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Hamiltonian group field theory with multiple scalar matter fields

Steffen Gielen∗ and Axel Polaczek†
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One approach to defining dynamics for quantum gravity in a naturally timeless setting is

to select a suitable matter degree of freedom as a ‘clock’ before quantisation. This idea of

deparametrisation was recently introduced in group field theory leading to a Hamiltonian

formulation in which states or operators evolve with respect to the clock given by a free

massless scalar field, similar to what happens in deparametrised models in quantum cosmology.

Here we extend the construction of Hamiltonian group field theory to models with multiple

scalar matter fields, encountering new features and technical subtleties compared with the

previously studied case. We show that the effective cosmological dynamics for these more

general models reduce to the Friedmann dynamics of general relativity with multiple scalar

fields in the limit of large volume, if suitable (non-generic) initial conditions are chosen.

At high energy, we find corrections to the classical Friedmann equations whose form is

similar to what is found in loop quantum cosmology. These corrections lead to generic

singularity resolution by a bounce. For generic initial conditions, the effective cosmological

dynamics treat the ‘clock’ field and other matter fields differently, in disagreement with the

Friedmann dynamics of general relativity. We speculate on a possible interpretation in terms

of inhomogeneities.
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I. INTRODUCTION

Group field theory (GFT) is a formalism in which the problem of quantum gravity can

be studied from different angles and with a variety of methods [1–4]. The GFT formalism

generalises the basic ideas of matrix and tensor models for quantum gravity [5–7] by

incorporating additional structure from loop quantum gravity (LQG) and spin foam models

[8, 9]. A GFT is defined by an action for a ‘group field’ living on an abstract group manifold

(as opposed to on a spacetime manifold): the perturbative expansion of the GFT partition

function generates a sum over Feynman amplitudes, each of which can be interpreted as a

discrete (simplicial) quantum gravity amplitude. The theory is then to be defined in the

continuum limit of such a sum. Thus, the twist that GFT adds to usual matrix and tensor

models is that the purely combinatorial graph structures appearing in these models are
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equipped with group-theoretical data which can be interpreted as local excitations of gravity

and matter, as they are in LQG and spin foam models [10].

At this level, the purpose of using the GFT formalism could be seen as providing a

generating function for a sum over spin foam amplitudes. Indeed, there is a one-to-one

correspondence between a wide class of spin foam amplitudes and GFT actions [11, 12]. This

correspondence then motivates viewing GFT itself as a proposal for a theory of quantum

gravity. Its Feynman expansion provides one, but not the only way of studying this theory,

since any quantum field theory is defined beyond its perturbative expansion. In particular

one can study the renormalisation of GFT models, which has been done over the last

years [13–15]. Identifying a physically interesting class of renormalisable models would

be key towards understanding the continuum limit of GFT, needed to make sense of any

fundamentally discrete setting for quantum gravity.

For known models of interest for quantum gravity, it is hard to gain computational

control over the perturbative expansion, while truncating the expansion after a few terms

would not appear to be justifiable. New methods are then needed to understand the

nonperturbative dynamics of a GFT. One proposal, related to the search for fixed points

under renormalisation flow that describe continuum geometry [16], is that a physically

relevant continuum phase can be described by a ‘condensate’ in which the group field

acquires a nonvanishing expectation value [17–19]. GFT condensates have mostly been

studied in a canonical approach in which one works with a Fock space generated by creation

and annihilation operators obtained from the group field. This GFT Fock space can be

interpreted in terms of LQG spin networks in that the degrees of freedom carried by Fock

states are the degrees of freedom of spin networks, although there are important differences

in the structure of the (kinematical) Hilbert space: the Fock space has no analogue of

‘cylindrical consistency’ [20] and does not distinguish between spin networks with the same

number of vertices (see [21] for details). The correspondence is more direct at the level of a

fixed graph, which is where many studies in LQG and spin foam models take place; the state

space for LQG on a fixed graph can be identified with a subspace of the GFT Fock space.

One of the main goals of this paper is to extend the canonical quantisation of GFT to a

new class of models, namely, models for quantum gravity coupled to an arbitrary number

D ≥ 2 of free massless scalar fields. While most models are proposals for pure (vacuum)

quantum gravity, models with a single scalar matter field have been studied in various

papers previously [22–24]. There are various motivations for including matter into the GFT

formalism. First of all, one might argue that matter is essential for the physical interpretation

of any theory of quantum gravity; whether there is a realistic coupling of matter and gravity
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is one of the most basic consistency questions for any approach. The main motivation for

including scalar matter fields has come from the cosmological application of GFT [19, 25, 26].

Just as in traditional quantum cosmology [27] and in loop quantum cosmology (LQC)

[28–30], in GFT a free scalar field can serve as a relational ‘clock’ which parametrises the

evolution of the spacetime geometry. In this setting one can then derive effective Friedmann

equations capturing the relational evolution of quantities like the expectation value of the

total (spatial) volume relative to the matter scalar field. Remarkably, previous work has

shown that the effective dynamics of GFT condensates can reproduce the main features of

LQC, reduce to the dynamics of general relativity at large volume and resolve the classical

Big Bang singularity by a quantum bounce at high energies [22, 23, 31]. These results have

been extended in various directions [32–34].

So far, there have been two basic approaches towards defining the canonical quantisation

of a GFT. The initial approach was to postulate commutation relations between basic field

operators, and hence the creation and annihilation operators derived from them, which lead

to a Fock space structure similar to the spin network Hilbert space of LQG [17, 21]. This

construction is purely kinematical and does not use the GFT dynamics or action; it leads to

a kinematical Hilbert space that is too large and subject to additional constraints, just as

the Hilbert space of LQG. While this construction is close to what happens in canonical

LQG, one could alternatively proceed more closely to standard quantum field theory and

derive the canonical Hilbert space structure from an action. This idea was first proposed in

[35] in a toy model for GFT: a Fock space based on creation and annihilation operators was

derived from a postulated action, with dynamics given by a ‘squeezing’ Hamiltonian. Time

evolution was defined to be evolution with respect to the matter scalar field variable, in

what is usually called a deparametrised approach. Rather remarkably, the main features of

GFT cosmology could be reproduced in this very simple model. The connection of this toy

model to full GFT was then clarified in [36] where a deparametrised approach was adopted

for GFT by choosing the scalar field argument as a time variable from the beginning, and

the Legendre transform was computed leading to a Hamiltonian for GFT. In the truncation

to quadratic terms the resulting dynamics were very similar to that of [35], again leading to

LQC-like cosmological dynamics (see also [37] for more details of the effective cosmology of

this model). The method of deparametrisation using scalar fields had previously appeared

in canonical LQG [38–40], where it also leads to a different Hilbert space which is not

subject to (Hamiltonian or diffeomorphism) constraints. An extended discussion of these

two avenues to defining a canonical quantisation and relational time evolution in GFT was

recently given in [41].
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In this paper we extend the deparametrised canonical formalism for GFT to multiple

scalar matter fields. There are multiple motivations for doing this. By introducing a model

with multiple scalar field ‘coordinates’ the Hamiltonian methods for GFT developed in [36]

can be extended from what is effectively quantum mechanics (a quantum system evolving in

time) to quantum field theory (a field configuration on a multi-dimensional manifold), thus

strengthening and generalising their foundations. Indeed we will see that features of canonical

quantisation of quantum field theories such as the need for regularisation of formally divergent

quantities now appear in GFT. Perhaps more importantly, the cosmological application of

models with a single scalar field provided some of the most important results obtained in

the GFT formalism overall by allowing the derivation of effective Friedmann equations with

the correct physical properties. Extending this formalism to multiple matter fields provides

an important further test of the physical validity of GFT while also bringing the resulting

cosmological models closer to being more realistic.

A further motivation comes from the problem of time in quantum gravity [42–44]:

deparametrised models are in danger of violating the general covariance of general relativity

since a preferred time coordinate has been chosen before quantisation. Usually the problem

of time is formulated for theories defined on a continuum spacetime, where diffeomorphisms

act as gauge transformations on all dynamical fields, so that no particular time coordinate

should be singled out as characterising dynamics and evolution. The very large symmetry

group of diffeomorphisms must then be implemented properly in the quantum theory. In

a fundamentally discrete setting such as GFT, the notion of diffeomorphism symmetry

is less obvious: without a continuum spacetime there seems to be no room for defining

coordinate transformations. However, there are situations in which a discrete version of

diffeomorphisms can be understood. Typical examples are topological field theories where

all physical solutions are required to be flat or perhaps of constant curvature, as is the

case for general relativity with or without cosmological constant in three dimensions. In

such a setting, there exist discrete symmetries relating discretisations describing the same

configuration, which can be interpreted as a discrete analogue of diffeomorphisms. These

can be defined, e.g., in GFT in three dimensions [45] and for topological spin foam models

[46, 47]. Much less is known about discrete diffeomorphisms in models for quantum gravity

with local degrees of freedom but the usual notion of diffeomorphism symmetry should

emerge in a continuum limit of such theories [48], including GFT; it is hence an important

issue to investigate.

Studying a GFT with multiple matter fields allows us to study, for the first time, the

covariance of Hamiltonian GFT with respect to certain global coordinate changes: given
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that we use a matter degree of freedom as relational clock, such a model contains multiple

candidates for matter clocks, and we can study the behaviour of the theory under passing

from one clock to another. As we will see, one of the more striking features of the Hamiltonian

GFT formalism with multiple scalar fields is that it is not covariant under the full symmetry

group of the GFT action, which includes arbitrary translations or rotations among any of

the matter fields (which all appear in the action on the same footing). These symmetries

are global symmetries in GFT, corresponding to linear (global) transformations between

different choices of clock. They are the analogue of the Poincaré transformations of special

relativity or a field theory defined on Minkowski spacetime. We find that in Hamiltonian

GFT this symmetry is broken to translations and rotations that involve only the matter

fields that have not been selected as a clock, whereas the clock field is treated separately.

This symmetry breaking will appear at various points in our analysis – it can be understood

already at the classical level as arising from treating an elliptic partial differential equation

as an initial value problem, which singles out a preferred direction. This result has a direct

impact on the resulting effective cosmological dynamics, which likewise treats the clock

matter field differently from all other matter fields. Given that these global transformations

should correspond to particular types of coordinate transformations in a continuum limit

(similar to how global Lorentz transformations are particular diffeomorphisms on Minkowski

spacetime), we expect these findings to be relevant for the more general question of whether

a Hamiltonian formalism for GFT can preserve general covariance (i.e., covariance with

respect to arbitrary coordinate changes).

The structure of the paper is as follows. Section II introduces the general formalism

for GFT coupled to D ≥ 2 free massless scalar fields, and uses symmetry arguments and

a derivative expansion to constrain the possible form of the (quadratic) GFT actions.

Section III details the usual steps of canonical quantisation, defining a canonical momentum

to the group field and introducing creation and annihilation operators. We identify conserved

quantities from symmetries of the action, mention observables of interest and define Fock

coherent states. In Section IV we derive the effective cosmological dynamics given in terms

of effective Friedmann equations for the total volume. The general case depends on infinitely

many initial conditions, and we then specify to cases in which only one or two field modes

are relevant. These dynamics can match those of general relativity at late times, but this

requires relations between initial conditions even for simple coherent states. We do find

generic resolution of the big bang singularity by a bounce, with high-energy corrections very

similar to those of LQC. We finish with a discussion of our results in Section V.
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II. GFT FOR QUANTUM GRAVITY WITH MULTIPLE SCALAR FIELDS

GFT models that are proposals for a theory of quantum gravity are usually defined in

such a way that the perturbative expansion of their partition function can be interpreted as

a sum over discrete quantum gravity amplitudes. This requirement informs the choice of

fields appearing in the theory as well as the choice of dynamics or action for these fields.

We focus on models for which the discrete structures appearing in the perturbative

expansion can be interpreted as simplicial geometries, that is, extended structures constructed

by gluing a number of simplicial ‘building blocks’ by specified rules. These structures carry

the degrees of freedom of discrete geometries appearing in loop quantum gravity and spin

foams: group elements representing discrete parallel transports of a gravitational connection

from one building block to the next and, in the case of interest here, scalar matter degrees

of freedom associated to the building blocks themselves.

The Feynman graphs in the GFT expansion represent spin foams, 2-complexes in which

each face is labelled by an irreducible representation of a Lie group G and each edge is

labelled by an intertwiner between representations. In the case where scalar matter is

present, edges also carry labels corresponding to the values of these matter fields. GFT

boundary data live on spin networks containing the edges and vertices on the boundary

of a spin foam. Since edges bound faces and vertices bound edges, a spin network carries

representation labels on its edges and intertwiner/matter labels on its vertices. An excellent

introduction to spin networks and spin foams for quantum gravity is given in [49].

One way of defining the group field is to consider the kind of boundary states, or spin

networks, one wants to generate. First of all, this involves a choice of combinatorics: for

models for four-dimensional quantum gravity, the most common choice is to restrict these

spin networks to be four-valent so that, in the dual intepretation, boundary states represent

simplicial geometries built out of tetrahedra. This restriction to simplicial geometries is

also often made in spin foam models. Spin foam models have been generalised to arbitrary

valency [50] and this can also be done for GFT [51], but we will not do so here.

Adopting this common choice of modelling four-dimensional quantum gravity using

four-valent spin networks as the boundary states, we consider a real field

ϕ : G4 × R
D → R , (ga, χ

α) 7→ ϕ(ga, χ
α) (2.1)

and write the most general GFT action for such a field as

S[ϕ] = K[ϕ] + V[ϕ] , (2.2)
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where K[ϕ] contains terms bilinear in ϕ and V [ϕ] contains terms of higher order, i.e. trilinear

and higher. Notice that, since we restricted the spin networks representing GFT states to

valency four and each spin network edge is associated with a G representation label, the

field ϕ has four G-valued arguments ga. The R-valued arguments χα represent matter scalar

fields; we assume there are D of these, where D ≥ 2. The models we consider then extend

GFT models with a single matter field, such as the ones in [36]. In the following we will

also restrict ourselves to G = SU(2), although other choices would be possible.

In the perturbative expansion of such a theory, the ‘kinetic’ part K[ϕ] encodes the

propagator and the higher-order part V [ϕ] generates interaction vertices which are responsible

for the gluing of elementary building blocks to form higher-dimensional structures. The

type of discrete geometries appearing in the perturbative expansion depends sensitively on

V [ϕ]. For example, to generate four-dimensional simplicial geometries the interaction terms

should involve fifth powers of ϕ and include the combinatorial pattern corresponding to the

gluing of five tetrahedra to a 4-simplex, as in the topological Ooguri model [52].

In this paper we will restrict our attention to the free theory which only includes K[ϕ]

in order to construct a Hamiltonian formalism. This is as in usual quantum field theory

where canonical quantisation is based on a quadratic action and interactions are then added

perturbatively. We expand the group field in modes associated to SU(2) representations,

ϕ(ga, χ
α) =

∑

J

ϕJ(χ
α)DJ(ga) (2.3)

following the economical notation of [34]: assuming the usual ‘gauge invariance’ condition

ϕ(ga, χ
α) = ϕ(gah, χ

α) ∀ h ∈ SU(2) , (2.4)

a basis of square-integrable functions on SU(2)4 satisfying (2.4) is given by

DJ(ga) =
∑

n

Ij,ι
n

4
∏

a=1

√

2ja + 1Dja
mana

(ga) (2.5)

where J = (j,m, ι) is a multi-index including half-integer representation labels j and

magnetic indices m and intertwiner labels ι whose possible values depend on j. The sum is

over magnetic indices n; Ij,ι
n denotes the intertwiner labelled by ι 1 and Dj

mn(g) are Wigner

D-matrices. Note that for a real group field the modes ϕJ in (2.3) are not independent.

Indeed, they must satisfy the reality condition [52]

ϕ−J(χ
α) = ǫJ ϕ̄J(χ

α) , (2.6)

1 Depending on j there may be no, one, or multiple linearly independent intertwiners, i.e., equivariant linear

maps from the tensor product of representations j to the trivial representation. ι runs over a basis.
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where −J = (j,−m, ι) and ǫJ = (−1)
∑

i(ji−mi).

We then assume that after suitable redefinition of the J basis, the kinetic term is diagonal

in this basis.2 Explicitly, the kinetic term then takes the form

S[ϕ] =
1

2

∑

J

∫

dDχ dDχ′ ϕJ(χ
α)KJ(χ

α, χ′α)ϕJ(χ
′α) . (2.7)

The form of KJ(χ
α, χ′α), which is general at this point, can be further constrained by

symmetry arguments.

A. Specifying the kinetic term

The construction of GFT models for quantum gravity coupled to matter is, in the general

case, a difficult problem. There is no proposal, for instance, for a GFT that would include the

entire standard model of particle physics. However, in the special case where matter is given

by free massless scalar fields, the large amount of symmetry in the matter sector constrains

the possible GFT actions quite significantly. This idea was exploited in the construction of

GFT models for quantum gravity with a single massless scalar field in [22, 23]; the general

form of the action allowed by symmetry could then be further specified by constructing

an explicit model [24]. The symmetry argument was extended to multiple scalar matter

fields in [53]. Here we will be slightly more specific than [53] in that we will assume that all

D = d+ 1 matter scalar fields are (minimally) coupled to gravity in exactly the same way

(rather than allowing for the case that one ‘clock’ matter field is coupled differently from

the other ‘rod’ matter fields). Recall that we are assuming D ≥ 2 so that d ≥ 1. We will

label the matter fields by indices running from 0 to d.

In conventional quantum field theory, the Lagrangian density of D = d + 1 massless

scalar fields minimally coupled to an arbitrary spacetime metric gµν is given by

L = −1

2

d
∑

α=0

√−g gµν ∂µχ
α∂νχ

α . (2.8)

This Lagrangian is invariant under the action of the Euclidean group E(D) acting on the

massless scalar fields via

• Translations: χα 7→ χα + aα,

2 The ‘standard’ kinetic term is not diagonal in the basis (2.5). Diagonalisation can then be achieved by

splitting the modes ϕJ into their real and imaginary parts; see Appendix A for details.
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• Rotations: χα 7→
∑

β R
α
βχ

β ,

• Reflections: χα 7→ −χα (for each χα separately),

where aα ∈ RD and Rα
β ∈ O(D) are spacetime constants.

It is natural to assume that any proposal for a theory of quantum gravity coupled to

this type of matter should exhibit these symmetries as well. If we therefore demand that

(2.7) also has these symmetries, the kinetic kernel must take the form

KJ(χ
α, χ′α) = KJ((χ− χ′)2) , (2.9)

where (χ− χ′)2 =
∑

α[(χ− χ′)α]2. Performing an expansion in terms of derivatives in (2.7)

then gives the action

S[ϕ] =
1

2

∑

J

∫

dDχ

∞
∑

n=0

ϕJ(χ
α)K(2n)

J △n
χϕJ(χ

α) , (2.10)

where we defined

K(2n)
J =

∫

dDδχ
1

(2n)!
KJ((δχ)

2)((δχ)2)n , (2.11)

△χ =

d
∑

α=0

(

∂

∂χα

)2

. (2.12)

Because of the E(D) symmetry of the theory the derivative expansion only contains powers

of the Laplacian △χ on RD. Equation (2.10) is then the generalisation of the expansion for

GFT models with a single matter field as proposed in [22, 23].

In general (2.10) contains an infinite number of terms with increasing number of derivia-

tives. In the spirit of effective field theory one can restrict oneself to the case in which higher

than second-order derivatives are negligible and assume that the kinetic term is given by

K[ϕ] =
1

2

∫

dDχ
∑

J

ϕJ(χ
α)
[

K(0)
J +K(2)

J △χ

]

ϕJ(χ
α) , (2.13)

where K(0)
J and K(2)

J are constants that can be derived from the initial GFT action. Again,

this is in analogy with previous work [22, 23, 36].

Note that a scalar field in four dimensional spacetime has mass dimension 1. Therefore

the derivative expansion in (2.10) can be associated with an expansion in powers of the

Planck mass squared m2
P. In the rest of the paper we will work with GFT actions of the

form (2.13) for which we define a Hamiltonian formalism.



11

B. Equations of motion

The equations of motion of a theory defined by the action (2.13) are given by

(△χ −m2
J)ϕJ(χ

α) = 0 , (2.14)

where we have introduced the shorthand m2
J = −K(0)

J /K(2)
J as in previous work on GFT

cosmology [22]. In spite of the suggestive notation, m2
J is not positive definite: its sign

depends on the signs of the couplings K(0)
J and K(2)

J in the GFT action under consideration.

Notice also that in natural units (~ = c = 1) mJ has units of length rather than mass: in

the effective cosmological dynamics of GFT mJ defines the effective Planck length. On the

other hand, m2
J appears in (2.14) on the same footing as an m2 term in standard (Euclidean)

scalar field theory. It is mainly for this reason that we adopt the notation from [22] here.

The case m2
J > 0 is most relevant for cosmological applications since it allows for

exponentially growing (and decaying) solutions which can be interpeted as resulting in an

expanding (or collapsing) geometry rather than a ‘static’ one formed by oscillatory modes.

Let us stress that in general each J mode can have a different value of m2
J , and that in

general some modes will have m2
J > 0 and others will have m2

J < 0. A concrete and common

example would be a kinetic term involving Laplace–Beltrami operators on SU(2), for which

K(0)
J = µ−

∑

a

ja(ja + 1) , K(2)
J = τ ⇒ m2

J =

∑

a ja(ja + 1)− µ

τ
. (2.15)

As pointed out in [31], for this form of kinetic term and assuming τ < 0 and µ > 0, only a

finite number of ‘low’ spins ja have m2
J > 0 and lead to exponentially growing solutions.

We will keep the form of m2
J general in what follows.

The equation of motion (2.14), for each mode J , is an eigenvalue equation for the Laplace

operator on RD. This is an elliptic partial differential equation. Such an equation has a well-

posed boundary value problem, where the values of ϕJ would be prescribed on the boundary

of a suitably chosen domain in RD. To define a Hamiltonian formalism for this GFT, we will

however study an initial value problem where a particular direction in RD plays the role of

‘time’ and initial data are specified on a hypersurface orthogonal to this direction. Such an

initial value problem is not well-posed; it is unstable in the sense that small perturbations of

the initial data grow exponentially.3 As we already noted, this instability is in fact necessary

to obtain a physically satisfactory cosmology. Nevertheless, the attempt to define an initial

3 The Cauchy problem for a Laplace equation is probably the most famous example of an ill-posed problem

in analysis [54, 55].
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value problem for a differential equation of elliptic type will lead to some pecularities and

pathologies in the resulting Hamiltonian theory. In particular, the introduction of a preferred

‘time’ direction will force us to break the E(D) symmetry of the action (2.13) and field

equation (2.14) to a smaller group E(d)× E(1), where transformations mixing the ‘time’

and the remaining directions are no longer symmetries of the theory.

Our initial assumption that we can restrict ourselves to a free action quadratic in the group

fields therefore has severe limitations. While it may be possible to neglect interaction terms

for suitable initial conditions, the exponential instability in the free theory will mean that

interactions dominate after a finite time. We therefore expect the physical picture provided

by the Hamiltonian formalism to be at best a good approximation for certain initial states

and finite times. Asymptotic statements where the Hamiltonian evolution is extrapolated

to infinity are not strictly valid. They can, however, provide reliable approximations for a

period of time which may be sufficiently long for practical purposes. These are well-known

issues in the study of cosmological dynamics from GFT [22, 23, 37]. All proposals for GFT

models for quantum gravity are interacting field theories, presumably only well-defined in

the path integral setting.

III. CANONICAL QUANTISATION

In this section we generalise the canonical formalism of GFT introduced in [36] to the case

where the group field takes multiple massless scalar fields as arguments. In the previously

studied case of a single massless scalar field, each group field mode (corresponding to a

specific set of Peter–Weyl representation labels) evolves only in scalar field ‘time’, and

the resulting formalism is that of standard quantum mechanics. Inclusion of one or more

additional massless scalar fields then results in a formalism analogous to quantum field

theory: one scalar field plays the role of time and the other fields are analogous to spatial

coordinates.4 We will see in detail how the resulting Hamiltonian GFT, restricted to a

single set of representation labels, is analogous to a scalar field theory in standard canonical

quantisation.

4 Indeed, a sufficiently large number of scalar fields can be used to construct a relational coordinate system

for space and time [53, 56, 57].
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A. Distinguished scalar field as relational clock

We now split the D massless scalar fields as χα = (χ0,χ), where χ = (χ1, . . . , χd). It

should be clear that, since all D matter fields are coupled in the same way, any of them

can be singled out as a distinguished field (here χ0). The label is in line with the usual

coordinate labels in spacetime physics, where 0 denotes time: χ0 will serve as a relational

clock from now on.

We now also assume that the GFT action is specified by the effective field theory kinetic

term (2.13), and that the interaction term V [ϕ] in (2.2) is negligible. The latter assumption

can be viewed, alternatively, as working at zeroth order in the GFT coupling(s) in the

interaction picture.

Having identified a variable as time allows to compute the conjugate momentum to ϕJ ,

πJ(χ
α) =

δS[ϕ]

δ
(

∂χ0ϕJ(χα)
) = −K(2)

J

∂ϕJ(χ
α)

∂χ0
. (3.1)

The kinetic term (2.13) can then be written as (with field arguments omitted)

K[ϕ] =

∫

dDχ
∑

J

(

πJ
∂ϕJ

∂χ0
− K(2)

J

2

(

− 1

|K(2)
J |2

π2
J + ϕJ

(

−
(

∂

∂χ

)2

+m2
J

)

ϕJ

))

(3.2)

where we introduced the notation
(

∂
∂χ

)2
for the Laplacian on Rd which only acts on the

‘spatial’ matter fields. This expression allows one to read off the free Hamiltonian

H =

∫

ddχ
∑

J

K(2)
J

2

(

− 1

|K(2)
J |2

πJ(χ
α)2 + ϕJ(χ

α)

(

−
(

∂

∂χ

)2

+m2
J

)

ϕJ(χ
α)

)

. (3.3)

Decomposing the fields in their Fourier modes on Rd

ϕJ(χ
α) =

∫

ddk

(2π)d
eik·χϕJ(χ

0,k) , (3.4a)

πJ(χ
α) =

∫

ddk

(2π)d
eik·χπJ(χ

0,k) (3.4b)

allows one to write H =
∑

J

∫

ddk
(2π)d

HJ(k), with the definition of the single-mode Hamilto-

nian (density)

HJ(k) =
K(2)

J

2

(

− 1

|K(2)
J |2

πJ(χ
0,−k)πJ(χ

0,k) + ωJ(k)
2ϕJ(χ

0,−k)ϕJ(χ
0,k)

)

, (3.5)
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where we defined ωJ (k)
2 = k2 +m2

J . Clearly at the level of the free theory all J modes and

all wavenumbers k are decoupled and can be studied separately.

The use of a Fourier transform to decompose the fields into wavenumbers is familiar and

may appear innocent, but in a sense indicates the key feature of the Hamiltonian formalism

for GFT that we will encounter in this paper. Assuming that the fields ϕJ and πJ , seen as

functions of the χ at a given value of χ0, can be expanded into Fourier modes means that

we are excluding from this point modes which grow exponentially in any of the directions

parametrised by χ. Such restrictions are needed to define an initial value problem: initial

data are not arbitrary but satisfy certain regularity conditions. Here we might require

that the fields ϕJ and πJ are square-integrable on each ‘constant time’ hyperplane Rd.

This is illustrated in Fig. 1. Such a requirement would be particularly natural when the

purpose of group field theories is seen as a second quantisation of LQG spin networks

[21] whose wavefunctions similarly have to be square-integrable on the configuration space

of a given spin network. Nevertheless such a requirement breaks the E(D) covariance

of the Lagrangian theory. We have introduced a preferred slicing of RD into constant χ0

hyperplanes and demand that fields are regular on each hyperplane, whereas generic solutions

grow exponentially in the χ0 direction and hence would not satisfy square integrability with

respect to any other slicing of RD.

χ1 χd

χ0

Figure 1. The formalism presented in the main text requires a particular foliation of RD, namely

in terms of χ0 = const hyperplanes which are shown in green (plain). The group field and its

momentum will be regular on each leaf only for this foliation. Any other choice, exemplified by the

foliation shown in red (dotted), would lead to nonregular field configurations on each leaf.
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B. Quantisation

In the Hamiltonian framework it is straightforward to pass to a quantum theory. In this

case we promote the group field and its conjugate momentum to operators that satisfy the

equal-time canonical commutation relations

[ϕ̂J(χ
0,χ), π̂J ′(χ0,χ′)] = iδJJ ′δ(χ− χ′) (3.6)

which can alternatively be stated in terms of the Fourier modes

[ϕ̂J(χ
0,k), π̂J ′(χ0,k′)] = iδJJ ′(2π)dδ(k + k′) . (3.7)

The appearance of equal-time commutation relations between fundamental operators is

the key property of the deparametrised approach to a canonical quantisation of GFT, as

proposed for a toy model in [35] and also suggested from a slightly different perspective on

GFT in [58]. This is opposed to an algebra in which operators at different times χ0 and χ0′

commute, which had been assumed in previous work starting from [17].

It is then desirable to express the field operators in terms of creation and annihilation

operators that satisfy the commutation relations of the Heisenberg algebra and are Hermitian

conjugates. The time-dependent operators5

âJ(χ
0,k) = AJ(k)ϕ̂J(χ

0,k) +
i

2AJ(k)
π̂J(χ

0,k) , (3.8a)

â†J(χ
0,k) = AJ(k)ϕ̂J(χ

0,−k)− i

2AJ(k)
π̂J(χ

0,−k) , (3.8b)

where AJ (k) is an arbitrary real function, satisfy the ladder operator commutation relations

[âJ(χ
0,k), â†J ′(χ

0,k′)] = δJJ ′(2π)dδ(k − k′) . (3.9)

Let us assume that AJ(k) = AJ(−k). Inserting (3.8) into (3.5) gives

ĤJ(k) =
K(2)

J

2

((

AJ(k)
2

|K(2)
J |2

+
ωJ(k)

2

4A(k)2

)

(

âJ(k)âJ(−k) + â†J(k)â
†
J(−k)

)

−
(

AJ(k)
2

|K(2)
J |2

− ωJ(k)
2

4A(k)2

)

(

âJ(−k)â†J(−k) + â†J(k)âJ(k)
)

)

,

(3.10)

where the operators are now to be viewed as being given in the Schrödinger picture: the

Hamiltonian ĤJ (k) does not evolve in time and hence can be evaluated in either Heisenberg

5 Recall that for real fields we have ϕ̂J(χ
0,−k) = ϕ̂

†
J(χ

0,k) and π̂J(χ
0,−k) = π̂

†
J(χ

0,k).
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or Schrödinger picture. Up to now AJ(k) is any even real function. For ωJ(k) 6= 0 there is

a natural choice for this function, namely

AJ(k) =

√

|ωJ(k)||K(2)
J |

2
, (3.11)

which leads to a simple expression for the resulting Hamiltonian. Depending on the sign

of ωJ(k)
2 one then obtains either a harmonic oscillator Hamiltonian (ωJ(k)

2 < 0) or a

squeezing Hamiltonian (ωJ(k)
2 > 0). The first type of Hamiltonian is of the form

ĤJ(k) = − sgn(K(2)
J )

|ωJ(k)|
2

(

âJ(−k)â†J(−k) + â†J(k)âJ(k)
)

. (3.12)

Such a Hamiltonian has a stable ground state and would lead to a ‘static’ cosmology in its

geometric interpretation. For a generic GFT model one would expect that there are modes

with such Hamiltonians. Notice that since ωJ (k)
2 = k2 +m2

J this case requires that m2
J < 0

and |k| <
√

−m2
J .

The second case of a squeezing Hamiltonian leads to an exponentially growing instability;

hence, if there are such unstable modes, they are eventually going to give the dominant

contribution to the overall dynamics. The modes for which ωJ (k)
2 > 0 are hence the modes

of main interest and in the following we will restrict ourselves to this case. Note that even if

m2
J < 0, all modes with large enough |k| fall into this category. The squeezing Hamiltonian

we are going to consider is therefore given by

ĤJ(k) = sgn(K(2)
J )

ωJ(k)

2

(

âJ(k)âJ(−k) + â†J(k)â
†
J(−k)

)

. (3.13)

This is the type of Hamiltonian that generates squeezing in quantum optics, in the sense

that it produces a squeezed state out of, e.g., the Fock vacuum. The fact that cosmological

evolution in a universe filled with a massless scalar field can be described as squeezing was

the key insight of [35].

C. Equations of motion

Returning to the Heisenberg picture, the creation and annihilation operators have to

obey the Heisenberg equations of motion

∂

∂χ0
âJ(χ

0,k) = −i[âJ(χ
0,k), Ĥ] , (3.14a)

∂

∂χ0
â†J(χ

0,k) = −i[â†J(χ
0,k), Ĥ] . (3.14b)
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We now assume that all relevant modes have dynamics given by a squeezing type Hamiltonian

(3.13). In this case the solutions are given by

â(χ0,k) = â(k) cosh(ωJ(k)χ
0)− i sgn(K(2)

J )â†J(−k) sinh(ωJ(k)χ
0) , (3.15a)

â†(χ0,k) = â†(k) cosh(ωJ(k)χ
0) + i sgn(K(2)

J )âJ(−k) sinh(ωJ(k)χ
0) . (3.15b)

The time-dependent group field and conjugate momentum are therefore given by

ϕ̂J(χ
0,k) = ϕ̂J(k) cosh(ωJ(k)χ

0)− 1

ωJ(k)K(2)
J

π̂J(−k) sinh(ωJ(k)χ
0) , (3.16a)

π̂J(χ
0,k) = π̂J(k) cosh(ωJ(k)χ

0)− ωJ(k)K(2)
J ϕ̂J(−k) sinh(ωJ(k)χ

0) . (3.16b)

In these equations, operators without explicit χ0 dependence denote operators at initial

time χ0 = 0 or equivalently the operators defined in the Schrödinger picture. Note that

(3.16) is consistent with (3.1). The exponential instability in the Hamiltonian dynamics

is evident from these expressions. An observable built from â(χ0,k) and â†(χ0,k) will

typically diverge as eN |ωJ (k)χ
0| towards the past and future, where N is the number of ladder

operators appearing in the observable. We will see explicit examples of this below.

D. Symmetries and conserved quantities

In classical field theory, Noether’s theorem provides a relation between continuous

symmetries of a system and its conserved quantities [59]. In the following we write the

action as S[ϕ] =
∫

dDχL(ϕ, ∂χϕ) and refer to the scalar density L as the Lagrangian. If

the Lagrangian is invariant under the infinitesimal transformations

χα 7→ χα + δχα , ϕJ 7→ ϕJ + δϕJ , (3.17)

there is a divergenceless current

Jα =
∑

J

∂L
∂ (∂αϕJ)

δϕJ −
(

∑

J

∂L
∂ (∂αϕJ)

∂βϕJ − δαβL
)

δχβ , (3.18)

where ∂α = ∂/∂χα and the Einstein summation convention is used for the indices denoting

the scalar field components. The current gives rise to quantities that are conserved with

respect to relational time

Q =

∫

ddχ J0(χα) ,
∂

∂χ0
Q = 0 . (3.19)
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Conserved quantities are crucial in the physical interpretation of a quantum state both in

standard quantum field theory and in GFT.

On the quantum level we adopt a normal ordering prescription, such that all the

annihilation operators are to be placed to the right of any creation operators. Normal

ordering is denoted by : · :. Notice that in the Heisenberg picture normal ordering has to

be performed at the level of the time-dependent operators (as opposed to the operators

evaluated at the initial time).

The simplest symmetries are translations χα 7→ χα + ǫα. The Lagrangian (2.13) is

invariant under translations and has a corresponding current Jα = Θαβǫβ with

Θαβ = −
∑

J

∂L
∂ (∂αϕJ)

∂βϕJ + δαβL =
∑

J

K(2)
J

∂ϕJ

∂χα

∂ϕJ

∂χβ
+ δαβL . (3.20)

From this one can define the total momentum of the group field

P̂α =

∫

ddχ : ̂Θ0α(χα) : . (3.21)

The P̂0 component of this expression gives the total Hamiltonian (with an overall change in

sign)

P̂0 = −
∑

J

sgn(K(2)
J )

∫

ddk

(2π)d
ωJ(k)

2

(

âJ(k)âJ(−k) + â†J(k)â
†
J(−k)

)

(3.22)

and the remaining ‘spatial momentum’ components are given by

P̂ =
∑

J

P̂J = −
∑

J

∫

ddχ : π̂J(χ
α)∇ϕ̂J(χ

α) :=
∑

J

∫

ddk

(2π)d
k â†J(k)âJ(k) . (3.23)

Writing the Lagrangian as L =
∑

J LJ each LJ in the sum is separately invariant under

arbitrary translations. It follows that in the sums over J appearing in the total Hamiltonian

(3.22) and momentum (3.23), each J component is already conserved individually.

While P̂0 and P̂ initially appear to be part of a D-dimensional vector, once they are

expressed in terms of creation and annihilation operators we again observe the symmetry

breaking exhibited by our Hamiltonian formalism: the components of P̂ transform covariantly

under rotations of the d ‘spatial’ scalar fields but momentum and Hamiltonian take quite

different forms. We will see below that the operators associated to ‘boosts’, rotations that

mix the ‘time’ and ‘space’ components of RD, also take an unusual form in our setting

and that the full set of conserved quantities still satisfies the algebra of the full Euclidean

group E(D). Notice also that the total momentum involves an integral over the number
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density â†J(k)âJ(k) weighted by the wavenumber k. While neither the number density nor

its integral over all k are conserved, time evolution by squeezing always creates pairs of

particles with opposite wavenumber leaving the total momentum conserved.

To give a physical interpretation to the conserved quantities Ĥ and P̂ , recall how in

Section II A we motivated the form of the GFT kinetic term using symmetry arguments: we

pointed out that the Lagrangian for a free massless scalar field χ on an arbitrary spacetime

background gµν is invariant under a shift symmetry χ 7→ χ + a. Of course according to

Noether’s theorem this shift symmetry is also associated with a conserved quantity, namely
∫

ddxπχ(x) = −
∫

ddx
√−g g0ν∂νχ , (3.24)

the total canonical momentum of the scalar field χ.

It is then very natural to interpret the conserved energy Ĥ and momentum P̂ in the

GFT as corresponding to the conserved canonical momenta (πχ)0 and πχ associated to the

D scalar matter fields, and we will use this interpretation in what follows. In the case where

a GFT state can be interpreted as a spatially homogeneous geometry, this interpretation

was already used in previous work such as [35, 37] where the Hamiltonian was interpreted as

the conjugate momentum of a single scalar matter field. Note however that these conserved

quantities exist both in the GFT formulated here and in usual scalar field theory on a fixed

background regardless of whether the geometry is spatially homogeneous.

The Lagrangian (2.13) is also invariant under infinitesimal rotations χα 7→ χα + δωα
βχ

β ,

where δωαβ is antisymmetric. The associated current is Jα = 1
2M

αβγδωβγ with

Mαβγ = Θαβχγ −Θαγχβ . (3.25)

The conserved quantity is an antisymmetric tensor

M̂αβ =

∫

ddχ : M̂0αβ :=

∫

ddχ (: Θ̂0αχβ − Θ̂0βχα :) . (3.26)

Its 0i-components are given by

M̂0i = − i

2

∑

J

sgn(K(2)
J )

∫

ddk

(2π)d
ωJ(k)

(

âJ(−k)
∂

∂ki
âJ(k)− â†J(−k)

∂

∂ki
â†J(k)

)

− P̂i χ0 ,

(3.27)

where P̂i is the i-component of the momentum given in (3.23).

The ij-components are reminiscent of the definition of an angular momentum and are

given by

M̂ij = i
∑

J

∫

ddk

(2π)d
â†J(k)

(

ki
∂

∂kj
− kj

∂

∂ki

)

âJ(k) . (3.28)
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By the same argument as given above for the case of translational symmetries, each J

component of these rotational charges is conserved separately.

We can again give a physical interpretation to these quantities by relating them to

conserved quantities of a theory with D massless scalar fields in a curved spacetime. Here

the analogous symmetry is under global infinitesimal ‘rotations’ χα 7→ χα + δωα
βχ

β that

mix these scalar fields, which leads to conserved quantities

−
∫

ddx
√−g g0ν

(

χβ∂νχ
α − χα∂νχ

β
)

=

∫

ddx
(

πα
χ(x)χ

β(x)− πβ
χ(x)χ

α(x)
)

(3.29)

for each pair (χα, χβ) of scalar fields. We will not make use of these ‘angular momentum’

quantities in the following but they contain physical information about GFT states beyond

that captured by the energy and momentum.

Finally, let us remark that the operators defined above satisfy the expected commutation

relations of infinitesimal generators of the Euclidean group E(D), i.e.

[M̂αβ , M̂γδ] = −i
(

δαγM̂βδ − δαδM̂βγ − δβγM̂αδ + δβδM̂αγ

)

, (3.30)

[M̂αβ , P̂γ ] = −i
(

δαγP̂β − δβγP̂α

)

. (3.31)

This shows that the Euclidean symmetry of the Lagrangian (2.13) is unbroken at the

kinematical level in the Hamiltonian theory obtained from canonical quantisation. We

will however see that the use of certain states of interest in physical applications, such

as coherent states, breaks the symmetry explicitly. From the perspective of conserved

quantities and symmetry generators this is because ‘spatial’ rotations leave this class of

states invariant whereas ‘boosts’ do not, similar to how we introduced a preferred foliation

for field configurations before quantisation. Since coherent states are peaked on a classical

phase-space configuration it is not surprising that they inherit the broken symmetry that

we have observed already in the classical theory.

E. Observables

The conserved quantities we have identified provide important observables that can be

used to characterise GFT states. Other observables with nontrivial time dependence can

also be defined. An important quantity is the total particle number

N̂(χ0) =
∑

J

∫

ddk

(2π)d
â†J(χ

0,k)âJ(χ
0,k) . (3.32)
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This is in general not conserved due to the particle creation by squeezing, so this observable

has genuine dependence on relational time χ0 and we must use the time-dependent ladder

operators when working in the Heisenberg picture. The integrand â†J(χ
0,k)âJ(χ

0,k) gives

a particle number density associated to a ‘species’ J and wavenumber k.

A geometric interpretation can be given to states in the GFT Fock space by importing

operators from loop quantum gravity [21]. Here the most basic object is the volume operator

V̂ (χ0) =
∑

J

vJ

∫

ddk

(2π)d
â†J(χ

0,k)âJ(χ
0,k) (3.33)

where vJ is the volume eigenvalue associated to a single ‘quantum’, i.e., a geometric

tetrahedron or four-valent spin network vertex in LQG, with Peter–Weyl representation labels

J (see, e.g., [60] for background). This volume likewise has a nontrivial time dependence,

which we will study below in the cosmological interpretation of our Hamiltonian dynamics.

Deparametrisation using the scalar field χ0 as a relational clock has the usual consequence

that there can be no ‘time’ operator associated to χ0: instead, all other observables are

functions of χ0. Our quantum theory has been defined so that all its observables are related

to the possible readings of the clock χ0.

We could attempt to define operators corresponding to the values of the scalar fields

χ. Such operators would allow extracting relational information about the evolution of

the d other matter fields relative to χ0. It should be clear that such operators would be

the analogue of position operators in standard scalar field theory and come with the usual

conceptual and practical difficulties associated with this concept. We could use the analogue

of Newton–Wigner position operators [61] to define matter fields for a single tetrahedron.

The usual objection that Newton–Wigner operators do not transform well under boosts

would not necessarily be an issue in our setting which is anyway only covariant with respect

to rotations of the d ‘spatial’ fields. We would then have to deal with other issues such as

the rather unclear physical meaning of the ‘total scalar field value’ given by the sum of all

values for a scalar field in a many-particle configuration (see [41, 62] for related discussions).

We will not study these operators further in this paper, but they may be of interest in future

work.

F. Coherent states

When computing expectation values, a choice of initial state must be made. A particularly

interesting class of states are the (Fock) coherent states which can be defined as being the
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eigenstates of the annihilation operator at the initial time when Heisenberg and Schrödinger

picture agree. These states have semiclassical behaviour and can be constructed so that

relative uncertainties in energy and volume become very small at late times, which can be

interpreted as the emergence of a classical universe in GFT [37].

In the formalism developed in this section coherent states can be defined as

|σ〉 = e−‖σ‖2/2 exp

(

∑

J

∫

ddk

(2π)d
σJ(k)â

†
J(k)

)

|0〉 , (3.34)

where |0〉 is the Fock vacuum and the norm ‖·‖ is given by

‖σ‖2 =
∑

J

∫

ddk

(2π)d
|σJ(k)|2 . (3.35)

Such coherent states are entirely characterised by complex functions σJ(k). To be more

specific, one often makes the assumption that only one or a few J modes contribute, in

which case the sum over J would simplify accordingly. Coherent states which are peaked at

certain values of k can be modelled by functions

σJ(k) =
∑

i

fǫ(k − ki)τ(ki) , (3.36)

where fǫ(k) depends on a parameter ǫ and is chosen such that

lim
ǫ→0

∫

ddk

(2π)d
|fǫ(k)|2φ(k) = φ(0) (3.37)

for a test function φ(k). An example of such a function is given by

fǫ(k) =

(

4π

ǫ2

)d/4

e−
k2

2ǫ2 . (3.38)

For this particular choice of fǫ(k) it is possible to perform an expansion in powers of ǫ

∫

ddk

(2π)d
|fǫ(k)|2φ(k) = φ(0) +

ǫ2

4
(∇2φ)(0) +O(ǫ4) . (3.39)

As can be seen from the solution to the equation of motion in Section III C, the (J,k)-

mode of an observable typically has a time dependence proportional to eN |ωJ (k)χ
0| for integer

N . Since for any given k there will always be a k′ for which ωJ (k
′) > ωJ (k), the contribution

of the mode (J,k′) to the observable will grow faster than that of (J,k). Therefore, unless

one chooses particularly fine-tuned initial conditions in which most modes are set exactly
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to zero at all times, the approximation in which only some distinguished modes (Ji,ki)

contribute is valid only for a certain finite time. As a consequence of this one can also

show that a state initially peaked at some value k0 will not remain peaked at that value

at later times; rather the wave number k∗ where the state is peaked is a function of time,

k∗ = k∗(χ0). For an observable that has a time dependence given by eNωJ (k)χ
0

for a mode

(J,k), the time dependence of the peak can be obtained by solving

d

dk

∣

∣

∣

∣

k=k∗

(

|fǫ(k − k0)|2eNωJ (k)χ
0
)

= 0 , (3.40)

where one can choose for definiteness fǫ to be given by (3.38). Indeed, for that choice one

finds in the limit k2
0 ≫ m2

J that at time χ0 the peak lies at

k∗ = k0

(

1 +
Nǫ2χ0

2|k0|

)

. (3.41)

The above discussion shows that care has to be taken when discussing wave packets that

have a finite width. In the examples where sharply peaked coherent states are used in the

following, we will content ourselves with the idealisation in which the state remains peaked

at the same value of k0 for all times; equivalently, we follow the time evolution only up

to a maximal time χ0
max ≪ 2|k0|

Nǫ2
. By tuning ǫ this maximal time can be made as large as

desired but it cannot be made infinite. This fact does not pose additional difficulties beyond

those discussed in Section IIB: we already assumed that interactions in the GFT can be

neglected and this assumption can only hold for a finite time, again due to the exponential

instability in our theory. One then needs to be careful and work with coherent states that

are sufficiently sharply peaked so that the time dependence of the peak does not become

significant within the regime of the nearly free theory.

IV. EFFECTIVE COSMOLOGY

We will now proceed with the main application of the canonical formulation of GFT,

namely the extraction of an effective cosmological dynamics, similarly to what has been done

in numerous examples before [17, 22, 32–35, 37]. The main new element in the derivation

we give in this paper is the use of a deparametrised form of GFT dynamics in a theory

describing quantum gravity coupled to multiple scalar matter fields. We will encounter

various subtleties arising in such a derivation.

As in previous work [37] our aim will be to derive general effective equations, interpreted

as GFT Friedmann equations, that make some simplifying assumptions about the quantum
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state but are otherwise as general as possible. Generally speaking, these equations involve

the total spatial volume, given as an expectation value of the volume operator (3.33), and

its derivative with respect to relational time given by the scalar field χ0. Such equations, in

the most general case, depend on an infinite number of initial condition parameters and as

such will not admit a straightforward solution or interpretation in terms of an emergent

effective cosmology, whose initial data are only given in terms of a few parameters. One then

restricts to more specific initial conditions: in particular, one can choose coherent states

which have semiclassical behaviour. The most drastic restriction usually made is to assume

that only a single Peter–Weyl mode J0 of the expansion (2.3) is relevant for the effective

dynamics. This assumption can be partially motivated by a dynamical argument [31] saying

that in a wide class of models a single mode will dominate asymptotically, but it is generally

a somewhat ad hoc choice made for computational convenience. States that only excite

a single mode J0 describe a configuration of geometric quanta of identical ‘shape’, which

one might see as the analogue of spatial homogeneity in a discrete setting such as GFT. In

hindsight, this interpretation is corroborated by the agreement of effective GFT dynamics

with classical Friedmann equations for homogeneous geometries that was found for such

states in [37] and many other examples. In the present framework in which multiple matter

fields are present, states and operators additionally depend on wavenumbers k associated

to these extra degrees of freedom. We will then similarly assume that the chosen state is

peaked on a single wavenumber k0, or pair of wavenumbers ±k0 (the second choice being

in line with the dynamics of squeezing which generates pairs of particles with ±k). Such

states are then candidates for spatially homogeneous geometries in this extended setting.

Rather than restricting to a single J0, in [22] ‘isotropic’ GFT states associated to a single

representation j were constructed out of modes that have the form

ϕj =
∑

m,ι

ᾱι
j Ī

j,ι
m ϕj,m,ι (4.1)

where we have reinstated the explicit form J = (j,m, ι) of the multi-index J . On the

right-hand side one chooses the ‘isotropic form’ j = (j, j, j, j) and thus the left-hand side

is specified by a single spin j; the weights αι
j are chosen to make the resulting state into

an eigenstate of the LQG volume operator with maximal eigenvalue. We will not use this

isotropic form in the following but our general results could be adapted to this choice.
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A. Regularised volume operator

The basic idea behind the cosmological application of GFT is to identify the volume of

the Universe with an expectation value of the GFT volume operator and therefore with a

weighted sum over the number operators which count the number of excited GFT quanta of

a specific type. Explicitly, we define the volume operator as

V̂ (χ0) =
∑

J

∫

ddk

(2π)d
V̂J(χ

0,k) , (4.2)

where the ‘partial volume densities’ are defined as

V̂J(χ
0,k) = vJ â

†
J(χ

0,k)âJ(χ
0,k) . (4.3)

This of course reproduces the definition for the GFT volume operator given in (3.33). Since

in our truncation to quadratic GFT dynamics all J and all k modes are decoupled, one can

study the dynamics of each V̂J(χ
0,k) separately.

Using (3.15) one finds

V̂J(χ
0,k) =

1

2

(

V̂J(k)− V̂J(−k)− vJc∞
)

+
1

2

(

V̂J(k) + V̂J(−k) + vJc∞
)

cosh(2ωJ(k)χ
0)

+ sgn(K(2)
J )

i

2
vJ

(

âJ(k)âJ(−k)− â†J(k)â
†
J(−k)

)

sinh(2ωJ(k)χ
0) ,

(4.4)

where V̂J (k) = vJ â
†
J (k)âJ (k) is the ‘partial volume density’ operator at initial time and c∞

is a formally divergent quantity as explained in more detail below.

The total volume takes the somewhat simpler form

V̂ (χ0) =
∑

J

∫

ddk

(2π)d

[

− vJc∞
2

+
(

V̂J(k) +
vJc∞
2

)

cosh(2ωJ(k)χ
0)

+ X̂J(k) sinh(2ωJ(k)χ
0)
]

,

(4.5)

with the shorthand

X̂J(k) = sgn(K(2)
J )

i

2
vJ

(

âJ(k)âJ(−k)− â†J(k)â
†
J(−k)

)

. (4.6)

The quantity c∞ introduced in (4.4) is equal to the contact term

c∞ = [âJ(k), â
†
J(k)] (4.7)
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which formally diverges, c∞ = (2π)dδ(k)|k=0. The total volume, and in fact already each

partial volume density, would appear to be infinite for any time other than χ0 = 0. The

volume operator hence requires regularisation in order to describe a meaningful quantity.

Physically, the divergence in V̂J(χ
0,k) arises because we have now defined a squeezed

state in a quantum field theory, which has an infinite number of degrees of freedom (even

for each individual representation label J). Each of the field modes gets squeezed by the

Hamiltonian (3.13). The analogue of such a state in (continuum) quantum optics describes

a stationary light beam which is likewise associated with infinite particle number [63].

Standard regularisation prescriptions in quantum field theory amount to setting c∞ → 0.

For instance, one could replace (4.2) by a regularised volume operator

V̂reg(χ
0) = lim

ǫ→0

∑

J

vJ

(∫

ddk

(2π)d
ddk′

(2π)d
χǫ(k − k′)â†J(χ

0,k)âJ(χ
0,k′)− divergent terms

)

,

(4.8)

where χǫ(k − k′) is the regularisation of a delta distribution such as a Gaussian, which

depends on a parameter ǫ (see the discussion in Section III F), and we subtract terms that

diverge as ǫ → 0. Since limǫ→0 χǫ(0) = ∞ we need to set c∞ → 0. Such a regularised volume

operator only counts particles relative to the ‘background’ which is already generated by

squeezing the vacuum. Indeed, an alternative regularisation prescription (which leads to the

same result) would be to subtract the vacuum contribution, i.e.

V̂reg(χ
0) = V̂ (χ0)− 〈0|V̂ (χ0)|0〉 , (4.9)

where |0〉 is the Fock vacuum. The proposal is then that only this regularised quantity is

relevant for describing an effective dynamics for the emergent geometry.

We will leave c∞ general in the following in order to study the impact of this regularisation

procedure on the effective cosmological dynamics. Notice that for c∞ 6= 0 the total volume

(4.5) contains a divergent term

∑

J

vJc∞
2

∫

ddk

(2π)d
(

cosh(2ωJ(k)χ
0)− 1

)

(4.10)

which requires additional regularisation, e.g., by cutoffs in the k integral and sum over J .

B. Effective Friedmann equation

In the case of a classical flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric

coupled to D = d+ 1 massless scalar fields χ0, χ1, . . . , χd the Friedmann equation can be
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written as
(

V ′(χ0)

V (χ0)

)2

= 12πG

(

1 +
(πχ)

2
1 + · · ·+ (πχ)

2
d

(πχ)20

)

, (4.11)

where the volume V is expressed as a function of the massless scalar field χ0, (πχ)α is the

momentum of the scalar field χα and G is Newton’s constant. To see explicitly how to

obtain (4.11) from the usual form of the Friedmann equation, one can first write the latter

in terms of a volume variable V (t) ∝ a3(t) where a(t) is the usual scale factor and t is

a general time variable (not necessarily proper time). In this notation the usual general

relativistic (first) Friedmann equation is

(

V ′(t)
N(t)V (t)

)2

= 24πGρ(t) = 12πG

(

(πχ)
2
0 + (πχ)

2
1 + · · ·+ (πχ)

2
d

V (t)2

)

, (4.12)

where the total matter energy density is ρ(t) =
∑

α ρα(t) and ρα(t) = (πχ)
2
α/(2V (t)2) for

each of the D massless scalar fields. To fix the lapse function N(t), specify to the case where

t ≡ χ0 is identified with the value of one of the scalar fields. Using the definition of the

conjugate momentum

(πχ)0 =
1

N(t)

dχ0(t)

dt
V (t) , (4.13)

we see that if t ≡ χ0 we have N(t) = V (t)/(πχ)0. Inserting this relation into (4.12) yields

(4.11). In the previously studied case [22] where only a single matter field was present, the

right-hand side of (4.11) was simply a constant but here it depends on the values of all

conserved momenta (πχ)α.

An effective Friedmann equation for GFT is obtained by determining the analogous

expression for expectation values of the GFT volume operator (4.2). Here, by differentiating

(4.5) with respect to χ0 and using (4.4) before taking expectation values, we find that

〈V̂ ′(χ0)〉2 =
∑

J,J ′

∫

ddk

(2π)d
ddk′

(2π)d
4ωJ(k)ωJ ′(k′)

×
√

(

〈V̂J(χ0,k)〉 − 〈V̂J(k)〉
)(

〈V̂J(χ0,k)〉 + 〈V̂J(−k)〉 + vJc∞
)

+ 〈X̂J(k)〉2

×
√

(

〈V̂J ′(χ0,k′)〉 − 〈V̂J ′(k′)〉
)(

〈V̂J ′(χ0,k′)〉 + 〈V̂J ′(−k′)〉 + vJc∞
)

+ 〈X̂J ′(k′)〉2 .
(4.14)

This effective Friedmann equation is completely general, but does not admit a straightforward

cosmological interpretation as it depends on the initial condition parameters V̂J(k) and
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X̂J (k) in a rather complicated way; taking the quotient 〈V̂ ′(χ0)〉2/〈V̂ (χ0)〉2 will not lead to

an expression that can be simplified easily.

C. Late-time limit

The first consistency check for the effective cosmological dynamics in our model is whether

they reduce to those of general relativity at large volume or low energy density.

The time-dependent expression (4.4) shows that each expectation value 〈V̂J (χ
0,k)〉 grows

exponentially for early or late times if the mode is excited at all initially (the only other

possibility is to set c∞ = 0 and choose the Fock vacuum with 〈V̂J(k)〉 = 〈X̂J(k)〉 = 0,

in which case the mode does not contribute to the dynamics). This implies that for each

relevant mode, at a sufficiently early or late time

〈V̂J(χ
0,k)〉 ≫ 〈V̂J(±k)〉 , 〈V̂J(χ

0,k)〉 ≫ 〈X̂J(k)〉 . (4.15)

In this limit any dependence of the effective Friedmann equation (4.14) on these initial

condition parameters then disappears, and one obtains in the limit of large |χ0|
(

〈V̂ ′(±∞)〉
〈V̂ (±∞)〉

)2

=

∑

J,J ′

∫

ddk
(2π)d

ddk′

(2π)d
4ωJ(k)ωJ ′(k′)〈V̂J(±∞,k)〉〈V̂J ′(±∞,k′)〉

∑

J,J ′

∫

ddk
(2π)d

ddk′

(2π)d
〈V̂J(±∞,k)〉〈V̂J ′(±∞,k′)〉

. (4.16)

The limit of infinite χ0 which is suggested by the notation is an idealisation since, as we

already stressed a few times, our quadratic Hamiltonian dynamics will break down at some

finite time when GFT interactions will become relevant. Nevertheless, for states whose

dynamics are described by the free GFT dynamics for a sufficiently long period of time, this

asymptotic form will be a good approximation once all relevant modes have been sufficiently

excited by squeezing.

We can simplify the asymptotic form (4.16) of the effective dynamics further in the

special case for which only one or two modes (J0,±k0) are relevant, the case in which

these states could be interpreted as (approximately) spatially homogeneous geometries. In

this case, the function ωJ(k) can be approximated by its value ωJ0(k0) for these dominant

modes, and taken out of the integral and sum. Equation (4.16) then simplifies to

(

〈V̂ ′(±∞)〉
〈V̂ (±∞)〉

)2

≈ 4ωJ0(k0)
2 = 4(m2

J0 + k2
0) . (4.17)

One would now like to verify that these asymptotic dynamics are compatible with the

dynamics of an FLRW universe in general relativity, as was done in previous work for GFT



29

models involving a single scalar matter field. First, in order to reproduce this previously

studied case, we can consider the limit in which the contribution from the scalar fields

χ1, . . . , χd is negligible. This amounts to assuming k0 ≪ m2
J0

in (4.17). The dynamics of

general relativity can be recovered in this case if one makes the identification m2
J0

= 3πG of

the GFT coupling parameter mJ0 with the classical Newton’s constant G, as was done in

previous work [22, 23, 31, 35, 37].

In the more general case, the right-hand side of (4.17) depends on the quantity k0 which

also needs to be given a cosmological interpretation. The expectation value of the GFT

momentum (3.23) is approximately

〈P̂ 〉 =
∫

ddk

(2π)d
k〈â†J0(k)âJ0(k)〉 ≈ k0

(

〈N̂+〉 − 〈N̂−〉
)

. (4.18)

where N̂+ and N̂− denote the initial number of quanta in the mode +k0 and −k0, respectively.

(Notice that the operators appearing in this equation are the operators at time χ0 = 0.)

As discussed in Section IIID the GFT momentum P̂ can be interpreted as corresponding

to the conjugate momentum πχ of the d ‘spatial’ matter fields, which appears in the

classical Friedmann equation (4.11). Likewise, the energy Ĥ is interpreted as the conjugate

momentum of the ‘clock’ field χ0.

We can then write (4.17) as

(

〈V̂ ′(±∞)〉
〈V̂ (±∞)〉

)2

≈ 4m2
J0






1 +

〈P̂ 〉2
(

〈N̂+〉 − 〈N̂−〉
)2

m2
J0






. (4.19)

The combination 〈N̂+〉 − 〈N̂−〉 is related to the choice of initial conditions, but it does not

have a direct interpretation in terms of (cosmological) late-time dynamics. For some more

specific states, (〈N̂+〉 − 〈N̂−〉)2m2
J0

is approximately equal to the energy squared

〈Ĥ〉2 ≈ ω2
J0(k0)

(∫

ddk

(2π)d
1

2

〈

âJ0(k)âJ0(−k) + â†J0(k)â
†
J0
(−k)

〉

)2

(4.20)

but this is not true in general, as we will see shortly when specifying to coherent states. In

the general case, one can then only bring (4.19) into the suggestive form

(

〈V̂ ′(±∞)〉
〈V̂ (±∞)〉

)2

≈ 4m2
J0

(

1 + κ2
〈P̂ 〉2

〈Ĥ〉2

)

(4.21)

where κ is a function of initial conditions and can, but does not need to be, close to one.

Agreement with the classical Friedmann dynamics (4.11) at late times or large volume is
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then only reached for rather specific initial states. The underlying reason for this perhaps

puzzling result is again the symmetry breaking of our Hamiltonian formalism from E(D) to

the smaller group E(d)× E(1): while in the approximation (4.18) the momentum 〈P̂ 〉 is

directly related to the initial number of particles in different modes, the same is not true for

the energy which is an a priori independent initial condition parameter.

There is a possible, though at this stage rather tentative, physical interpretation of the

appearance of κ 6= 1 in (4.21) as including the effect of inhomogeneities in the geometry. We

focused on states peaked on only one or two modes (J0,±k0) which are the best candidates

for describing spatially homogeneous geometries. However, interpreting the scalars χ as

relational spatial coordinates as suggested in [56, 57] would seem to imply that states with

k0 6= 0 should rather be thought of as describing ‘periodically inhomogeneous’ effective

geometries, whose inhomogeneities take the form of a plane wave. (In the somewhat related

setting of [53] only k0 = 0 was considered as a homogeneous background for perturbations.)

Similarly, scalar fields χ that can serve as useful relational coordinates cannot be exactly

homogeneous in space. Exploring this idea further would rely on a clearer understanding of

inhomogeneities in the setting of GFT coupled to multiple matter scalar fields, which we

must leave to future work. In Appendix B we show an example in classical general relativity

for which periodic inhomogeneities can modify the coupling of the matter energy density

appearing in the effective Friedmann equation, but the relation of this example to GFT

cosmology is not yet clear.

D. Single & double mode coherent states

Up to now the discussion was independent of any specific choice of initial state. We will

now discuss several special cases for such an initial state and consider the general form of

the effective dynamics, including also nontrivial quantum geometry effects. In the following

we will only consider the regularised volume operator with c∞ = 0, that is we neglect all

the contributions from the ‘vacuum’ geometry, in order to avoid further regularisation and

divergence issues (cf. the discussion in Section IV A).

The time-dependent expression (4.5) for the total volume simplifies drastically if we

assume again that the initial state is sharply peaked on two modes (J0,±k0):

〈V̂ (χ0)〉 =
∑

J

∫

ddk

(2π)d

[

〈V̂J(k)〉 cosh(2ωJ(k)χ
0) + 〈X̂J(k)〉 sinh(2ωJ(k)χ

0)
]

≈ 〈V̂ 〉 cosh(2ωJ0(k0)χ
0) + 〈X̂〉 sinh(2ωJ0(k0)χ

0) ,

(4.22)
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where V̂ =
∑

J

∫

ddk
(2π)d

V̂J(k) is the total volume at initial time and we defined

X̂ =
∑

J

∫

ddk

(2π)d
X̂J(k) =

∑

J

sgn(K(2)
J )

i vJ
2

∫

ddk

(2π)d

(

âJ(k)âJ(−k)− â†J(k)â
†
J(−k)

)

.

(4.23)

The simplified form (4.22) satisfies a straightforwardly derived Friedmann equation,

which corresponds to (4.14) in this specific case.

First consider the even more specific case of a ‘single mode’ state for which only one

mode (J0,k0) is relevant. In this case we find that

〈V̂ ′(χ0)〉2sm
〈V̂ (χ0)〉2sm

= 4ωJ0(k0)
2

(

1− 〈V̂ 〉2sm
〈V̂ (χ0)〉2sm

)

, (4.24)

Notice that for this type of state the expectation values of both X̂ and Ĥ vanish; thus,

higher curvature corrections of the type seen in loop quantum cosmology, which would give

a term proportional to the matter energy density inside the brackets in (4.24), cannot be

seen in this approximation in which the energy density is zero. Such a single mode state

can be realised by a coherent state with a coherent state function given by

(σsm)J(k) = δJJ0fǫ(k − k0)τ(k0) , (4.25)

where fǫ(k) is defined in (3.37) and it is to be understood that all corrections involving powers

of ǫ are neglected at the end. The single mode coherent state functions are characterised by

the value of the complex quantity τ(k0). In terms of this quantity the expectation value of

N̂ is given by

〈N̂〉sm = |τ(k0)|2 (4.26)

and the initial volume is 〈V̂ 〉sm = vJ0〈N̂〉sm.

Now consider a more general ‘double mode’ state where two modes (J0,±k0) are relevant.

For this type of state the effective Friedmann equation is given by

〈V̂ ′(χ0)〉2
dm

〈V̂ (χ0)〉2
dm

= 4ωJ0(k0)
2

(

1− 〈V̂ 〉2
dm

〈V̂ (χ0)〉2
dm

+
〈X̂〉2

dm

〈V̂ (χ0)〉2
dm

)

. (4.27)

Such a double mode state can be realised by a coherent state with coherent state function

(σdm)J(k) = δJJ0(fǫ(k − k0)τ(k0) + fǫ(k + k0)τ(−k0)) . (4.28)
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The double mode coherent state function is characterised by two complex parameters,

τ(±k0). In terms of these parameters the expectation values of the operators N̂ and X̂ are

given by (again 〈V̂ 〉dm = vJ0〈N̂〉dm)

〈N̂〉dm = |τ(k0)|2 + |τ(−k0)|2 , (4.29)

〈X̂〉dm = ivJ0 sgn(K
(2)
J0

) (τ(k0)τ(−k0)− τ̄(k0)τ̄(−k0)) . (4.30)

The values of the relevant components of the Hamiltonian and the total momentum for such

a double mode coherent state are

〈Ĥ〉dm = sgn(K(2)
J0

)ωJ0(k0) (τ(k0)τ(−k0) + τ̄(k0)τ̄(−k0)) , (4.31)

〈P̂ 〉dm = k0

(

|τ(k0)|2 − |τ(−k0)|2
)

. (4.32)

For these double mode coherent states, we can now compare the combination (〈N̂+〉 −
〈N̂−〉)2m2

J0
with the energy squared 〈Ĥ〉2 as discussed at the end of Section IV C. Separating

the coherent state parameters τ(±k0) into modulus and phase as suggested in [22], we have

τ(±k0) = ρ±eiθ± and

〈Ĥ〉2dm = 4
(

m2
J0 + k2

0

)

(ρ+ρ−)
2 cos2(θ+ + θ−) , (4.33)

(

〈N̂+〉dm − 〈N̂−〉dm

)2
m2

J0 = m2
J0

(

ρ2+ − ρ2−
)2

. (4.34)

Clearly one can find states with 〈Ĥ〉2
dm

≈
(

〈N̂+〉dm − 〈N̂−〉dm

)2
m2

J0
, which is required for

a late-time limit consistent with general relativity, but this is not the generic situation. Such

states only exist if the moduli ρ+ and ρ− of the coherent state parameters are comparable.

For instance, in the limit k2
0 ≪ m2

J0
the late-time limit is consistent with general relativity

for states that satisfy

|cos(θ+ + θ−)| =
|ρ2+ − ρ2−|
2ρ+ρ−

(4.35)

which implies the necessary condition

(
√
2− 1)ρ+ ≤ ρ− ≤ (

√
2 + 1)ρ+ . (4.36)

For double mode coherent states we can bring (4.27) into a different form with a more

direct cosmological interpretation. Namely, for such states

v2J0
ωJ0(k0)2

〈Ĥ〉2dm +
v2J0
k2
0

〈P̂ 〉2dm = 〈V̂ 〉2dm − 〈X̂〉2dm (4.37)
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and (4.27) can also be written as

〈V̂ ′(χ0)〉2
dm

〈V̂ (χ0)〉2
dm

= 4ωJ0(k0)
2

(

1−
v2J0〈P̂ 〉2

dm

k2
0〈V̂ (χ0)〉2

dm

−
v2J0〈Ĥ〉2

dm

ωJ0(k0)2〈V̂ (χ0)〉2
dm

)

. (4.38)

Using the definitions

ρχ0(χ0) =
〈Ĥ〉2

dm

2〈V̂ (χ0)〉2
dm

, ρχ(χ
0) =

〈P̂ 〉2
dm

2〈V̂ (χ0)〉2
dm

(4.39)

of the respective energy densities of the ‘clock’ scalar field χ0 and of the remaining matter

scalar fields (cf. the discussion of a classical Friedmann equation in (4.12)), we can then

write this effective GFT Friedmann equation in the form

〈V̂ ′(χ0)〉2
dm

〈V̂ (χ0)〉2
dm

= 4ωJ0(k0)
2

(

1−
2v2J0
k2
0

ρχ(χ
0)−

2v2J0
ωJ0(k0)2

ρχ0(χ0)

)

. (4.40)

This form can now be compared with effective Friedmann equations derived in previous work

on GFT cosmology or, e.g., with cosmological equations that incorporate LQG corrections

[64]. In particular, we can write (4.40) more suggestively as

〈V̂ ′(χ0)〉2
dm

〈V̂ (χ0)〉2
dm

= 4ωJ0(k0)
2

(

1− ρχ(χ
0)

ρχ,c(k0)
− ρχ0(χ0)

ρχ0,c(k0)

)

(4.41)

where we defined ρχ,c(k0) =
k2

0

2v2
J0

and ρχ0,c(k0) =
ωJ0

(k0)2

2v2
J0

as ‘critical densities’ for the

scalar fields χ0 and χ. Correction terms of the form −ρ(χ0)/ρc for some critical (Planckian)

energy density ρc are also found in effective equations for loop quantum cosmology, where

they characterise the leading order deviations from general relativity [30, 64], so it is very

interesting that they are of the same form in this GFT setting. The critical densities depend

on the wavenumber k0, in addition to their dependence on the representation J0 that was

already found in previous studies with only a single matter field [22, 35, 37]. The critical

density for the clock field χ0 reduces in the limit k2
0 ≪ m2

J0
to the expression

ρχ0,c(k0)
∣

∣

k0→0
=

m2
J0

2v2J0
=

3π

2
ρP

(

vP
vJ0

)2

(4.42)

found in these previous works on GFT cosmology, where ρP is the Planck energy density and

vP the Planck volume. Modes for which k2
0 is not negligible have a higher critical density.

For the matter fields χ the critical density has no lower bound and can take any positive

value.
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We then see that the Universe undergoes a bounce when
ρχ(χ0)
ρχ,c(k0)

+
ρ
χ0 (χ0)

ρ
χ0,c

(k0)
= 1 and that

it cannot reach the classical singularity for generic states, i.e. 〈V̂ (χ0)〉dm > 0 for all times

unless ρχ = ρχ0 = 0. Moreover, the different critical densitites for the clock field and for

the ‘spatial’ matter fields χ again show that our formalism breaks the classical symmetry

under exchange of these matter fields. If we work with a fixed pair of modes (J0,±k0), these

critical densities take the same values for all coherent states for these modes. Hence, for any

such state one will find that the scalar field χ0 encounters a bounce at an energy density

different from any of the other scalar fields. This means that even for an initial coherent

state chosen to reproduce the correct late-time physics, the impact of these high-energy

corrections on phenomenology would be different for χ0 and the other scalar fields. For high

momentum modes with k2
0 ≫ m2

J0
the critical densities coincide for all fields.

An interesting difference between the effective Friedmann equation (4.38) and analogous

equations found previously in the deparametrised Hamiltonian setting for GFT [35, 37]

is that the latter contained a correction of the form v0/〈V̂ (χ0)〉, whereas we only find

corrections scaling as 〈V̂ (χ0)〉−2. (A similar term scaling as 〈V̂ (χ0)〉−1 is also seen in

mean-field derivations of effective dynamics [22, 32].) The reason for the absence of a

〈V̂ (χ0)〉−1 correction in our framework here can be traced back to the need for regularisation

of the volume operator and our choice c∞ = 0. This need for regularisation only occurs in a

quantum field theory framework with an infinite number of degrees of freedom, whereas in

these previous works there was only a single matter field used as clock and the formalism

was analogous to standard quantum mechanics, where no regularisation is required. In

previous works in the deparametrised setting [35, 37], there was a constant contribution to

the expression for the volume 〈V̂ (χ0)〉 coming from a commutator [â, â†] which then also

appeared in the effective Friedmann equations. We have set this contribution to zero. (In

[35] it was suggested to remove this v0/〈V̂ (χ0)〉 term by using a symmetrised definition of

the volume operator, which has a similar effect.)

E. Comparison with mean-field treatment for complex field

Our results on effective cosmological dynamics are an interesting extension of known

results on the effective cosmological dynamics of GFT models that include a single matter

scalar field: for the first time, we have studied the impact of including multiple scalar fields

into such dynamics. We could see that at least for some rather specific choices of initial

state (coherent states peaked on only a single representation label J0 and a single pair ±k0
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of wavenumbers with further restrictions on initial data), the dynamics at large volume

reduce to general relativity, while at high energies there are corrections to general relativity

dynamics that lead to a bounce and singularity resolution for generic initial states.

The results were also puzzling: why do the clock field χ0 and the other fields χ appear

on a different footing in the effective dynamics, given that the initial GFT was perfectly

symmetric under permutations or rotations of all matter fields? We already argued in

Sections II B and III A that this symmetry breaking arises from treating the elliptic equation

of motion as an initial value problem, which introduces a preferred slicing of the scalar

field configuration space RD such that initial data are regular (e.g., square-integrable)

on each slice. Such symmetry breaking should then not be specific to our formalism of

deparametrised canonical quantisation, but be visible more generally. To investigate this

question further, we now compare our results with a mean-field analysis of the cosmological

dynamics for GFT with a complex field, as used very successfully in [22, 23] and in most

other existing work on GFT cosmology. We will use the techniques developed in [31] for

deriving general solutions and generalise some results given there.

Working in the same approximations as we have throughout this paper, we assume

that the Peter–Weyl components of the GFT field satisfy the same equation of motion

(2.14). Working again in a decomposition into Fourier modes (and thus making again the

assumption that fields at ‘constant time’ admit such a decomposition, which singles out a

preferred direction of ‘time’), we then have

(

∂2

∂(χ0)2
− k2 −m2

J

)

ϕJ(χ
0,k) = 0 (4.43)

whose general solution can be given straightforwardly,

ϕJ(χ
0,k) = αJ(k)e

√
k2+m2

J
χ0

+ βJ(k)e
−
√

k2+m2

J
χ0

(4.44)

where αJ(k) and βJ(k) specify the initial conditions. Recall that only for this subsection

we work with a complex GFT field, so αJ(k) and βJ(k) are arbitrary complex numbers.

In the usual mean-field treatment one now defines the total volume as (see, e.g., [53])

V (χ0) =
∑

J

vJ

∫

ddχ |ϕJ(χ
0,χ)|2

=
∑

J

vJ

∫

ddk

(2π)d

(

|αJ(k)|2e2
√

k2+m2

J
χ0

+ 2Re
[

β̄J(k)αJ(k)
]

+ |βJ(k)|2e−2
√

k2+m2

J
χ0
)

(4.45)
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and, for states sharply peaked on a single J0 and a pair of wavenumbers ±k0, we obtain

approximate late-time dynamics

(

V ′(χ0)

V (χ0)

)2

≈ 4
(

m2
J0 + k2

0

)

= 4m2
J0

(

1 +
k2
0

m2
J0

)

(4.46)

which unsurprisingly agrees with what we had found in (4.17). As in Section IV C, considering

the case k2
0 ≪ m2

J0
in which the contribution from the ‘spatial’ matter fields is negligible

enforces that m2
J0

= 3πG in order to have agreement with classical general relativity. One

would then like to rewrite the term
k2

0

m2

J0

using conserved quantities with a cosmological

interpretation, as we have done in our earlier analysis.

Following the proposal of [22], we could define as conjugate momentum of the clock χ0

(πχ)0 = − i

2

∑

J

∫

ddχ

(

ϕ̄J(χ
0,χ)

∂ϕJ(χ
0,χ)

∂χ0
− ϕJ(χ

0,χ)
∂ϕ̄J(χ

0,χ)

∂χ0

)

=
∑

J

∫

ddk

(2π)d
2
√

k2 +m2
J Im

[

β̄J(k)αJ(k)
]

(4.47)

which is manifestly conserved under time evolution. However, as detailed in [22], the

conservation of this quantity is not due to time-translation invariance, but due to a global

U(1) symmetry of the GFT with a complex field. In the present context where there are

now multiple matter scalar fields, this leads to the issue that there is only a single conserved

quantity associated to U(1) symmetry, but D ≥ 2 matter fields. The analogously defined

i

2

∑

J

∫

ddχ
(

ϕ̄J(χ
0,χ)∇ϕJ(χ

0,χ)− ϕJ(χ
0,χ)∇ϕ̄J(χ

0,χ)
)

(4.48)

does not satisfy a conservation law. The physical interpretation of such a ‘conjugate

momentum’, which grows exponentially at large volume, would be rather unclear.

Repeating instead the discussion of Section IIID and using Noether’s theorem for a

complex GFT field leads to the defintion of a conserved momentum

P =
1

2

∑

J

K(2)
J

∫

ddχ

(

∂ϕ̄J(χ
0,χ)

∂χ0
∇ϕJ(χ

0,χ) +
∂ϕJ(χ

0,χ)

∂χ0
∇ϕ̄J(χ

0,χ)

)

=
∑

J

K(2)
J

∫

ddk

(2π)d
2k
√

k2 +m2
J Im

[

β̄J(k)αJ(k)
]

(4.49)
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and a conserved energy

E =
1

2

∑

J

K(2)
J

∫

ddχ

(

−
∣

∣

∣

∣

∂ϕJ(χ
0,χ)

∂χ0

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ϕJ(χ
0,χ)

∂χ

∣

∣

∣

∣

2

+m2
J

∣

∣ϕJ(χ
0,χ)

∣

∣

2

)

=
∑

J

K(2)
J

∫

ddk

(2π)d
2
(

k2 +m2
J

)

Re
[

β̄J(k)αJ(k)
]

(4.50)

and we reach a similar conclusion as in Section IVC: even for states peaked on a single

mode or pair of modes, the GFT energy and momentum are independent initial conditions.

In this case, this can be seen by the fact that they depend, respectively, on the imaginary

and real parts of the combination β̄J(k)αJ(k), which are a priori unrelated. For generic

states, the ratio
k2

0

m2

J0

appearing in the effective dynamics is then not necessarily close to the

ratio P 2

E2 that one would expect in order to match with general relativity at late times.

The fact that the symmetry breaking observed throughout this paper occurs also in a

mean-field treatment illustrates that it is not due to the use of a deparametrised approach

to canonical quantisation, but present already in the classical theory once one introduces an

initial value problem for the elliptic differential equation (2.14).

V. DISCUSSION

In this paper we have derived a canonical quantisation of group field theory models

for quantum gravity coupled to an arbitrary number D ≥ 2 of free massless scalar fields,

focusing on a deparametrised approach where one of the scalar fields is chosen to play

the role of a clock before quantisation. We saw how the resulting theory generalises the

previously formulated deparametrised Hamiltonian GFT for a single scalar field [36, 65].

Throughout the paper we restricted ourselves to a quadratic action, neglecting the impact

of GFT interactions on the dynamics. We defined creation and annihilation operators from

the group field and its conjugate momentum which act on a GFT Fock space, and we found

conserved quantities such as energy, momentum and angular momentum using Noether’s

theorem. These conserved quantities are important in the physical interpretation of the

Hamiltonian GFT since they can be identified with conserved quantities of a theory of D

massless scalar fields on an arbitrary curved spacetime.

We used symmetry arguments and a derivative expansion (first proposed in [22] for

models with a single matter field) to restrict the quadratic GFT actions we studied: all D

matter fields should be minimally coupled to gravity, and appear in the action on the same

footing. This implied that our actions were symmetric under the Euclidean group E(D) of
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rotations and translations in all D matter fields. The resulting equations of motion then

involve a Laplacian on RD, and are hence of elliptic type. Viewing our dynamics as evolution

relative to one of the scalar fields χ0 means reformulating these dynamical equations as an

evolution problem in one direction in RD. For an elliptic partial differential equation, this

initial value problem is not well-posed: the resulting dynamics lead to instabilities by which

small initial perturbations will grow exponentially. These instabilities are desirable from the

GFT perspective, since they allow the ‘growth’ of an emergent geometry out of an initial

state; in particular, they allow for a realistic cosmological dynamics for which an initially

small universe filled with scalar matter can grow exponentially. In the Hamiltonian setting,

such dynamics lead to a squeezing Hamiltonian which, likewise, can create squeezed states

with arbitrarily high numbers of quanta from the Fock vacuum [35, 36]. This implies that

our assumption of free dynamics is only an approximation that holds for specific states for

a finite time before higher-order terms in the action become relevant (see, e.g., [37]). In

particular, the limit of infinite times, in which the fields diverge, cannot be taken consistently.

A fundamental issue we then encountered is that such a choice of ‘time’ direction leads to

a breaking of the original symmetry under E(D) to a smaller group E(d)×E(1) containing

rotations among d = D − 1 fields but not rotations that mix these d fields with the ‘clock

field’. From the perspective of the field configurations we consider, these are assumed to be

regular (e.g., square-integrable) on each hyperplane Rd orthogonal to the χ0 direction but are

not regular on any other slicing of RD. This symmetry breaking, which can be understood

already classically, has numerous consequences. Most notably, we saw its impact on the

effective cosmological dynamics for such a Hamiltonian GFT. The simplest cosmological

dynamics were derived assuming that the quantum state is sharply peaked on two out of the

infinitely many field modes of the GFT, and that it can be described by a coherent state

in these modes. Under these approximations, we found that the cosmological dynamics of

GFT can reduce to the cosmological dynamics of general relativity at late times, but that

this requires further restrictions on initial conditions, unlike what was found previously for

a single matter field [22, 35–37]. The reason is that the conserved quantities in GFT that

represent conjugate momenta to the scalar fields take different forms for the ‘clock’ field and

for the other matter fields. Only specific states satisfy the relations between these different

quantities that are needed to obtain the correct late-time dynamics. We also found that

generic states lead to a resolution of the big bang singularity by a bounce at high energies,

but that the phenomenology of the bounce distinguishes between the matter fields, leading

to different ‘critical’ energy densities at which the bounce can occur for the different fields.

We clarified that the difference in the properties of the ‘clock’ matter field and the other
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matter fields is not related to our use of deparametrisation but can be seen at the mean-field

level where only classical field configurations appear and no explicit deparametrisation is

used. Thus, we could extend existing results on the cosmological effective dynamics of GFT

in an interesting but rather subtle way to theories that include multiple scalar matter fields.

The GFT dynamics we have formulated then breaks the symmetry under arbitrary linear

E(D) transformations that map between different possible ‘clock’ choices. This is the first

time that the issue of covariance under coordinate changes (here only global ones) was

studied in a Hamiltonian setting for GFT, and our results should be of interest for the

development of the GFT formalism. Some simpler models in quantum cosmology are known

to have inequivalent quantum corrections when different choices of time coordinate are

compared [66–68]. In GFT one does not directly quantise a theory of gravity, and the issue is

harder to formalise; but it would be important to develop a more covariant setting for GFT

in which one is free to change between different clock choices, e.g., inspired by the general

setting proposed in [69, 70] and further expanded and generalised in [71, 72]. These papers

introduce advanced methods in order to map between different deparametrised theories and,

e.g., to define a generalised notion of observable corresponding to ‘time’. However, these

papers deal with low-dimensional quantum systems and the extension to a field theory such

as GFT seems far from straightforward. Moreover, we saw that the symmetry breaking in

our setting already happens when formulating the equations of motion as an initial value

problem, and as such seems intrinsic to any canonical formulation, including of constrained

(Dirac) type. It is then not easy to see how a more covariant Hamiltonian formulation could

ever arise in such models.

In general most work on GFT is done in the path integral approach [1–4], which does

not a priori require singling out a direction for time evolution. The results in this paper

suggest that the path integral might be more suitable for leading to effective GFT dynamics

that treat all matter fields on equal footing. A symmetry breaking analogous to we have

seen in the Hamiltonian setting could arise from a choice of boundary conditions in the path

integral: if these are set on d-dimensional hyperplanes, the path integral would again single

out a preferred (orthogonal) direction. Alternatively, boundary conditions could be defined

on the boundary of a region in RD that respects the symmetries of the Laplacian, such

as a D-ball. Such a formulation would also be in line with the nature of the equations of

motion as elliptic partial differential equations. It is less clear how such boundary conditions

would be interpreted from the perspective of effective cosmology, where one usually thinks

of homogeneous hypersurfaces evolving in time.

The results in this paper formulate some of the first steps into extending the GFT
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formalism to models which contain a large number of dynamical matter fields coupled to

quantum gravity. Understanding better the interplay of geometric and matter degrees of

freedom will be crucial for bringing GFT models closer to reality, and clarifying the physical

predictions they might make in cosmology and other observationally relevant settings.
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Appendix A: Diagonal kinetic term in GFT

In this appendix we discuss the diagonalisation of a common class of kinetic terms for

the GFT action (2.2) for both complex and real group fields.

Consider a complex group field

ϕ : SU(2)4 × R → C , (ga, χ) 7→ ϕ(ga, χ) . (A1)

In (2.3) the Peter–Weyl type decomposition of the group field is given as

ϕ(ga, χ
α) =

∑

J

ϕJ(χ
α)DJ(ga) , (A2)

with the multi-index J = (j,m, ι). The class of kinetic terms we consider is given by

K[ϕ] =
∑

J

∫

dχ dχ′ ϕ̄J(χ)KJ(χ, χ
′)ϕJ(χ

′) , (A3)

where we consider only the case in which the kernel K(χ, χ′) is symmetric, K(χ, χ′) = K(χ′, χ).

This form is motivated by considering kinetic terms that, when written in the original ga

variables, are local in these variables and only depend on their derivatives, as in [22, 23]

for complex fields and in [65] for real fields. Next, we split the components ϕJ into their

(rescaled) real and imaginary parts

ϕJ(χ) =
1√
2
(ϕ1,J(χ) + iϕ2,J(χ)) . (A4)
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Note that a real group field ϕ(ga, χ) would not have ϕ2,J = 0 since the Wigner D-matrices

appearing in (A2) are not real. The kinetic term is then diagonal,

K[ϕ] =
1

2

∑

J

∫

dχ
(

ϕ1,J(χ)KJ(χ, χ
′)ϕ1,J(χ) + ϕ2,J(χ)KJ(χ, χ

′)ϕ2,J(χ)
)

, (A5)

where the off-diagonal terms cancel each other by virtue of the symmetry of K(χ, χ′).

For a real group field the Peter–Weyl modes must satisfy the reality condition (2.6),

ϕ̄J(χ) = ǫJϕ−J(χ) , (A6)

where −J = (j,−m, ι) and ǫJ = (−1)
∑

i(ji−mi). This implies that in the case of a real group

field the components for distinct J are not independent, rather they must satisfy

ϕ1,−J(χ) = ǫJϕ1,J(χ) , ϕ2,−J(χ) = −ǫJϕ2,J(χ) . (A7)

This shows that the kinetic term (A3) can always be brought into the form

K[ϕ] =
1

2

∑

J

∫

dχϕJ(χ)KJ(χ, χ
′)ϕJ(χ

′) (A8)

with suitable redefinitions of J and KJ(χ, χ
′).

Appendix B: Universe with periodic inhomogeneity

In Section IV B we presented the Friedmann equation for a flat FLRW universe in classical

general relativity coupled to a number of free massless scalars. This classical equation was

compared with what we obtained as effective cosmological dynamics in GFT, in particular

we checked for agreement of effective GFT dynamics and classical cosmology at late times.

In this appendix we slightly generalise the discussion to include possible effects of

inhomogeneities. As we explained in the main text, this generalisation could be relevant in

giving a physical interpretation to the GFT states we used in deriving effective cosmological

dynamics, which were peaked on a wavenumber k0 6= 0; more generally it will be useful

for situations in which scalar fields are used as relational coordinates in space, since such

scalars must necessarily be inhomogeneous.

At least in simple enough cases, one can derive an effective Friedmann equation for

averaged quantities in an inhomogeneous geometry. We work in the usual Hamiltonian ADM

formalism for general relativity [73], in which the geometry is characterised by a spatial
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metric qij and its conjugate momentum pij which is related to the extrinsic curvature.6 In

addition, we have matter scalar fields χα and conjugate momenta (πχ)α. For simplicity we

will only consider a single matter field. Our ansatz for periodic inhomogeneity is

qij(t,x) = a(t)2δij (1 + ǫA(t) cos(k0 · x)) , (B1)

pij(t,x) = p(t)δij (1 + ǫ υ A(t) cos(k0 · x)) , (B2)

πχ(t,x) = Π(t) (1 + ǫ δπ(t) cos(k0 · x)) . (B3)

We assume an isotropic geometry and a single direction in which inhomogeneity appears.

We can take this direction to be aligned with the x-axis so that k0 = k0ex. ǫ is a small

parameter used for a perturbative expansion, and υ 6= 1 is needed to ensure that qij and pij

are not proportional. All functions of time are subject to the ADM constraints.

The spatial gradient of the scalar field χ is obtained from the diffeomorphism constraint

πχ∂iχ− 2pki;k = 0 . (B4)

If υ = 1 we would necessarily have pki;k = 0 and hence also ∂iχ = 0, forbidding a nontrivial

scalar field configuration. If υ 6= 1 there is a single constraint which can be solved algebraically

for ∂xχ. We have that ∂xχ = O(ǫ); the exact form will play no role in what follows.

We also need to consider the Hamiltonian constraint

16πG√
q

(

pijp
ij − 1

2
(pii)

2

)

−
√
q

16πG
(3)R+

1

2
√
q
π2
χ +

√
q

2
qij∂iχ∂jχ = 0 , (B5)

where q is the determinant of the spatial metric and (3)R is the Ricci scalar of the spatial

metric. Expanded up to first order in ǫ, this takes the form

0 = −24πGp2

a7
+

Π2

2a3

+ ǫ cos(k0x)

{

−24πGp2

a7

(

2υ − 7

2

)

A− a

8πG
k20A+

Π2

2a3

(

2δπ − 3

2
A

)} (B6)

resulting in a constraint at O(ǫ0) and one relating the perturbations A and δπ at O(ǫ).

The idea is now to define averaged quantities that incorporate inhomogeneities, and

derive an effective Friedmann equation for those. This would then be analogous to the

equations for the global quantities we define in the GFT formalism, such as the total volume.

Such quantities are defined with respect to an averaging region, whose choice might lead to

6 We denote the inverse of the spatial metric qij by qij . Indices are lowered and raised by contracting with

the spatial metric and its inverse, respectively.
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potential ambiguities in the formalism. In our example, if we assume that the quantities to

be averaged are inhomogeneous only in the x-direction and periodic with period 2π
k0

, we will

choose the averaging region to be a product over a single period in x with an arbitrary “cell”

in y and z. For a scalar density f , we then define the average as
∫

d3x f
∫

d3x
=

k0
2π

∫ 2π
k0

0
dx f , (B7)

which is a scalar with respect to volume-preserving diffeomorphisms in the spatial hyper-

surface. Diffeomorphisms changing the coordinate volume
∫

d3x rescale the value of such

an average, which therefore cannot have any physical meaning in itself, but all dynamical

relations between different such averages, such as those characterised by the Friedmann

equation in cosmology, must be invariant under such rescalings.

The first such averaged quantity is then proportional to the total volume,

V (t) =

∫

d3x
√
q

∫

d3x
=

k0
2π

∫ 2π
k0

0
dx

√
q = a(t)3

(

1 +
3

16
ǫ2A(t)2 +O(ǫ4)

)

(B8)

where we had to go to O(ǫ2) to obtain a nontrivial contribution from the averaging over x.

The notion of a time derivative of the volume must be defined in a covariant way. In a

gauge in which the shift vector vanishes, the extrinsic curvature is Kij =
1
2N

dqij
dt and hence

V ′(t)
N(t)

=
k0
2π

∫ 2π
k0

0
dx

√
qKi

i = −8πG

(

k0
2π

∫ 2π
k0

0
dx pii

)

= −8πGT (t) (B9)

where we used pij =
√
q

16πG(K
ij −Kk

k q
ij), N(t) is the lapse and T (t) is the average trace of

the conjugate momentum:

T (t) =
k0
2π

∫ 2π
k0

0
dx pii =

3p(t)

a(t)2

(

1 +
1− υ

2
ǫ2A(t)2 +O(ǫ4)

)

. (B10)

Finally, to characterise the scalar field we define its average energy

E(t) =
k0
2π

∫ 2π
k0

0
dx

π2
χ

2
√
q
=

Π(t)2

2a(t)3

(

1 + ǫ2
(

1

2
δπ(t)2 − 3

2
δπ(t)A(t) +

15

16
A(t)2

)

+O(ǫ4)

)

.

(B11)

Using the two equations coming from the Hamiltonian constraint we then find

(8πG)2
T 2

V
= 24πGE

[

1 +

(

−
(

υ +
1

8

)

A2 +
3

2
δπA− 1

2
δπ2

)

ǫ2 +O(ǫ4)

]

= 24πGE

[

1 +

(

−17

8
+

3

2
υ − υ2

2
+

k20(5− 2υ)V 1/3

32πGE
− 2k40V

2/3

(32πG)2E2

)

ǫ2A2 +O(ǫ4)

]

(B12)



44

whose O(ǫ0) part is the standard Friedmann equation of homogeneous cosmology,

(8πG)2
T (t)2

V (t)
=

V ′(t)2

N(t)2V (t)
= 24πGρ(t)V (t) = 24πGE(t) . (B13)

The periodic inhomogeneity we have introduced now leads to a correction to the right-hand

side of the Friedmann equation (B12) which depends on ǫ, υ, the perturbation A(t), the

wavenumber k0 and the unperturbed variables. If we assume a regime where

V (t)1/3k20
32πGE(t)

≪ 1 (B14)

and we choose A(t) to be a constant A0, then for given ǫ, υ and A0 the effective Friedmann

equation would appear to be the one for an unperturbed universe but with an additional

O(1) multiplicative constant in front of the matter energy density, similar to what we have

seen in the late-time limit of effective GFT cosmology in Section IVC.
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