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Control of selective laser melting processes: existing efforts, challenges,

and future opportunities

Taha Al-Saadi∗ 1 J. Anthony Rossiter∗ 2 and George Panoutsos ∗ 3

Abstract— Additive Manufacturing (AM) or widely known
as 3D printing is a technology for producing parts directly
from the computer without the need for traditional tools. The
technology provides fast production for complex shapes with
higher properties. Selective Laser Melting (SLM) is one of
AM technologies that is used to produce metallic parts. For
the last twenty years, the technique attracted the attention of
both industry and academia. The complexity of the underlying
physics and the fast dynamics during the process degraded
the quality of the produced parts and hampered widespread
adoption of the technology. A significant emphasis on the
importance of on-line control systems to achieve higher levels
of quality and repeatability can be found in the literature. In
this review paper, we fill an important gap in the literature
represented by the absence of one single source that describes
what has been accomplished and gives an insight into what
still needs to be achieved in the field of process control for
metal-based AM processes. The article ends by discussing
future opportunities in the associated on-line control system
development.

I. INTRODUCTION

A new industrial era has been motivated by the develop-

ment of manufacturing processes. The advanced techniques

facilitate the response to the world’s requirements in a

faster and more effective manner. Additive Manufacturing

(AM) is a process that provides rapid manufacturing with

optimised use of energy, labour, and materials. The process

fabricates parts layer-by-layer directly from the computer.

The diversity of materials that can be processed by the

different types of AM processes expand the range of ap-

plications. The applications involve tool making, aerospace

engineering, energy technologies, automotive manufacturing,

and medical engineering [1]. AM is classified into seven

categories, five of them apply to process metals which are

powder bed fusion (PBF), directed energy deposition (DED),

binder jetting, material jetting, and sheet lamination pro-

cesses [2]. This paper focuses on a Selective Laser Melting

(SLM) process, which is a specific PBF method, which

uses a high power-density laser to melt and fuse metallic

powders to fabricate parts. The technology does not only

provide prototypes but also produces products ready to be

used in different fields [3-6]. SLM offers a design process

with fewer limitations, leading to a revolutionary design in

different fields. It allows production of complex geometries,

lightweight structures, and internal channels to improve
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product performance and to meet the industrial specifications

[7]. Unfortunately, with all advantages offered by SLM and

other AM processes, the quality and repeatability of metal

parts still hamper significantly their widespread adoption as

viable manufacturing processes [6]. The process contains

complex underlying physical phenomena and transformations

occurring during the process in a short time [8] and [9]. In

particular for complex materials, just as titanium alloys used

in the aerospace sector. Over 150 parameters affect the SLM

process [10]. The facts above mean the optimisation problem

is exceptionally challenging and becomes more complex as

the complexity of the designed part increases. There are

extensive research efforts over the world in the last two

decades in modelling and control of AM processes [5],[8],

and [11]. The investigations emphasise the importance of

control systems to enhance product quality. Figure 1 presents

the number of published papers in the area of control and

modelling over the last twenty years. In this review paper, we

focus on the existing efforts applied in SLM and promising

algorithms that show encouraging results on other AM types.

In addition to the gaps and future opportunities in the

field of the on-line control system. After this section, the

paper is organised as follows: section II considers the SLM

process description, section III discusses the control effort in

SLM, section IV introduces a promising algorithm, section

V discusses gaps and future opportunities for improvement

and the paper finishes in section VI with some conclusions.

Fig. 1: The published papers in control and modelling over

the last twenty years[12]

II. SELECTIVE LASER MELTING PROCESS OVERVIEW

A good understanding of the process is required for better

utilisation and optimisation of the process inputs to ensure



product quality. The fundamental elements of the SLM

process are shown in figure 2. The parts can be described as

follows [13]:

1) The laser source is considered as the primary source

of the heat in the process. The laser power, type, spot

size, and other parameters related to laser source have

a significant impact on system performance.

2) The scanning motion device is the part that controls

the scanning speed, hatching distance and the scanning

strategy of the laser source over the powder.

3) The powder feeder and roller/reactor are responsible

for adding the new layer after the previous layer is

fabricated. The performance of the roller will affect

the powder distribution in the newly added layer, thus

the quality of the layer.

4) The elevator to lower down the scanned layer to allow

the feeder to add the new layer.

5) The enclosed chamber provides a specific feature for

the ambient to ensure the quality of the end-product.

More information about the process and its parameters can

be found in [14]–[16].

III. EFFORTS IN ON-LINE CONTROL FOR SLM PROCESS

Most of the existing SLM and other AM processes are

based on constant parameters [17]–[19]. These parameters

are determined by trial and error at the beginning and

fixed during the fabrication process. Research investiga-

tions showed that maintaining the parameters unchanged

increases the heat affect zone [19]. Consequently, the heat

accumulation produces irregular morphology of the melting

pool, excessive dilution, thermal distortion and cracking.

Other process uncertainties also add to the complexity of

optimising the process, for example, powder batch-to-batch

variability and recoater degradation, which further compli-

cate the control requirements. Therefore, the properties of the

produced parts cannot be guaranteed. The predetermination

of an optimal processing set of parameters for specific me-

chanical properties is a commonly used method to enhance

product quality or printability [20] and [21]. However, such

an approach is neither economical nor robust enough to deal

with perturbations.

On the contrary, using an on-line control system can

compensate for the disturbances and improve the quality

of the produced parts. Different control algorithms have

been implemented and investigated, varying from classical

to advanced controller techniques. Significantly, most of the

researchers used the thermodynamic and/or the melt-pool

geometry as a key to define the product quality during the

fabrication [9] and [22]. The first term can introduce dif-

ferent kinds of defects (porosity, deformation, and cracking)

and phenomena (keyhole, rippling, swelling), whereas, the

second is related to microstructure evolution and thermo-

mechanical properties. Irrespective of the used term, both

are related to energy density which can be controlled by

varying laser power, scanning speed, and scanning strategies

[23]. The following content summarises the previous efforts

in on-line control approaches for the SLM process.

Proportional (P) and Proportional-Integral (PI) controllers

were used in the first attempts to investigate the control-

lability of the melt pool size by manipulating the laser

power [24]–[26]. In these attempts, the designed controller

was based on a second-order model which was identified

using experimental data collected from a high-speed CMOS

camera and photodiode. The studies presented the effective-

ness and importance of the on-line control algorithm. An

illustration of the effect of the applied algorithm is presented

in figure 3.

With the development of measurement and processing

equipment, more developed algorithms were investigated. In

[18] and [27], a combined control system consisting of a

feed-forward control and a P-controller was proposed. The

temperature of the melt pool was controlled by changing the

input laser power. The strategy showed a fast response to the

change in the temperature and promising results for practical

implementation with a reduction of 73% in the temperature

deviation compared to the open-loop system. Despite that,

the experimental implementation was limited to multi-track.

In this work, the advantage of parallel processing was utilised

using FPGA.

Some of the research efforts investigated a particular

phenomenon. In [17], a feed-forward (FF) controller was

applied to overcome the issue of over melting and keyhole

formation. The approach was used successfully for DED

processes. The controller was based on an analytical control-

oriented model that considers the temperature history of the

previous track. The experimental result of multi-track-single-

layer printing showed a reduction on the over melting and

disappearances of the keyhole. Additionally, a reduction in

the average error rate by 23% was recorded compared to the

fabrication with fixed laser power.

Whereas all of the previous works focus on controlling the

Fig. 2: The basic structure of the SLM process [15].

Fig. 3: Printing attempts with fixed laser power (A) and

with a feedback controller (B) [25].



melt pool parameters within the scanning vector, a layer-wise

control approach was introduced in [7]. In such a method, the

information of the previous layer is gathered and analysed

then used in the following layer to correct the deviation

from the desired performance. The authors measured the melt

pool area using a metal-oxide-semiconductor camera. Based

on the information provided from the feedback, the energy

density was changed in the new layer. The study showed the

effectiveness of the approach to overcome heat accumulation

and reduce the effect of the swelling phenomenon.

With the highly complex phenomena and complex physics

involved in the SLM process, it is very challenging to get

an accurate model that can lead to precise control design.

Therefore, model-based control systems have limitations in

their performance. Different research groups were interested

in studying the feasibility of using a Model-Free Control

(MFC) system. In [28] and [29] an Iterative learning control

algorithm (ILC) is used to regulate the power profile within

the scanning segment based on live measurement from the

coaxial camera. In [30], the same concept was applied in

addition to a data-driven model to predict the performance

of the system and reduce the effect of the complex geom-

etry and temperature history. The machine learning (ML)

concepts such as deep-learning (DL) were used in [31] to

predict the distortion during the process. An area of interest

was defined by cylinder, presenting the information near and

below the operating point. The suggested approach presented

the system as an optimisation problem and solved for the

best input using an ILC algorithm based on the previous

and on-line data. Conclusively, the efforts demonstrated the

feasibility of deriving process decisions using the on-line

data only without the need for a mathematical model. The

scope of research was not limited to controlling the laser

power or scanning speed. A few groups were interested in

studying the effect of scanning path and scanning strategy

on the melt pool size and temperature, such as [32] and

[33]. The investigations showed that the residual stress and

distortion could be minimised. However, all the existing

industrial processes come with pre-sited scanning strategies.

In [11] and [34] the focus was directed to monitoring

and control of the surface roughness using coherent imag-

ing. The roughness was improved by post-processing using

laser pulses and refilling the gaps. In [35], a backstep-

ping control was designed for a nonlinear partial derivative

equation model. The model was developed to capture the

thermodynamics of the phase change of the melt pool. The

investigation was limited to proving the Lyapunov stability of

the controller. Table I below summarises the control efforts

found in the literature.

IV. PROMISING CONTROL METHODS USED FOR OTHER

AM PROCESS

Most of the metallic AM systems are based on the same

concept and melting requirement. Therefore, many efforts

that were investigated or implemented in other AM process

can be adequate for the SLM process. An example of

such attempts can be found in [17] and [36]–[38]. The

following context presents promising techniques that were

applied with the DED AM process but not yet investigated

with SLM technology. Table II below summarises several

different approaches, discussed next, which were investigated

to control the different AM process.

A. Simulated feedback

In [36], the implementation of a feed-forward and a model-

based simulated output feedback controller was investigated.

The method aids to overcome the issue of real measurement.

The simulation results demonstrated up to 50% enhancement

in the accuracy of the deposition geometry. However, the

main challenge for practical implementation is the absence

of a high-fidelity model simulator.

B. Model predictive control

With the constraints included in the DED process, model

predictive control (MPC) attracted the attention of a few

groups. In [39] a generalised model predictive control (GPC)

law was proposed to track the temperature of the melt-pool.

A higher level of MPC was investigated in [40] and [41].

They applied a multivariable predictive control to control

the multi-input-multi-output (MIMO) control-oriented model

for the cladding laser aided power deposition process. The

approaches try to control the geometry and temperature

profile of the melt pool by varying the laser power and

scanning speed.

C. Feedback linearisation

In [42], a MIMO reduced-order model was derived and

controlled using a feedback linearisation method. The sim-

ulation results for a single layer deposition showed the

effectiveness of the control technique.

D. Model-free adaptive iterative learning control

The performance of the model-free adaptive iterative

learning control (MFAILC) algorithm was investigated to

overcome the complicity and uncertainty of the model [43].

The algorithm is used to control the width of the melt

pool in wire arc DED AM process by moderating the laser

power. The results showed good tracking performance and

robustness against disturbance in welding speed and stick-out

length.

V. CHALLENGES AND FUTURE OPPORTUNITIES

With all the advantages that SLM processes have, there are

several concerns about the repeatability and reproducibility to

adapt the technology worldwide [44,45]. Almost all research

efforts focused on single-tracks or elementary geometries,

such as thin walls and cubes which ignored the ability of

AM to produce arbitrarily complex geometries that cannot

be produced (or are very difficult to) using traditional man-

ufacturing technologies such as subtractive, casting, forming

etc. The in-depth investigation of the performance of the

control systems with complex shapes is required to fulfil

the practical application of SLM. Besides that, there are

few efforts investigating the phenomena that could appear

during the building process. From the control perspective,



TABLE I: Current Control efforts for SLM processes

Control Objective Control strategy Control variable Process Signal Ref

To investigate the controllability of the SLM process using feedback P and PI control Laser power
Melt-pool
geometry

[24]-[25]

To overcome the overheating problem and keyhole formation FF [17]

To control melt pool temperature at sufficient time
FF combined with
P- controller

Temperature
profile

[18],[26]

To avoid heat accumulation Layer-wise [7]
To control the temperature profile of the scanning segment Model-free-ILC [28]-[30]
To investigate the feasibility of ML control system ML-ILC [31]

To improve the surface quality of the product -
Surface
geometry

[11],[34]

To investigate the effect of scanning path strategy Open-loop control Scanning path
Melt-pool
geometry

[31],[32]

To investigate the Lyapunov stability Backstepping Laser power [35]

TABLE II: Promising techniques applied for other AM process

Method Objective Control Variable Process signal Achievement Ref

Simulated feed
To overcome the issue
of real measurement

Laser power
Height of

the decomposition
Feasibility of the
control algorithm

[36]

GPC
To Compensate of the lack
of deposition

Melt pool
temperature

Good tracking performance
and robustness algorithm

[39]

Multi-variable
predictive control

To control the geometry
and temperature of the
melt pool

Laser power and
Scanning speed

Melt pool and
temperature profile

Prove the feasibility of
the control algorithm

[40],[41]

Feedback
linearization

To reduce the residual
stress

Simulation Investigation about
the proposed algorithm

[42]

MFAILC
To regulate the melt
pool temperature

Laser power
Good tracking
performance

[43]

the following summarises some of the various challenges

and opportunities from the literature.

A. Challenges

1) Challenges and limitations regarding the used model:

The lack of an adequate process model that can be used to

design a practical on-line control algorithm was noted. The

previous efforts showed that suitable physics-based control-

oriented models barely exist for SLM processes and data-

driven models are still underdeveloped. Additionally, since

the quality of the data-driven model depends on the amount

of available or accessible data, the shortage of real data is a

significant obstacle for any implementation.

2) Challenges and limitations regarding control technique

and data processing: The unavailability of fast enough

control systems to capture the dynamics of the process and

respond to any perturbation in an appropriate time was indi-

cated by many researchers. Processing speed is considered as

a challenge and a limitation to implement an on-line control

system. Apart from that, most of the research studies did

not address the stability, uncertainty and robustness in any

significant depth. From the level of control (in-layer, layer-

wise, and surface quality) point of view, almost all the efforts

targeted a specific scenario without investigating the effect of

combining them. Although the model-free control algorithm

helps to overcome the need for a mathematical model, the

technique requires exact repetition from iteration to iteration.

However, this is not applied in most of the shapes.

B. Future Opportunities

With the aforementioned challenges and limitation, the

following future opportunities can be seen:

1) Opportunities in model development: The existing

model needs to be extended to be able to include the

behaviour of the process while producing complex shapes.

The model improvement can involve the temperature history

of the built tracks and layers in addition to the formation

phenomena. The following approaches look promising to

develop a control-oriented model for selective laser melting

processes:

• Using the leverage of similarity between SLM and

other AM process, a model can be developed to fit the

process.

• Develop a physics-based model that can capture the

required specification and be simple enough to design

an on-line controller.

• Using ML and data-driven concepts, that can capture

different information about phenomena included in the

SLM process, in order to design a tailored control

approach.

2) Opportunities in control system development: As it was

mentioned in section V.A.2, the majority of the proposed

methods did not take into consideration the control issues

such as stability, robustness, and uncertainty. Therefore, more

investigation is required in this area. In terms of an on-

line predictive control system, to the best of our knowledge,

the implementability of model predictive control (MPC) is

not yet investigated for SLM process. Using MPC can com-

pensate for the uncertainty of the derived model. Likewise,

a multi-level control system that links the different level

of control (in-layer, layer-wise, and surface quality). Such

a technique can improve product quality by ensuring the

quality of building in different stages. A model-free control



concept can play an essential role in overcoming the issue

of modelling; however, more investigation is required.

VI. CONCLUSION:

This work is aimed to gather the previous works on on-line

control for Selective Laser Melting (SLM) processes. The

investigation emphasised the importance of the control sys-

tem. The work demonstrates how the control system affects

the production time, mechanical properties, microstructure,

defects, geometry accuracy, and disturbance compensation,

therefore, enhancing the overall performance of the system

and the quality of the produced parts. Different efforts

were presented besides some other promising algorithms.

The challenges and limitations that face the current works

were highlighted. Based on that, future opportunities were

presented. To ensure the quality of the produced parts from

SLM process, further investigation in the on-line control

system is indispensable.
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