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Towards an intelligent wearable ankle robot for assistance to foot drop

Uriel Martinez-Hernandez, Adrian Rubio-Solis, Victor Cedeno-Campos and Abbas A. Dehghani-Sanij

Abstract— A wearable ankle robot prototype for assistance
to foot drop is presented in this work. This device is built with
soft and hard materials and employs one inertial sensor. First,
the ankle robot uses a high-level method, developed with a
Bayesian formulation, for recognition of walking activities and
gait periods. Second, a low-level method, with a PID, controls
the wearable device to operate in assistive and transparent
modes. In assistive mode, activated by the toe-off detection,
the wearable device assists the human foot in dorsiflexion
orientation to reduce the effect of foot drop abnormality. In
transparent mode, activated by the heel-contact detection, the
robot device follows the movements performed by the human
foot. The wearable prototype is validated with experiments,
in simulation and real-time modes, for recognition of walking
activity and control of assistive and transparent modes during
walking. Experiments achieved 99.87% and 99.20% accuracies
for recognition of walking activity and gait periods. Results also
show the ability of the wearable robot to operate according to
the gait period recognised during walking. Overall, this work
offers a wearable robot prototype with the potential to assist
the human foot during walking, which is important to allow
subjects to recover their confidence and quality of life.

I. INTRODUCTION

Wearable robots have shown a rapid progress in recent

decades, mainly due to advances in sensor technology with

lightweight, soft and portable measurement units [1], [2].

Special attention has been put to the use of wearable devices

for healthcare, teleoperation, industry and gaming [3], [4].

Healthcare is a key area where wearable robots play a crucial

role, assisting humans in activities of daily living (ADLs),

but also allowing them to recover their quality of life.

For decades, wearable devices have been developed to

assist humans with foot drop, which affects the capability

and confidence to walk naturally [5]. Rigid wearable orthoses

were used to generate rhythmic assistance during walking

with constant speed [6], [7]. Detection of gait phases and

control of wearable robots was performed with foot switches

and pneumatic actuators [8], [9]. However, these devices,

relied on foot switches and slow response actuators. Also,

they did not employ computational intelligence methods

for reliable recognition of walking. These aspects limit the

potential of wearable devices, making them susceptible to fail

in the presence of uncertainty from sensor measurements.
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Fig. 1. Wearable ankle robot for assistance during walking. Data from an
IMU are used by a Bayesian method for walking activity recognition. A
PID controls the wearable robot in assistive and transparent modes.

In this work, an intelligent wearable ankle robot proto-

type to assist the human foot during walking is proposed

(Figure 1). This ankle robot, built with rigid and soft ma-

terials, does not constrain the natural foot movements. The

wearable device performs two main processes: 1) recognition

of walking activities, gait periods and phases and 2) control

of the robot to operate in assistive and transparent mode.

The recognition process uses a probabilistic approach, with

a Bayesian method, which have shown to be accurate, fast

and robust to uncertainty in measurements with multiple

sensors and robotic applications [10], [11], [12], [13], [14].

This probabilistic process allows the wearable robot to

know when to activate and deactivate for assistance to

the human body [15]. Control of assistive and transparent

operation modes uses a proportional-integral-derivative (PID)

method [16], [17]. In the assistive mode, the human foot is

lifted up in dorsiflexion when the toe-off is predicted by the

recognition process. The transparent mode, activated when

the heel-contact is predicted, allows the human to perform

natural foot movements in all directions.

A multilayer architecture, composed of high- and low-

level layers, is used to implement the recognition and control

processes [18], [19]. The wearable ankle robot is validated

with multiple experiments in offline and real-time modes.

Results from experiments show that fast and high accu-

racy are achieved by the ankle robot for recognition of

level-ground walking, ramp ascent/descent, gait periods and

phases. Furthermore, results show the ability of the wearable

device to operate in the appropriate mode, during walking,

according to the recognised gait period and phase.

Overall, the wearable ankle prototype demonstrates, based

on experiments, to be a suitable robotic platform for the study

and development of intelligent devices, capable to safely

interact and assistance humans during walking activities.



II. METHODS

A. Experimental protocol and data collection

Sensor data were collected from 12 healthy human partic-

ipants. Anthropometric data from participants are as follows:

ages between 24 and 34 years old, heights between 1.70 m

and 1.82 m, and weights between 75.5 kg and 88 kg. Partic-

ipants were asked to walk at their self-selected speed while

performing ten repetitions of level-ground walking, ramp

ascent and ramp descent activities. Level-ground walking

was performed on a flat cement surface, while a metallic

ramp, with a slope of 8.5 deg, was used for ramp ascent and

descent (Figures 2A,B,C). Angular velocity signals in x-y

and -z axes were collected at a sampling rate of 100 Hz, from

an IMU (Shimmer Inc.), attached to the shank of participants,

and filtered with a cut-off frequency of 10 Hz. Two foot

pressure-insole sensors were used, during the data collection

only, to detect the beginning and end of the gait cycle.

Angular velocity signals measured from the shank of

participants are shown in Figure 2D. Level-ground walking,

ramp ascent and descent activities are represented by black,

blue and red colour curves, respectively. Solid and dashed

lines represent mean angular velocities and standard devia-

tions, respectively. The data from the shank were prepared

into column format to build training and testing datasets

for the probabilistic recognition method. Angular velocity

signals from each gait cycle were used to construct the his-

tograms for recognition of walking activity. For recognition

of stance and swing phases, the gait cycle was divided into

eight periods as shown at the top of Figure 2D.

B. Robotic platform

A wearable ankle robot, composed of soft and rigid

materials, was developed to provide assistance to foot drop

during walking activities. The 3D design and components of

the wearable device are shown in Figure 3A. This device is

composed of a DC motor, motorised linear potentiometer,

bearings, bevel gears, shaft and arduino board. The real

wearable device and textile straps, for assistance to the

human foot, are shown in Figure 3B. The weight of the

wearable ankle robot is 1.2 kg and it can provide a maximum

torque of 15 Nm, which is required for ankle assistance

in dorsiflexion orientation during walking. This is a first

prototype designed for a proof of concept, which allow

the future development of optimised, lightweight and more

ergonomic wearable assistive robots.

The motor shaft provides the assistance to the foot drop

through the textile strap, which is attached to the shoe of

the human. Also, the motor is able to react and follow the

natural movements of the human foot without any restriction.

Thus, the wearable device is capable to provide not only

assistance when it is needed, but also to allow the human

to naturally perform foot movements. In order to achieve

accurate control of these human-robot interaction processes,

a motorised linear potentiometer, integrated in the wearable

ankle robot, detects and measures foot movements providing

position feedback, at all times, during walking activities.
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Fig. 2. (A)-(C) Level-ground walking, ramp ascent and ramp descent
activities performed by participants using an IMU sensor. (D) Angular
velocity signals collected from walking activities. Solid and dashed-lines are
the mean and standard deviation, respectively. The gait cycle is segmented
into 8 periods for recognition of gait periods and phases during walking.

The human wearing the ankle robot is shown in Figure 3C.

This device uses a control architecture composed of high and

low-level layers. First, the high-level layer is responsible for

recognition of walking activities, gait periods and events.

This is important to allow the wearable device to decide

when to apply assistance to foot drop during the gait cycle.

Second, the low-level layer is responsible for the actual

control of the wearable device and assistance to the human.

For that reason, proper interconnection and synchronisation

of multi-level layers is crucial to achieve a robust and

accurate performance with the assistive device. Figure 4

shows the interconnection of high and low-level layers.

C. High-level recognition of walking activity and gait period

A Bayesian formulation was used for recognition of

walking activities and gait periods. Computational intelli-

gence methods have shown to be reliable with multimodal

sensor and applications [20], [21]. This method recursively

updates the posterior probability from the product of prior

probabilities and likelihood as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)

where P (cn|zt) is the posterior probability of a class cn ∈ C,

P (zt|cn) is the likelihood and zt are the sensor measure-

ments at time t. The process in Equation (1) is performed

over all N classes cn. Each class cn corresponds to a (li, gj)
pair, where li and gj are walking activity and gait period,

respectively. For time t = 0, uniform prior probabilities,
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Fig. 3. Design and development of the wearable ankle robot. (A) Design and mounting of mechanical and electronic components of the wearable robot
in 3D with SolidWorks. (B) Real wearable ankle robot integrated with mechanical, electronic (rigid materials) and textiles (soft materials) components.
(C) Wearable ankle robot attached to the shank of a participant for data collection, recognition of walking activities and control while walking.

P (cn) = P (cn|z0) = 1

N
, are assumed for all classes. The

prior and number of classes are represented by P (cn|z0)
and N . For time t > 0, the prior, P (cn) = P (cn|zt−1), is

updated by the posterior at time t− 1.

Angular velocity signals are used to construct the mea-

surement model of the Bayesian classifier. A nonparametric

approach based on histograms is used for the measurement

model. The histograms are used to evaluate an observation

zt, and estimate the likelihood of a class cn as follows:

logP (zt|cn) = logPs(ws|cn) (2)

where ws is the data sample from sensor s, and P (zt|cn) is

the likelihood of the observation zt given a class cn. Nor-

malised values are ensured with the marginal probabilities

conditioned on previous sensor data as follows:

P (zt|zt−1) =

N∑

n=1

P (zt|cn)P (cn|zt−1) (3)

The iterative Bayesian process, performed by Equa-

tions (1) to (3), stops when the posterior, P (cn|zt), exceeds

a belief threshold, βthreshold, as follows:

if any P (cn|zt) > βthreshold then

ĉ = argmax
cn

P (cn|zt)
(4)

where ĉ is the estimated class composed by the predicted

walking activity and gait period pair, (l̂, ĝ). This prediction,

from the high-level method, is used by the low-level method,

shown in Section II-D, for control of the wearable ankle

robot. Figure 4 shows the flowchart of the high-level method

for recognition of walking activity and gait period.

D. Low-level control of the wearable ankle robot

The output from the high-level recognition method can

be used by a low-level controller, which is responsible to

provide the assistance to foot drop during walking using

the wearable ankle robot. In this work, a Proportional-

Integral-Derivatice (PID) method is employed as low-level

controller to assist humans to foot drop during walking. The

interconnection of high and low-level methods used by the

wearable ankle robot is shown in Figure 4.

The low-level controller, activated by the output from the

high-level recognition method, allows the wearable device to

operate in two modes: 1) assistive and 2) transparent. The as-

sistive mode is activated when the toe-off event is predicted,

moving the foot of the subject in dorsiflexion orientation

to a target position to avoid the foot drop. The transparent

mode is activated when the heel-contact event is predicted,

allowing natural movements of the human foot without any

restriction from the wearable device. These operation modes

make the wearable device capable to provide assistance and

react to the natural movement of the human foot.

The diagram in Figure 5A shows the low-level controller,

implemented with the PID method, for ankle assistance using

the wearable robot during walking. The transfer function for

the PID has the following form:

C(s) =
Kds

2 +Kps+Ki

s
(5)

where Kd, Kp and Ki are the derivative, proportional and

integral gains or parameters that need to be tuned. Here, the

PID controller parameters were automatically tuned using the

Control System Toolbox from MATLAB. Figure 5A shows

the desired or target foot position, xd(t), which depends on

the operation mode activated by the high-level layer, e.g.,

assistive or transparent. The output foot position, xo(t), is

used as feedback to update the error signal, e(t), and then,

to adjust the PID control signal, u(t).
In the assistive operation mode, the target position is

defined as the maximum ankle angle obtained from a calibra-

tion process with the wearable device. This angle, measured

from the motorised linear potentiometer integrated in the
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Fig. 5. Low-level control approach. (A) The target position, xd(t), and
control in assistive and transparent mode depend on the toe-off and heel-
contact recognition. The signal, u(t), controls the wearable device over
time. The PID control adapts according to the observed error, e(t), given
the position feedback, xo(t), from the wearable robot. (B) Target position,
measured by the motorised linear actuator and digital encoder, for assistance
to the human foot in dorsiflexion orientation. (C) Range of foot movements,
in all orientations, allowed by the wearable ankle robot while operating in
transparent mode.

wearable robot, is recorded by the low-level controller as the

target position to move the human foot in dorsiflexion (Fig-

ure 5B). For the transparent operation mode, the wearable

device follows the foot movements, based on the feedback

from the motorised linear potentiometer, which continuously

changes according to foot movements performed by the

human (see Figure 5C).

III. RESULTS

A. Recognition of walking activity and gait period

The accuracy of the high-level method for recognition of

walking activities and gait periods was validated using real

data from level-ground walking, ramp ascent and descent.

The high-level probabilistic method was configured with

24 classes c (3 walking activities × 8 gait periods). The

recognition accuracy and decision time were evaluated using

the belief threshold βthreshold = [0.0, 0.05, . . . , 0.99]. This

parameter permitted to control the confidence level and

accuracy of the recognition system. Recognition results of

walking activities are shown in Figure 6A. Recognition

results showed a gradual improvement from a mean error

of 21% (79% accuracy) to 0.13% (99.87% accuracy) for

large belief thresholds. This shows that the Bayesian formu-

lation improves the accuracy of the decision-making process

through the accumulation of sensor measurements. Figure 6B

shows the analysis of decision time, which is important to

develop systems that respond in the appropriate time. A

gradual increment in decision time was observed, requiring

from 1 to 25 sensor samples for large belief thresholds.

This behaviour was expected given that normally recognition

methods need more evidence to achieve a better performance.

Recognition accuracy for each walking activity is presented

in Figure 6C. Black and white colours represent 0% and

100% accuracy, respectively. Level ground-walking, ramp

ascent and descent activities were recognised with 100%,

99.84% and 99.78% accuracies, respectively.

An experiment for recognition of gait periods and phases

was performed, which provides information about the state

of the human body during the gait cycle. Here, the gait cycle

was divided into eight gait periods, where stance is composed

of gait periods 1 to 5 (initial contact, loading response,

mid stance, terminal stance, pre-swing) and swing phase

of gait periods 6 to 8 (initial swing, mid swing, terminal

swing), respectively (Figure 2). Recognition results of gait

periods are shown in Figure 6D. A gradual improvement

in the accuracy was observed from a mean error of 7%

(93% accuracy) to 0.8% (99.20% accuracy) for large belief

thresholds. This means that high confidence levels allow

to achieve accurate recognition of gait periods and phases
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Fig. 7. Participant walking while wearing the ankle robot and IMU sensor.

(stance and swing). Results from decision time analysis show

an increment from 1 to 13 sensor samples needed to make a

decision (Figure 6E). Thus, a mean of 13 sensor samples

are required to identify the gait period with an accuracy

of 99.20%. Recognition accuracy of each gait period is

shown in Figure 6F. Black and white colours represent

0% and 100% accuracy. The gait periods were identified

with accuracies of 92.83%, 100%, 99.60%, 100%, 99.98%,

97.94%, 87.66% and 97.50% for periods 1 to 8, respectively.

This shows that the high-level recognition method recognises

stance and swing phases with accuracies of 98.48% (gait

periods 1 to 5) and 94.36% (periods 6 to 8).

B. Low-level control for assistance to foot drop

The capability of the wearable ankle robot to operate

in assistive and transparent modes, during walking, was

evaluated in real-time mode. For this experiment, participants

were asked to wear the ankle robot, and an IMU sensor, while

walking at their self-selected speed. Participants performed

multiple repetitions of the experiment while sensor signals,

detection of walking activity and gait periods were recorded.
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Fig. 8. Real-time control of the wearable ankle robot, in assistive (red
circles) and transparent (green circles) modes during walking, with the
multilayer architecture. The low-level robot control of operation modes used
the walking activity and gait period recognition by the high-level method.

Figure 7 shows the wearable ankle robot, and IMU sensor,

attached to the shank of a participant while walking.

The low-level controller, implemented with a PID method,

was used to control the wearable robot based on the



recognition output from the probabilistic high-level method.

Figure 8 shows multiple results from the control of the

wearable ankle robot in real-time. Angular velocity signals,

from the IMU sensor attached to the shank of participants,

are represented by blue colour lines. The activation of the

wearable device to operate in assistive mode is triggered

by the recognition of the toe-off during the gait cycle.

Red colour circles in Figure 8 represent the wearable robot

activated to work in assistive mode. Here is when the human

foot is assisted and moved to the target position reducing

the foot drop effect. The transparent mode is triggered when

the heel-contact is recognised by the high-level method. In

this operation mode, the wearable device allows the foot to

move, freely and naturally, in all orientations. This contrasts

with the limitation of natural movements imposed by rigid

assistive devices. Activation of the robot in transparent mode,

during the gait cycle, is represented by green colour circles

shown in Figure 8.

It is worth mentioning that the activation of the wearable

device, was not triggered at the same time step for all gait

cycles. This behaviour was expected given that humans do

not walk with a constant speed and trajectory. This means

that the probabilistic high-level method tries to adapt to the

changes observed during walking. Thus, the low-level control

also adapts based on the behaviour of the high-level method.

These results show the importance of hierarchical controllers

in wearable robotics, but also, the need of adaptive methods

that deal with uncertainty and changes from the environment.

Overall, results from all experiments, in offline and real-

time mode, show that the proposed wearable ankle foot

prototype is accurate and robust, giving it the potential to

provide assistance to the human foot during walking.

IV. CONCLUSION

A wearable ankle robot prototype for foot assistance

during walking was presented. This robot, composed of

soft and hard materials, was capable to recognise walking

activities, gait periods and events. This high-level recognition

process used a Bayesian method and data from an IMU

attached to the shank of participants. Recognition of toe-

off and heel-contact were used by a low-level method,

implemented with a PID, to control the robot in assistive

and transparent modes. In assistive mode, the wearable robot

provided foot assistance, in dorsiflexion orientation, during

walking. In transparent mode, the robot allowed the human

to perform natural foot movements. Validation experiments,

in offline and real-time, showed that the wearable robot is

fast and accurate for recognition of walking activities, gait

periods and events. Results showed the capability of the

wearable device to lift the human foot up when the toe-off

was predicted. Similarly, the wearable robot followed the

natural foot movement when the heel-contact was predicted.

Overall, this work presented a prototype with the potential to

assist the human foot during walking, which offers a platform

for the development of the next generation of adaptive and

intelligent wearable assistive robotic devices.
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