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Abstract: A hierarchic clustering-based enhancement is proposed to solve the luminance compen-
sation of face recognition in the dark field. First, the face image is divided into five levels by a
clustering method. Second, the results above are mapped into three hierarchies according to the
histogram thresholds. A low, a middle, and a high-intensity block are found. Third, two kinds of
linear transforms are performed to the high and the low-intensity blocks. Finally, a center wrap
function-based enhancement is carried out. Experiment results show our method can improve both
the face recognition accuracy and image quality.

Keywords: hierarchic clustering; image enhancement; dark field; image quality; face recognition

1. Introduction

Facial recognition has been widely used in modern society; however, its application in
dark fields is still limited. For example, face recognition accuracy becomes low at night [1].
In engineering, a dark field means the environment luminance is lower than 300 lx, which
may cause a low contrast and a serious detail occlusion problem. Currently, three types
of methods have been developed to solve this problem [2]: preprocessing-based methods,
lighting model-based techniques, and lighting normalization-based algorithms. The first
method processes image by histogram equalization [3–5], gamma correction [6], or homo-
morphic filtering [7], etc. Clearly, shadow occlusion problems cannot be solved well. The
second technique uses lighting modeling and a 3D face [8–11] for recognition. Unfortu-
nately, complex calculation limits its application. Moreover, the third algorithm uses the
Retinex-related model [12–14] to improve the face details. However, facial characteristics
may be lost.

A hierarchic clustering-based enhancement is proposed to realize robust face recogni-
tion in this investigation. This method combines preprocessing-based methods and lighting
normalization-based techniques. Affected by light, the face will be divided into multiple
areas, i.e., the normal face region, the shadow, and the glare approximately. Obviously,
the extreme dark or bright parts will cause issues of a wide dynamic range, which can
decrease the processing effects of related algorithms. Currently, the clustering method has
been extensively used for lighting compensation and shadow elimination. Devi [15] used
the Gaussian membership function and fuzzy C-mean clustering to enhance the image
contrast. Lin [16] optimized universal contrast enhancement variable by a fuzzy clustering
method. After investigations, it can be found the methods above still have some problems:
when carrying out the region segmentation, the amounts of categories are only determined
by the human-involved experiences. After segmentation, the impact of ambient light is not
considered for the detail enhancement.

This study aims to solve the problem of face enhancement in dark fields, which leads
to low contrast, lost details, and difficult recognition. The main contributions of this study
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are: (1) a novel hierarchical clustering-based face recognition method is proposed, which
has better computational robustness and stability in solving the negative influence of
dark field environment light; (2) a new Beer–Lambert law-related dimension reduction of
face cluster and an automatic threshold and average gray value-based linear transform
approach are also developed.

The rest of the paper is organized as follows: In Section 2, the algorithm’s main
contents are outlined. In Section 3, a series of experiments are undertaken, and the results
are presented. In Section 4, the conclusions are emphasized, and future directions for
possible extensions are suggested.

2. Proposed Algorithm

Figure 1 presents the computational flowchart of the proposed algorithm. When per-
forming our calculations, first, the face image is divided into multiple levels by clustering.
Since the reflection characteristic of skin, eyes, mouth, and eyebrows are totally different, a
melanin and hemoglobin imaging-based method [17] is considered to segment the original
image into 5 levels. Both the histogram of the original image and the confidence interval
theory of Gaussian distribution [18] are used to map the clustering results above into
3 categories. In Figure 1, a low, a middle, and a high segmented result can be observed by
the black, pink, and yellow colors, respectively. After this, two kinds of linear transforms
are performed to the low and the high segmented regions. These operations can decrease
the imaging effect of the over bright and the over dark phenomena. Finally, a center wrap
function-based contrast enhancement is carried out to improve the face details.

Figure 1. Processing flowchart of the proposed algorithm.

2.1. Initial Clustering of Face Image

The first step uses the k-means clustering technique to segment the original face into
5 levels, and melanin and hemoglobin imaging-based methods are developed to determine
its clustering amount. The k-means is considered here just because this method is simple,
efficient, and easy to use. Without loss of generality, four methods are compared to assess
the computational performance of k-means: the k-means, the balanced iterative reducing
and clustering using hierarchies (BIRCH), the agglomerative clustering, and the density-
based spatial clustering of applications with noise (DBSCAN) [19,20]. Table 1 shows the
average running time of these algorithms above under the same amount of data sets, and
the time of k-means is the shortest one. Clearly, k-means also has merits, such as fast speed
and few control parameters [21,22], while some other algorithms are effective but slow in
efficiency.

Table 1. Clustering time the same data by four clustering algorithms.

Clustering Algorithms

K-Means BIRCH Agglomerative Clustering DBSCAN

Times (s) 0.8112 2.2448 490.0283 266.2787
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When implementing the k-means calculation, first, the class centers are selected ran-
domly; then the initial clustering is performed to get the initial segmentation results of pixel
blocks; after this, some new cluster centers are computed by the segmented regions above
according to the minimum distance principle, and then the next round of clustering will be
carried out. Equation (1) presents the calculation method of clustering. This computational
procedure above will be implemented repeatedly until the maximum iteration number is
reached. Clearly, when performing the k-means, it is necessary to set the clustering amount,
i.e., the variable k in (1).

V =
k

∑
i=1

∑
xi∈ci

(xi − ui)
2 (1)

where xi is the input data; ui is the ith class center, and its value is mapped into [0,1]; and
i = 1, 2, · · · , k.

Since the over bright or the over dark regions will occlude the image details seriously,
two methods are developed to determine k. The dichromatic reflection model [23] is
applied to model the light incident on the skin. In general, the skin color is determined
by different concentrations of melanin and hemoglobin. According to the Beer–Lambert
law [24], after the incident light is scattered by the skin surface and the dermis, the intensity
of emitted light can be estimated by (2). When processing the over the dark region, the
Tsumura’s principle [25] has told us the relative absorbance σm and σh will not change
with different races and genders. Thus the value k can be estimated by the ratio between
the middle-level and the next to last-level gray values of the clustered image (Equations
(3) and (4)). When dealing with the over bright region, the diffuse reflectance [26] can be
defined and computed by (5) and (6); and its estimation can be calculated by (7). Clearly,
the bigger the diffuse reflectance A is, the better the face recognition effect will be:

R(p, λ) = eρm(p)θ′m(λ)lm(λ)+ρh(p)θ′h(λ)lh(λ)E(p, λ) (2)

δ = ubk/2c/u2 (3)

STD =

√√√√ 1
N

N

∑
i=1

(
δ− δi

)2
(4)

A = σ
ρm(p)
m σ

ρh(p)
h =

(
eθ′m(λ)lm(λ)

)ρm(p)(
eθ′h(λ)lh(λ)

)ρh(p)
(5)

A = R(p, λ)/E(p, λ) (6)

Â = uk/2/uk (7)

where R(p, λ) means the irradiance of the emergent light; E(p, λ) indicates the irradiance
of the incident light; λ is the wavelength of the incident light; p means the observed pixel;
ρm(p) and ρh(p) are the densities of melanin and hemoglobin; θ′m(λ) and θ′h(λ) are the
spectral cross-sections of melanin and hemoglobin, respectively; lm(λ) and lh(λ) are the
mean path lengths of photons in epidermis and dermis; δ is the ratio between uk/2 and
u2; ∗means to get the integral value of symbol *; STD is the standard deviation of δ; δ is
the average of δi (i = 1, 2, . . . , N); N is the number of images; σm and σh are the relative
absorbance; A is the diffuse reflectance; and Â is the estimation of A.

Figure 2 presents the relationship between the clustering amount and the STD. Accord-
ing to (4), a small standard deviation indicates the data are stable, and the corresponding
clustering amount is optimal. Thus the clustering amount should be set by 5 according to
Figures 2 and 3, which provides the relationship between the clustering amount and the
estimated diffuse reflectance A. In Equation (7), the brightest gray value divided by the
intermediate gray value is defined as the diffuse reflectance. From Figure 3, the categories 5
gets the largest evaluation value. Finally, category 5 is selected for our algorithm. Figure 4
shows the image samples and the results after clustering. These pictures are selected by
considering the gender, the postures, the shadow, and the glare. If the gray intensity is
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blackest, its corresponding gray level is 1; differently, its gray level will be 5 when the gray
intensity is brightest.

Figure 2. Relationship between clustering amount and STD.

Figure 3. Relationship between clustering amount and Â.

Figure 4. The results of clustering face images under different lighting conditions. (a) Original
images; (b) results after clustering.

2.2. Dimension Reduction of Face Clustering

The second step is to reduce the clustering dimension further, which can optimize face
recognition efficiency. Both the histogram of the original image and the confidence interval
theory of Gaussian distribution is considered to combine 5 clustered image regions into 3 or
2 segmentation blocks, i.e., the low, the middle, and the high-intensity regions, or the low
and the middle-intensity regions, respectively. First, the histogram of the original image is
computed. Second, the combination thresholds are estimated by using the histogram and
the confidence interval theory of Gaussian distribution. Third, a merging computation is
implemented to the clustered image.

When computing the combination thresholds, the confidence interval theory of Gaus-
sian distribution is used. Without loss of generality, let us take the 2D Gaussian distribution
as an example: it is supposed the gray intensity distribution of the statistic face [27] is
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similar to a Gaussian distribution. Therefore, the probability P1 when the gray value
locates into (µ− σ, µ + σ) is 68.2689%, and the probability P2 when the gray value lies in
(µ− 2σ, µ + 2σ) is 95.4500%, where µ and σ are the mean and the standard deviation of
Gaussian distribution, respectively. Figure 5 illustrates the corresponding analysis results.
From Figure 5, if the pixels locate in the pink region, they probably belong to the normal
face region, such as skin or month under the normal lighting condition; differently, if the
pixels lie in the yellow region, they always are the high light regions; and if the pixels drop
into the blue region, they will be affected by the over dark problem. Clearly, both P1 and P2
can contain some segmentation information.

Figure 5. The Gaussian distribution and its region partitions for face clustering.

Equation (8) is the computational method of the cumulative histogram. This calcu-
lation method is to accumulate the frequency from the smallest gray value to the largest
one. Equations (9) and (10) show the estimation methods of combination thresholds. The
normalization processing will be carried out to get the combination thresholds when the
cumulative frequency reaches 1− P1 and P2. In Equation (11), according to the clustering
centers and two combination thresholds, five regions are combined into three blocks, i.e.,
the low, the middle, and the high-intensity regions. For example, if the clustering center u1
is less than the combination threshold T1 then its clustering result will be classified into the
low-intensity region. Table 2 shows the gray value of the clustering center, the combination
thresholds, and the division results of three blocks. From Table 2, the dimension reduction
results can get two or three categories: images 1, 2, 3, 6, and 8 can get three category levels;
while images 4, 5, and 7 only has two levels:

pr(rk) =

k
∑

i=1
ni

n
, k = 0, 1, 2, · · · , L− 1 (8)

T1 =
rs

L
, i f pr(rs) = 1− P1 (9)

T2 =
rg

L
, i f pr

(
rg
)
= P2 (10)

P =



R1 ∈ Bl , u1 ≤ T1
R1 ∈ Bm, u1 > T1
R2 ∈ Bl , u2 ≤ T1
R2 ∈ Bm, u2 > T1
R3 ∈ Bm,
R4 ∈ Bm, u4 < T2
R4 ∈ Bh, u4 ≥ T2
R5 ∈ Bm, u5 < T2
R5 ∈ Bh, u5 ≥ T2

(11)

where pr(rk) means the cumulative probability; rk is different gray values, and its range
is located into (0, 255); ni is the number of pixels whose gray is rk, and L is the maximum
of gray levels; n is the total number of pixels; T1 and T2 are the combination thresholds;



Electronics 2021, 10, 936 6 of 12

rs and rg are the typical gray values of rk; Ri is the segmentation results of the face region
whose clustering center is ui; i = 1, 2, · · · , 5; the symbol Bl is the low-intensity block, Bm is
the middle-intensity block, and Bh is the high-intensity block.

Table 2. Clustering results of image samples and their corresponding combination thresholds.

Image ID

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8

Gray value of
clustering

center

u1
1 0.0592 0.0472 0.0423 0.0369 0.0356 0.0329 0.0680 0.0771

u2 0.1922 0.1959 0.1772 0.1427 0.1796 0.2000 0.3087 0.2335
u3 0.3039 0.3648 0.3071 0.2470 0.3412 0.4005 0.5340 0.3812
u4 0.4033 0.5343 0.4986 0.3864 0.4753 0.6122 0.7449 0.5282
u5 0.5234 0.7554 0.8097 0.5176 0.6506 0.8244 0.9427 0.7397

Threshold
T1 0.2117 0.0666 0.1098 0.1176 0.0784 0.0352 0.0941 0.1882
T2 0.5019 0.6588 0.5647 0.5215 0.6627 0.7451 0.9921 0.7176

Intensity
region

Low u1u2 u1 u1 u1 u1 u1 u1 u1
Middle u3u4 u2u3u4 u2u3u4 u2u3u4u5 u2u3u4u5 u2u3u4 u2u3u4u5 u2u3u4
High u5 u5 u5 - - u5 - u5

1 Subscripts indicate different gray levels (see Equation (11)).

2.3. Intensity Mapping of over Dark or over Bright Region

The third step is used to balance the intensities of the low and the high blocks. In step 2,
the clustering results are mapped into two or three hierarchies, i.e., low- and high-intensity
blocks, or low-, middle-, and high-intensity blocks. Since the low and the high-intensity
blocks represent the over dark and the overly bright regions, which may affect the following
face recognition, two linear transforms are performed. For a low-brightness area, its pixel
intensity needs to be multiplied by a factor for amplification. Equations (12) and (13) show
their computational method. This coefficient can be determined by a threshold and an
average gray value. Similarly, for a high-brightness area, an intensity correction is also
needed. Equations (12) and (14) illustrate its calculation method. Figure 6a presents the
processing results:

m =
1

N1

N1

∑
i=1

o(x, y) (12)

nl(x, y) =

√
T2

m
× o(x, y), (x, y) ∈ Bl (13)

nh(x, y) =
√

u5 − u4

m
× o(x, y), (x, y) ∈ Bh (14)

where o(x, y) means the gray value of the image in coordinate (x, y); m is the average gray
value of o(x, y); N1 is the total pixel amount; nl(x, y) and nh(x, y) are the correction results
of the overly dark and the overly bright parts, respectively.

Figure 6. Results of the linear transforms and the center wrap function-based enhancement. (a)
Results of linear transforms; (b) results of center wrap function-based enhancement.
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2.4. Contrast Enhancement and Noise Removement

The last step is used to enhance the contrast and remove the noise furtherly. After the
clustering computation and the linear transform processing, the ambient light effect still
can be observed apparently; and the negative influence of the clustering quantization effect
can also create some noise regions. To solve these problems to some extent, the Retinex
theory is considered to enhance the image; a center wrap function-based enhancement
is implemented. Equation (15) presents its computational procedure. Unlike the classic
Retinex algorithm, a guided filter function is employed to replace the Gaussian function,
which can maintain a better image edge. Figure 6b illustrates the processing results of this
step:

r(x, y) =
K

∑
k=1

wk{log I(x, y)− log[Fk(x, y) ∗ I(x, y)]} (15)

where r(x, y) is the output image; I(x, y) is the input image; K is the number of center-
surround functions; Fk(x, y) is the center-wrap function; wk is the weight (K = 3), w1 =
w2 = w3; the symbol “ ∗ ” represents the convolution.

3. Experiments

An integrated evaluation experiment is performed to test the validity of the proposed
algorithm on our PC (Intel® Core™ i7, 8 GB RAM). The Yale face database B [28] is
employed in this experiment. The corresponding image size is 640 × 480. A series
of image enhancement methods are compared, including the multiscale Retinex (MSR),
the multi-deviation fusion (MF) [29], the bio-inspired multi-exposure fusion framework
(BIMEF) [30], the regional similarity transfer function (RSTF) [31], the mini-type version
of our proposed method, and our method. Here the mini-type version of our proposed
method only implements step 2 to step 4 of the total proposed procedure to accomplish
the face enhancement task. Clearly, the computational effect of k-means can be tested by
this method. Two evaluation indices are considered for algorithm assessment, i.e., the face
recognition rate (FRR) and the image quality assessment metrics (IQAM).

Regarding the first evaluation index, both the sparse representation-based method [32]
and the principal component analysis (PCA)-based technique [33] are considered for face
recognition because of their fast computation speeds, the small requirements of the training
dataset, and the convenient hardware implementation for our application. The sparse
representation-based method exploits the discriminative nature of sparse representation
to perform classification. The PCA-based technique uses the eigenface and PCA methods
to accomplish classification. Equations (16) and (17) illustrate their individual calculation
methods. Table 3 shows the corresponding FRR on our test datasets. After filtering out all
the black images, the training set and the test set are randomly selected on the Yale face
database B. The training set type of the sparse representation method includes 9 categories,
and each category has 100 images. Its test set type also has 9 categories, and each category
has 30 images. The training set type of PAC method has 9 categories with 85 images in
each category. Its test set type has 9 categories, and each category has 15 images. In Table 3,
it can be seen that the FRR of our method is significantly improved comparing with other
methods:

x̂1 = argmin‖x‖1 subject to ‖RAx− ỹ‖2 ≤ εspare (16)

‖Ωtest −Ωtrain‖2 ≤ εPCA (17)

where x̂1 is the spare solution; A is a matrix for the entire training set; RA is the matrix
of features; x is a coefficient vector; ỹ is the features of the test set; εspare is a given error
tolerance, and the symbol εspare is set to 0.05 in the experiments of this investigation;
Ωtest is the facial vector of a test face; Ωtrain is the facial vector of a train face; εPCA is a
given distance threshold, and the symbol εPCA is set to 0.01 in the experiments of this
investigation.
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Table 3. The face recognition rate and image quality evaluation metrics of different enhancement algorithms.

Evaluation Algorithms

Original
Image MSR MF BIMEF RSTF

Mini-Type
Version of

Our Method
Our Method

FRR
Sparse Representation-based method 83.3333 86.6667 94.8148 84.8148 81.4815 93.9541 96.2963

PCA-based method 60.0000 77.0370 80.7407 68.8889 67.4074 89.4318 93.3333

IQAM
BRISQUE 0.9179 0.8173 0.8923 0.8788 0.8554 0.9127 0.9509

IRCD 0.1047 0.1087 0.1046 0.1050 0.1088 0.1093 0.1101
BIS 0.0558 0.0457 0.1032 0.0668 0.0832 0.1115 0.1271

As for the second evaluation index, three IQAM metrics are employed: the blind/
referenceless image spatial quality evaluator (BRISQUE) [34], the image region contrast
degree (IRCD) [35], and the Brenner-based image sharpness (BIS) [36]. The BRISQUE can
evaluate the image edges and details. The bigger the BRISQUE index is, the better the
image details would be. The IRCD can assess the region intensity difference between the
foreground and the background of an image. Regarding the face recognition application
captured in the dark field, the foreground means the eyes, the mouth, or the nose, etc. The
bigger the IRCD index is, the better the image contrast would be. The BIS is a kind of image
sharpness index. Equations (18)–(20) illustrate their individual calculation methods. The
parameters in this evaluation experiment are set according to the corresponding references
above. For example, in the BRISQUE method, the parameter of the two-dimensional
circularly symmetric Gaussian weighting function is set as K = L = 3, etc. Among all the
evaluation methods in Table 3, our method can achieve the best processing effect:

MBRISQUE =
I(i, j)− µ(i, j)

σ(i, j) + C
(18)

MIRCD =
1

N2

N2

∑
k=1

Imax
k + Imin

k
Imax
k − Imin

k
(19)

MBIS =

∑
i

∑
j

{
[I(i + 2, j)− I(i, j)]2

}
MSE

(20)

where I(i, j) is the input image, µ(i, j) is the result after Gaussian filtering of the input
image; σ(i, j) is the standard deviation of the input image; C is a constant, which can be
used to avoid the denominator to be zero, C = 1 in this investigation; Imax

k and Imin
k are

the maximum and the minimum gray values of the kth image block; N2 is the number of
sample block, N2 = 100; MSE is the mean square error of the input image.

Generally, the better the IQAM is, the higher the FRR. Thus the relationship between
the head pose and the IQAM is investigated in this study. Figures 7 and 8 show two
experiment results. Regarding the first experiment, the subjects shake their heads from
left to right. As for the second experiment, the subjects nod their head up and down. The
movement angles of the two experiments are all from −45◦ to 45◦. Then a series of head
pose images can be accumulated. Finally, we use the dataset above to test the IQAMs of
different image enchantment methods. From Figures 7 and 8, our method can achieve
the best processing effect. These results may be explained: on one hand, our proposed
method can restrain or balance the over dark and the overly bright regions; on the other
hand, both the dichromatic reflection model and the confidence interval theory of Gaussian
distribution are utilized to realize a kind of reasonable hierarchic clustering.
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Figure 7. Image quality assessment metrics (IQAM) comparison results of the horizontal deflection angle of head pose
using different face enhancement methods. (a) results after the BRISQUE method; (b) results after the IRCD method; (c)
results after the BIS method.

Figure 8. IQAM comparison results of the vertical deflection angle of head pose using different face enhancement methods.
(a) results after the BRISQUE method; (b) results after the IRCD method; (c) results after the BIS method.

The merits of the proposed method include: first, its environment adaptability is high.
This method can be used for face enhancement application of the dark field environment.
In many cases, the dynamic scope of the images captured in the dark field is larger than
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those collected in the normal environment light. This problem will improve the processing
difficulty of face recognition. After experimental evaluation, our method can solve that
problem well. Second, its computational effect is good. For example, both the FRR and
the IQAM can be improved a lot by using this method. Third, its automatic processing
ability and robustness are also excellent. The proposed method’s input is an original image,
and its output is an image, which performs the enhancement processing. No experience
parameters are needed to be set in the proposed method. As a result, it can read images in
batches and automatically calculate the corresponding parameters without any manual
inputs. Experimental results also indicate that this method can be used for face image
enhancement captured under different deflection angles. Clearly, our method also has
some shortcomings. For example, its processing speed is slower than some traditional
methods, and some new techniques can be considered for its application expansion. This
problem can be solved by using some hardware speedup methods and deep learning-based
methods [37,38] in the future.

4. Conclusions

This investigation proposes a hierarchic clustering-based face enhancement method
for images captured in the dark field. First, the hierarchic clustering method is applied to
image segmentation. Second, the processing results above are mapped into three levels, i.e.,
the low-intensity block, the medium-intensity block, and the high-intensity block. Third,
the over-bright and over-dark parts are balanced by two linear transform computations.
Finally, noise removal and image enhancement are performed. Experimental results show
that our method can improve both the FRR and the IQAM for the images captured in the
dark field. In the future, the information characteristics of color images can be combined to
improve the proposed method.
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