of the training time (about 6.25 min), due to the large amount of iterations (300 in total).

For computing β and b, it is necessary 1.2 milliseconds. The computation time in the validation phase is

divided into the required time to calculate the characteristics vector from real voltage measurements, which

is equal to 2.87 milliseconds, and the required time for the M-SVR to compute the parameters of the EAF

model, that is equal to 9.97 microseconds.

5.3. Sensitive analysis based on the input noise on the test measurements

In this section are evaluated the performance of the proposed method for estimating the parameters of

the electric arc model, with added Gaussian noise to the test measurements. In Fig. 16 are shown the

values of Ex computed usign (19) for voltage (Ev) and current (Ei), considering different values of the

signal-to-noise ratios (SNRs) in the test measurements of real voltage and current.

According to the Fig. 16, when measurements with a SNR of less than 5 dB are used, the estimations of

the current and voltage present a relative errors larger than 10%, so the proposed method is not appropriate.

When the SNR of the measurements is in the range of 5-10 dB, the relative error of the estimated voltage

is less than 10%, but the estimated current keeps a relative error major than 10%, this result may be

appropriated if less accurate results are sufficient for the analysis. However, the estimation of the voltage

and the current is less vulnerable to measurements with a signal to noise ratio larger than 10 dB, they have
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Figure 16: Average values for the relative error of RMS voltage Ev and current Ei in each cycle, for different SNR in the test

measurements.

a relative error of less than 10% and decreases asymptotically until it reached the lower limit when the

measurements have a signal to noise ratio of 50 dB.

6. Conclusions

In this paper, a new method for parameter estimation of an EAF model has been presented. The model

used took into consideration the non-linear and chaotic behavior of the electric arc. According to the obtained

results, the proposed method was able to estimate the parameters of an EAF model. The performance of

the estimation method was evaluated by comparing the simulated voltage waveform (generated by the EAF

model with the estimated parameters), with real voltage measurements from an arc furnace steel plant

operating in the melting operating cycle. The results obtained shown high accuracy of the voltage waveform

simulated by the EAF model, according to the relative errors of the fundamental component of the voltage

(6.3%), and of the electric arc current (2.1%).

Once the methodology has been tested and validated, and the parameters of an EAF model have been

tuned appropriately, it would be possible to use the EAF model to predict the voltage of the electric arc.

Although in this article, the results shown correspond to current and voltage measurements taken in the

melting phase of the EAF operation, the proposed method is valid to estimate the arc furnace model

parameters in the refining stage. As future work, the EAF model can be used to assess the performance

of different compensation systems such as active power filters, static var compensators, and energy storage

systems. Also, it is recommended to evaluate the performance of the M-SVR algorithm, by considering

other cost functions such as absolute sum, and weighted absolute sum. Furthermore, the method proposed

here could be applied to estimate the parameters of any system of equations that describes the dynamical

behavior of an electric arc furnace, for example, the non-linear time-variant resistance model proposed in
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[41].

In short, results shown that, with the correct parameters, the proposed EAF modeling is able to capture

the dynamics for this type of load, validating the inclusion in a electrical power system for further studies

in PQ.

Appendix A. Parameters of electric arc furnace installation shown in Fig. 1

Distribution System: Ideal three-phase sinusoidal ac voltage with phase to phase RMS nominal voltage

= 115 kV, X/R ratio: 10. Transformer T1: ǫcc = 12%, winding connection: Y/∆, X/R ratio: 10. EAF

Transformer: ǫcc = 10%, winding connection: ∆/∆, X/R ratio: 10.
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