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Abstract: A Context-aware Prediction Framework (CAPF) can be provided through a Self-adaptive System (SAS) re-
source manager to support the autoscaling decision in Edge Computing (EC) environments. However, EC 
dynamicity and workload fluctuation represent the main challenges to design a robust prediction framework. 
Machine Learning (ML) algorithms show a promising accuracy in workload forecasting problems which may 
vary according to the workload pattern. Therefore, the accuracy of such algorithms needs to be evaluated and 
compared in order to select the most suitable algorithm for EC workload prediction. In this paper, a thorough 
comparison is conducted focusing on the most popular ML algorithms which are Linear Regression (LR), 
Support Vector Regression (SVR), and Neural Networks (NN) using real EC dataset. The experimental results 
show that a robust prediction framework can be supported by more than one algorithm considering the EC 
contextual behavior. The results also reveal that the NN outperforms LR and SVR in most cases.

1 INTRODUCTION 

The EC paradigm has emerged to support the Internet 
of Things (IoT) applications by pushing the computa-
tional capabilities towards the edge of the network 
(Dolui and Datta, 2017; Shi and Dustdar, 2016). Such 
support requires the efficient management of edge re-
sources to fulfill the IoT applications’ requirements 
such as mobility and low latency. However, the EC 
resource management process is not a trivial task be-
cause of the nature of EC and the rapid increase in the 
number IoT devices which is estimated to be 41.6 bil-
lion devices (Framingham, 2019).  

The SASs have seen a significant level of interest 
in different research areas like autonomic computing 
and pervasive computing and provide self-manage-
ment properties and exhibit system properties such as 
self-awareness to achieve adaptation (Kavanagh et 
al., 2019). They can monitor resources, state and be-
havior. Therefore, a SAS is a promising solution to 
efficiently support the resource management automa-
tion in EC as it can adjust itself according to the op-
eration environment (Arcaini et al., 2015; D’Angelo, 

 
a  https://orcid.org/0000-0002-2262-2340 
b  https://orcid.org/0000-0001-5811-5263 

2018; Kavanagh et al., 2019; Kramer and Magee, 
2007; Krupitzer et al., 2015; Singh and Chana, 2015; 
Xu and Buyya, 2019). Such adaptation can be either 
proactive whereby the SAS uses the historical data to 
forecast the future system behavior or changes in the 
environment (Al-Dhuraibi et al., 2018; Galante and 
De Bona, 2012; Moreno-vozmediano et al., 2019), re-
active whereby the system is adjusted in real-time by 
continually monitoring the system behavior and oper-
ational environment, or hybrid whereby the system 
uses both reactive and proactive approaches. 

In a proactive adaptation, designing a robust pre-
diction framework for forecasting EC workload and 
supporting auto-scaling is challenging (Delicato et 
al., 2017; Gupta et al., 2017; Kaur et al., 2017; B. Liu 
et al., 2020; Toczé and Nadjm-Tehrani, 2018). An EC 
environment exhibits a dynamic workload and often 
has limited resources. In order to design such frame-
work, a deep understanding of EC nature (e.g. work-
load patterns and users’ behavior) and a thorough in-
vestigation of the workload prediction methods, their 
characteristics and impact on their accuracy are re-
quired (Islam et al., 2012; Nikravesh et al., 2015b). 



The advantages of these activities are twofold: 1) to 
support the IoT applications’ Quality of Service 
(QoS) by avoiding under-provisioning (Ajila and 
Bankole, 2013; Aldossary and Djemame, 2018; 
Calheiros et al., 2015; Kumar and Singh, 2018; 
Lorido-Botran et al., 2014; Moreno-vozmediano et 
al., 2019), and 2) to efficiently utilize the EC re-
sources thus avoiding over-provisioning and improv-
ing the system’s scalability.  

Altogether, a timely research challenge is the de-
sign of the CAPF for forecasting EC workload. This 
paper extends our previous work on the SAS Archi-
tecture (Aljulayfi and Djemame, 2019) and focuses 
on the proactive adaptation support. Further, it anal-
yses a real EC dataset from Shanghai Telecom 
(Sguangwang.com, 2018)  in order to identify work-
load patterns and propose the most suitable workload 
prediction model. Moreover, it compares the accu-
racy of the most well-known ML algorithms: LR, 
SVR, and NN which includes investigating the effect 
of window size. Finally, the CAPF is designed in ac-
cordance to the investigations’ results. The main con-
tributions of this paper are summarized as follows: 
(C1) An analysis of a real EC workload dataset is per-

formed in order to understand the EC workload 
pattern and train the ML prediction models.  

(C2) A comparison of the most well-known ML al-
gorithms’ accuracy considering the window size 
effect is conducted aiming towards workload 
prediction framework.  

(C3) A design of CAPF through SAS to support auto-
scaling decision using the most accurate and 
suitable ML prediction algorithms is presented. 

The remainder of this paper is organized as fol-
lows: Section 2 discusses the related work. This is fol-
lowed by Section 3 which presents the SAS architec-
ture. Section 4 shows the research methodology. The 
results and discussion are in Section 5. Section 6 il-
lustrates the CAPF. Finally, the paper’s conclusion 
and future work in Section 7. 

2 RELATED WORK 

This section discusses the proposed proactive adapta-
tion models to support auto-scaling systems, which 
can be classified into resource utilization- and work-
load-based. The resource utilization-based studies 
predict resource utilization e.g. CPU utilization to 
support the auto-scaling decision. A considerable 
body of research adopts this method. For example, a 
CPU-utilization prediction model using the Regres-
sion-Markov chain (RMC) method targeting the ap-
plications’ QoS is proposed in (Li et al., 2018). The 

results show that the RMC provides better accuracy 
as compared to LR due to large fluctuation and ran-
domness. Some other studies adopt ML methods. 
Three prediction models for CPU-utilization, 
throughput, and response time for Cloud Computing 
(CC) are proposed by (Bankole and Ajila, 2013) using 
a synthetic linear workload. Furthermore, LR, SVR, 
and NN ML methods are used. The results show that 
the SVR outperforms LR and NN in predicting both 
CPU-utilization and throughput whereas the NN out-
performs other methods in predicting the response 
time. This work is extended in (Ajila and Bankole, 
2013) by considering the random workload pattern. 

In (Islam et al., 2012) a synthetic linear workload 
pattern is generated in order to develop prediction 
models to support scaling decisions. Moreover, this 
work compares the accuracy of LR and NN with and 
without the sliding window consideration. It reports 
that the sliding window has a positive impact on the 
models’ accuracies. The effect of the NN on the auto-
scaling decision technique is also evaluated using a 
threshold and compared with SVR (Nikravesh et al., 
2014). Additionally, an investigation is conducted to 
select the best proportion of the dataset split consid-
ering e.g. 50%/50% for training/testing. This work is 
extended in (Nikravesh et al., 2015a) and aims to in-
vestigate the effect of different workload patterns (i.e. 
growing, periodic, and unpredicted). Besides the slid-
ing window technique is considered.  

A workload prediction model using SVR and NN 
for growing, periodic, and unpredicted workload pat-
terns is proposed in (Nikravesh et al., 2015b). More-
over, the influence of window size on the selected al-
gorithms is considered. The adopted hypothesis is 
claiming that the prediction auto-scaling system ac-
curacy can be improved by selecting the best predic-
tion algorithms based on the workload pattern. The 
research is extended in (Nikravesh et al., 2017) to in-
vestigate the risk minimization principle using the 
same methods and workload patterns. In addition, the 
SVR, NN Multi-layer Perceptron (MLP), and MLP 
with Weight Decay (MLPWD) are considered. The 
NN is also adopted in (Kumar and Singh, 2018) to 
develop a workload prediction model that is able to 
learn the best mutation strategy along with optimal 
crossover rate. The model is evaluated using two real 
datasets and compared with maximum, average, and 
back propagation network methods.  

In (Moreno-vozmediano et al., 2019), an auto-
scaling system using the SVR model is introduced. 
Besides, a performance model based on queuing the-
ory is proposed to determine the number of resources 
that must be provisioned. The SVR model is com-
pared with e.g. LR method. Further, several SVR con- 



figurations are investigated considering the kernel 
type. The results reveal that the SVR using different 
configurations outperform the other methods. In (B. 
Liu et al., 2020) both Autoregressive Moving Aver-
age (ARMA) and Elma Neural Network (ENN) are 
used where the ENN is responsible for correcting the 
prediction error of ARMA and providing the final 
prediction value.  

Most of the presented studies focus on the CC en-
vironment and use a synthetic workload. To the best 
of our knowledge, this paper is the first to propose a 
CAPF for the EC environments based on real EC 
workload with a support of a proactive SAS. This 
framework is designed thanks to a thorough compar-
ison of the most effective ML algorithms used in the 
literature with consideration of the window size effect 
to improve prediction accuracy. 

3 SELF-ADAPTIVE SYSTEM  
ARCHITECTURE 

This section briefly illustrates our SAS architecture 
by zooming in to show auto-scaling components only 
due to the page limit. It is shown in Figure 1 where 
the full version including the research roadmap can 
be found in (Aljulayfi and Djemame, 2019).  The SAS 
uses the MAPE-based (Monitor, Analyse, Plan, Exe-
cute) loop with a focus on the Analyse activity as it is 
the paper’s scope. The use of MAPE-based allows the 
system to have a full and continuous management 
over the operational environment thanks to MAPE 
loop. Additionally, the design of the SAS architecture 
aims to have a hybrid adaptation, but this paper only 
focuses on the proactive side. 

 
Figure 1: Self-adaptive system architecture. 

The data analyser (i.e. analyse activity) is respon-
sible for analysing the monitoring data which is pro-
vided by Monitor activity. In order to support hybrid 
adaptation, this activity is divided into two main com-
ponents as follows: 1) Context-aware Prediction 

Framework (CAPF): is responsible for predicting the 
number of tasks requests in the future by consuming 
the historical workload that stored in Request Repos-
itory where these requests will be scheduled as con-
tainers. This component (highlighted in grey) sup-
ports C3. Further details about its internal compo-
nents is available in Section 6 as it is designed after 
conducting the paper’s investigation. 2) Resource 

Utilization Analyser: is responsible for reactive adap-
tation process which is used as a back-up for the 
CAPF in case of events are not predicted.  

4 METHODOLOGY 

This section presents the methods that are used to-
wards achieving the research objectives. 

4.1 Dataset Analysis 

The paper makes use of the Shanghai Telcom dataset 
which simulates the EC workload (Sguangwang.com, 
2018) and reported in (Guo et al., 2019; Wang, Guo, 
et al., 2019; Wang, Zhao, Huang, et al., 2019; Wang, 
Zhao, Xu, et al., 2019). It provides six months of mo-
bile phones records accessing the Internet via base 
stations which are distributed over Shanghai city. The 
dataset has 7 attributes: month, date, start time, end 

time, latitude, longitude, and user ID. The analysis of 
the full data set shows that it has 6,952,921 records, 
9739 mobile devices, and 3042 base stations. Further, 
a thorough analysis of the dataset is conducted in or-
der to understand the workload patterns and mobile 
phone users’ behavior. However, this section only 
presents part of the workload analysis that is related 
to this paper.  

A preliminary data analysis revealed the workload 
of the first month (i.e. June) has the lowest percentage 
of records with missing data e.g. base station location. 
Therefore, we decide to select the second day from 

 
Figure 2: Workload pattern. 



the same month as it is representative for the rest days 
in the same month in the sense that the overall work-
load pattern is periodic. The workload of this day is 
shown in Figure 2 per minute after removing the ex-
treme outliers which hide the data pattern. From Fig-
ure 2, it can be seen clearly that the overall pattern of 
the data is a fluctuation with decreasing, increasing, 
and steady (fluctuating) behavior. Therefore, to pro-
pose a robust context-aware prediction model, the day 
will be divided into three categories based on the 
workload. These categories as shown in Figure 2 are 
1) decreasing which includes late night and early 
morning (red), 2) increasing which includes morning 
(green), and 3) Fluctuating which includes afternoon 
to evening (orange). Further, one hour from each cat-
egory is selected (i.e. 2nd, 12th, 14th hours) which 
will be used in training and testing the prediction 
models. The training and testing splitting percentage 
will be discussed in Section 4.4. 

4.2 Machine Learning Algorithms  

Three of the most popular and widely used ML algo-
rithms, LR, SVR, and NN are considered. These al-
gorithms are able to predict the future workload effi-
ciently based on historical data (Baig et al., 2020; 
Islam et al., 2012; C. Liu et al., 2017; Sapankevych 
and Sankar, 2009).  

The LR is the simplest and most widely used su-
pervised ML algorithm for prediction (Baig et al., 
2020; James et al., 2017). In this paper, the simplest 
case of LR is used because we have only one input 
variable. The SVR is an efficient learning method that 
implements the Support Vector Machine principle but 
produces continuous variable. The advantage of using 
SVR is its ability to map the time-series to a higher 
dimension using kernel function (Nikravesh et al., 
2017). The NN or Artificial Neural Network (ANN) 
is a supervised learning algorithm that can be used for 
both regression and classification problems 
(Nikravesh et al., 2015b). A type of ANN is MLP 
which is a feed-forward network that is used for a 
range of problems including forecasting (Nikravesh 
et al., 2017; Zhang et al., 1998). This network archi-
tecture is adopted in this paper because it is the most 
popular and efficient network architecture that is used 
for forecasting. 

4.3 Sliding Window Technique   

The sliding window technique uses the last 𝑛 samples 
of the data feature in order to forecast the future value 
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(Nikravesh et al., 2017). The use of the sliding win-
dow technique is important to perform a supervised 
ML when having only one feature in the dataset aim-
ing to train the prediction algorithm (Nikravesh et al., 
2015b). In this paper, the number of requests per time 
unit feature is only available. Therefore, in order to 
apply ML algorithms, the sliding window technique 
is used. Indeed, the window size is an important factor 
which has a significant influence on the ML predic-
tion accuracy. However, selecting the appropriate 
window size is challenging because we have to find 
the best window size that allows the model to capture 
the data pattern and application behavior (Amiri and 
Mohammad-khanli, 2017). This means a small win-
dow size might not be representative while a large 
window size might cause overfitting (Nikravesh et al., 
2015b). Therefore, this paper aims to investigate the 
effect of window size on the ML algorithms accuracy. 

4.4 Experimental Design   

This section presents the design of the experiments 
and the overall approach. As mentioned, three predic-
tion models will be proposed, each model targets a 
part of the day. In order to do so, firstly, we must find 
the best splitting percentage that allows the ML algo-
rithms to capture the data pattern and relationship. 
Further, this is done for each day part (i.e. decreasing, 
increasing, and fluctuating). Then, based on the best 
splitting percentage, the ML algorithms’ accuracy 
will be evaluated using: Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and Mean Abso-
lute Percentage Error (MAPE). This means for each 
workload pattern, the prediction models are trained 
and tested with consideration of the effect of the win-
dow size on the prediction accuracy. Finally, the 
CAPF will be designed based on these investigations. 

Table 1: SVR and NN configurations. 
Method Parameter Value 

SVR 
C 1.0 
Kernel RBF 
RegOptimizer RegSMOimproved

NN 

Learning rate 0.38 
No. of hidden layers 1 
Number of hidden neurons 4 
Momentum 0.2 
Epoch/training time 10000 

As part of the experimental design, the implemen-
tation of ML algorithms and their configurations must 
be considered. In this paper, all the selected algorithms 
are implemented using the well-known ML tool 
WEKA 3.81. In terms of the configurations, one pre-
dictor is used in LR simplest case. For SVR and MLP 



(i.e. NN), we used the same configuration of 
(Nikravesh et al., 2015a, 2015b) as shown Table 1 be-
cause we have same scenario and workload pattern.  

5 RESULTS AND DISCUSSION 

This section presents and discusses the experimental 
results. The discussion for workload will be separate 
as each workload represents a different pattern. 

5.1 Percentage Splitting   

Before comparing the ML models', it is important to 
specify the best training duration that allows the mod-
els to capture and learn the data pattern. This section 
presents the results of the experiments considering the 
proportion of the dataset to include in the train split: 
80/20 (i.e. 80% training and 20% testing) and 70/30 
(i.e. 70% training and 30% testing). This means each 
workload (i.e. decreasing, increasing, and fluctuat-
ing) is split and evaluated using these percentages.  

The overall results show that the 80/20 is the best 
split percentage as it allows the selected algorithms to 
capture the data pattern and provide the most accurate 
results. Further, the 80/20 split outperforms the 70/30 
overall evaluation metrics and different window 
sizes. Therefore, the 80/20 splitting percentage results 
will be considered in the following sections. 

5.2 Ml Algorithms Comparison   

This section compares the accuracy of the ML predic-
tion algorithms considering the testing results and ad-
dresses accordingly contribution (C2).  

Data with the decreasing workload reveals that 
SVR outperforms both LR and NN in overall predic-
tion accuracy metrics. This can be seen clearly from 
Table 2 which shows the evaluation metrics for de-
creasing workload. Additionally, the best ML predic-
tion value is also provided by the SVR when the win-
dow size is 3 using MAE and RMSE. If LR is com-
pared with NN, the LR outperforms NN in most 
cases. 

For the increasing workload pattern, the predic-
tion results in Table 3 show that SVR outperforms 
both LR and NN in most cases; this is similar to the 
decreasing workload pattern. However, by looking 
closely at the results, the best prediction values over 
the evaluation metrics are provided by NN when the 
window size equals 9. Although SVR has better ac-
curacy in most cases, the NN provides the best accu-
racy in the increasing data pattern, thus, NN will be 
adopted for this data pattern. 

Table 2: MAE, MAPE, and RMSE values (decreasing). 

W.
Size

MAE MAPE RMSE
LR SVR NN LR SVR NN LR SVR NN

2 2.56 2.5 3.04 34.43 32.6 42.63 3.1 2.95 3.78
3 2.55 2.41 3.29 34.21 30.32 45.81 3.08 2.84 4.01
4 2.56 2.52 2.52 34.3 33.02 28.44 3.09 2.98 2.93
5 2.57 2.57 4.61 34.61 34.79 62.37 3.11 3.13 5.37
6 2.55 2.49 2.47 34.16 32.46 31.35 3.07 2.94 2.86
7 2.69 2.49 2.82 37.37 32.73 39.43 3.37 2.97 3.53
8 2.53 2.5 3.25 33.65 32.61 45.18 3.03 2.95 3.98
9 2.51 2.42 3.91 33.02 30.71 35.36 2.98 2.86 4.56

Table 3: MAE, MAPE, RMSE values (increasing). 

W.
Size

MAE MAPE RMSE
LR SVR NN LR SVR NN LR SVR NN

2 4.25 4.24 5.33 16.67 16.83 22.54 4.76 4.84 6.78
3 4.25 4.23 4.53 16.75 16.84 16.35 4.8 4.84 5.21
4 4.37 4.25 5.45 17.54 16.9 22.95 5.2 4.87 6.87
5 4.25 4.25 4.28 16.91 16.92 15.99 4.87 4.87 4.7
6 4.82 4.25 5.72 18.99 16.92 24.08 5.44 4.87 7.13
7 4.25 4.24 5.81 17.02 16.89 24.49 4.93 4.86 7.28
8 4.25 4.25 6.21 16.92 16.91 25.93 4.88 4.86 7.54
9 4.25 4.24 3.87 16.87 16.9 14.87 4.85 4.87 4.57

The prediction results of the fluctuating workload 
are shown in Table 4. Unlike the decreasing and in-
creasing patterns, the result reveals that NN has better 
accuracy as compared to both LR and SVR in most 
cases. Moreover, its accuracy is the best when the 
window size is 9 using MAPE and RMSE. Therefore, 
the NN with window size 9 will be adopted in the 
CAPF.  

Table 4: MAE, MAPE, RMSE values (fluctuating). 

W.
Size

MAE MAPE RMSE
LR SVR NN LR SVR NN LR SVR NN

2 4.97 4.84 4.26 20.93 20.41 17.26 6.23 6.11 5.13
3 4.86 4.7 4.29 20.87 19.8 16.96 6.45 5.94 5.06
4 4.74 4.65 5.52 19.92 19.54 23.3 5.97 5.89 6.84
5 4.72 4.6 4.75 19.83 19.31 19.97 5.95 5.81 5.96
6 4.65 4.59 4.57 19.51 19.13 18.97 5.86 5.73 5.61
7 4.63 4.48 4.63 19.31 18.56 19.58 5.77 5.54 5.91
8 4.63 4.66 4.06 19.36 19.41 16.88 5.79 5.8 5.06
9 4.66 4.69 4.15 19.75 19.63 15.88 5.88 5.91 4.93

5.3 Sliding Window Effect   

The increase in window size does not have a signifi-
cant impact on LR and SVR algorithms over all met-
rics in both decreasing and increasing data as shown 
in Figures 3 and 4, respectively. To be more specific, 
from Figure 3 and 4, the changes in the accuracy of 
both LR and SVR are roughly steady when the win-
dow size increase. Although the SVR accuracy is al-
most steady, it provides the best accuracy when the 
window size is 3 as compared to other ML algorithms 
in decreasing data. Additionally, the difference be-
tween LR and SVR are neglected in the most cases of 
different window size values. In terms of the increas-
ing data, the SVR accuracy seems to be steady over 



window size as shown in Figure 4. In contrast, the in-
crease of window size causes highly fluctuating NN 
accuracies over MAE, MAPE, and RMSE in both de-
creasing and increasing data. Further, in the increas-
ing data, NN provides the best accuracy when the 
window size equals to 9.  

 
Figure 3: Window size effect (decreasing). 

 
Figure 4: Window size effect (increasing). 

 
Figure 5: Window size effect (fluctuating). 

Unlike decreasing and increasing data, increasing the 
window size has a positive impact on all ML algo-
rithms overall evaluation metrics in fluctuating data. 
This effect can be seen clearly in Figure 5 which 
shows a decreasing trend. Further, the sliding window 
technique slightly improves the accuracy of both LR 
and SVR. In the case of NN, it has a significant im-
pact on its accuracy over MAE, MAPE, and RMSE. 
Additionally, the best accuracy is provided by NN 
when the window size is 9 using MAPE and RMSE. 

5.4 Results Summary   

This section highlights the main findings of the ex-
periments and their position in the context of the re-
lated work. NN outperforms LR and SVR in both in-
creasing and fluctuating workloads whereas SVR out-
performs NN and LR in decreasing workload. The 
reason NN exhibits the best accuracy is its ability to 
capture all noise in the data whereas SVR tries to find 
a smooth curve to cover them (Nikravesh et al., 
2017). Based on this logic, SVR should outperform 
NN in increasing workload. However, the increasing 
workload has some form of fluctuation which reduces 
the SVR accuracy. 

In terms of the sliding window, the results show 
that for some workload patterns increasing the window 
may have a significant impact on the prediction accu-
racy. For example, increasing the window size has a 
positive impact on the ML algorithms in the fluctuating 
workload because the large window size allows the 
models to learn the relationships between features 
(Islam et al., 2012; Nikravesh et al., 2015b). In con-
trast, the increase of window size does not have an im-
pact on some ML algorithms such as LR and SVR 
which means that their accuracies are almost steady 
over the window size values (Nikravesh et al., 2017).  

6 CONTEXT-AWARE  
PREDICTION FRAMEWORK 

This section proposes the CAPF fulfilling contribu-
tion (C3). It is designed according to the above exper-
iments that select the best ML prediction algorithms 
with consideration of the window size. Further, it is 
integrated with the SAS architecture in the CAPF 
component that is shown in Figure 1 (i.e. highlighted 
in grey). The framework aims to forecast the future 
workload that will be submitted to the EC by the IoT 
devices. This framework consists of two main com-
ponents as shown in Figure 6 (highlighted in grey) 
which are: 1) Context analyser: identifies the context 



of the application, including time dependence, in or-
der to select the ML model suits its workload pattern 
(i.e. decreasing, increasing, and fluctuating). 2) Algo-

rithm selector: selects the best ML algorithm based 
on the workload pattern that is identified by the Con-
text Analyser. The selection of algorithms will be 
based on the experiments that we performed to select 
the best ML algorithm for each pattern. In other 
words, it uses either SVR or NN for predicting the 
future workload based on the day’s part. 

 
Figure 6: Context-aware prediction framework. 

7 CONCLUSION AND FUTURE 
WORK 

This paper has presented a CAPF to support auto-
scaling decisions in EC environments. This frame-
work predicts the future EC workload using either 
SVR or NN ML algorithms. These algorithms are 
considered the best ML algorithms to be used for EC 
workloads which is based on the comparison that has 
been performed. Further, the comparison process in-
cludes a thorough investigation on the window size 
effect. All these steps have done using the Shanghai 
Telecom dataset which represents a real EC work-
load. The results reveal that window size has a signif-
icant impact on workload patterns and ML algorithms 
as best size allows the ML algorithms to capture the 
workload pattern and behavior.  

The SAS architecture is currently under develop-
ment with the aim of supporting, e.g. elasticity, scala-
bility, and QoS. In term of elasticity support, the pre-
dicted workload will be implemented to evaluate the 
effectiveness of the developed models in operational 
environment under several applications’ scenarios. 
Further, this involves evaluating the performance of 
the proposed SAS in the EC with consideration to var-
ious adaptation approaches which are proactive, reac-
tive, and hybrid adaptation. The scalability support 
must also be considered to efficiently utilize the EC re-
source and maximize the number of running applica-
tions in the EC environment in sense that the EC have 
limited resources. It requires meeting the applications’ 
QoS of IoT devices which have very sensitive require-
ments such as low latency. The support of scalability 
and QoS will also involve the consideration of their 
trade-offs, which is key in service provision. 
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