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Abstract. Graph classifications are significant tasks for many real-world
applications. Recently, Graph Neural Networks (GNNs) have achieved
excellent performance on many graph classification tasks. However, most
state-of-the-art GNNs face the challenge of the over-smoothing problem
and cannot learn latent relations between distant vertices well. To over-
come this problem, we develop a novel Graph Transformer (GT) unit to
learn latent relations timely. In addition, we propose a mixed network
to combine different methods of graph learning. We elucidate that the
proposed GT unit can both learn distant latent connections well and
form better representations for graphs. Moreover, the proposed Graph
Transformer with Mixed Network (GTMN) can learn both local and
global information simultaneously. Experiments on standard graph clas-
sification benchmarks demonstrate that our proposed approach performs
better when compared with other competing methods.

Keywords: Graph Convolutional Networks · Graph Classification · Graph
Transformer

1 Introduction

Graphs are widely used to model complex objects and their dependency relation-
ships in many pattern recognition and machine learning tasks [18]. Along with
recent success of deep learning networks, booming interests are focalized on uti-
lizing these methods for analyzing the large-scale and high-dimensional regular or
Euclidean data [18]. Particularly, Convolutional Neural Networks (CNNs) have
become powerful tools to extract useful statistical patterns from large datasets
of image, video, etc. However, because graph structure data is often irregular
or non-Euclidean, directly applying CNNs for analyzing such data is difficult.
Therefore, great efforts have been devoted to extending CNNs to the graph do-
main, and a great number of Graph Convolutional Networks (GCNs) [18, 2] have
been developed for extracting meaningful features for graph classification.

In general, there are two main categories of GCNs, i.e., the spectral methods
and the spatial methods [18]. Specifically, the former defines convolution opera-
tion based on the spectral graph theory [4, 5, 11] by calculating the eigenvectors
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of Laplacian matrix. However, due to the heavy computational complexity of
calculating eigenvectors, these approaches cannot be expanded to big graphs
well. Instead, the latter methods are more flexible by defining operations on
neighbor vertices[2, 17, 18]. For example, Z.Zhang et al. [18] introduced a Sub-
graph Convolutional Network (SCN) with quantum walk to facilitate regular
convolution operations computing on subgraphs. M.Zhang et al. [17] proposed
a novel Deep Graph Convolutional Neural Network (DGCNN) model to consid-
er vertex information both locally and globally SortPooling layer based on the
Weisfeiler-Lehman (WL) algorithm. Nevertheless, two major problems arising
along with GCNs, i.e., over-smoothing and lack of capturing distant relations.
For instance, SCN may lose sights of remote latent connections, DGCNN also
cannot learn these potential links well due to the over-smoothing problem. More
detailed explanation of these two major issues will be discussed in Sec. 3.1.

To overcome theses issues arising in existing GCNs, we propose a novel Graph
Transformer with Mixed Network (GTMN) for graph classification problems in
this paper. One important characteristic of the proposed GTMN model is that it
can learn latent relations between vertices without using the adjacency matrix.
The framework of the proposed GTMN is shown in Fig. 1. In general, the main
contributions of this paper are threefold.

First, we illustrate the problem why distant relations cannot be well-learned
and propose a novel Graph Transformer unit (GT) to learn latent relations
between substructures at arbitrary locations. We elucidate that the proposed
GT is able to learn better graph representations with less concerns about over-
smoothing than regular GCNs. Thus it can capture meaningful graph informa-
tion both locally and globally in time. This part will be discussed in Sec. 3.2

Second, we develop a mixed neural network that innovatively combines ran-
dom walk with graph convolution methods, e.g., SCN with DGCNN. These two
approaches are mixed together through the proposed GT to have better views of
graph, i.e., local and global perspectives. More generally, we show that any two
variants of GCNs can be combined with the help of GT. And the correspond-
ing mixed network takes advantages of each underlying variants. Details will be
introduced in Sec. 4

Third, we empirically evaluate the performance of the proposed GTMN on
graph classification benchmarks. Experimental results show that when compared
to other state-of-the-art methods, our approach is effective.

2 Related Works

In this section, we briefly review some important related works of GTMN. Specif-
ically, we first introduce the Subgraph Convolution Network[18] (SCN). Then we
show the operation of the Deep Graph Convolutional Neural Network[17] (DGC-
NN). Finally, we elucidate the idea of transformer.

Subgraph Convolution Network According to Z.Zhang et al. [18], to operate
regular convolution, every vertex is given a QS-Score through quantum walk and
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Fig. 1. Overview of the proposed Graph Transformer with Mixed Network (GTMN)
architecture. At each step, the proposed Graph Transformer units(GT) takes in the
input calculated by the Subgraph Convolution Network (SCN) model and the previous
output or the input graph. Each GT calculates the latent relationships between sub-
structures with different size. Up to K (depth of generated subtrees) steps of GT are
performed. Outputs then is fed into a set of GCN layers. For n GCN layers, outputs at
layer i is concatenated and then n+1 big feature matrices are formed. Furthermore, all
of them are concatenated and fed into Layered SortPools hierarchically. Final part of
the network is to transmute graph features into grid structures and make a prediction
for the input graph.

each node forms a m-ary subtrees by grafting and pruning k-hop neighbor edges.
Then a subgraph of K-depth is generated from the subtrees for a specific vertex.
Thus regular convolution operation is able to process on this subgraph, as shown
in Fig. 2.

(b)

(a)

Fig. 2. Detailed procedures of (a) SCN and (b) DGCNN.

Deep Graph Convolutional Neural Network M.Zhang et al. [17] give an
spatially-based operation of GCN, i.e.

Z = f(D̃−1ÃXW), (1)
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where Ã = A+ I is the adjacency matrix of the graph with added self-loops, D̃ is
its diagonal degree matrix, W̃ ∈ R

c×c′ denotes a matrix of trainable parameters,
f is a nonlinear function, and Z is convolution’s output. For the defined Eq. 1,
it can be explained as each node’s aggregation with neighbor features.

Moreover, DGCNN introduces a pooling layer called SortPool based on the
Weisfeiler-Lehman (WL) algorithm. Vertices are sorted according to last outputs
of GCNs, which represent color labels reflecting topological importance. Detailed
procedures are shown in Fig. 2

Transformer In natural language processing task, Vaswan et al. [14] proposed
an attention-based architecture Transformer to replace traditional Recurrent
Neural Networks (RNNs) and improved its performance. The key idea of the
Transformer is a Multi-Head attention model that can learn tokens’ connections
no evaluate how remote they are. Numerous approaches have been developed to
apply the transformer to graph domain tasks and have achieved great success[16,
10]. Motivated by the idea of transformer, we propose the Graph Transformer
unit of our version in Sec. 3.2.

 (!"#)

$(!"#)

 (!)

Fig. 3. Detailed structure of Graph Transformer(GT) unit with SCN. Given previous
layer’s output or the input vertices’ features X(l−1) and preceding roots of all vertices’
sub-trees R(l−1) computed from SCN, multi-head attention can be calculated to learn
distant relations beyond original adjacency matrix. Then the output is concatenated
with X(l−1) and R(l−1) and layer-normalized. Next the normed concatenation is fed
into one linear layer to constrain dimensions. After that, the final output of GT X(l)

is formed.

3 The Proposed Graph Transformer Unit

In this section, we first discuss the major existing problems in GCNs. Moreover,
we demonstrate the issue of learning latent relations between substructures.
Then we introduce our idea of Graph Transformer(GT) unit associated with
the random walk method. Finally, we illustrate how the GT can learn latent
relations well from the practical and theoretical perspectives.
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3.1 Problems of Existing Spatial GCNs

Over Smoothing Many spatial-based GCNs are facing the problem of over-
smoothing. For example, consider typical graph convolution operation proposed
by DGCNN[17] in Eq. 1. This equation aims to aggregate each vertex’s neighbor
information and output a new graph representation. However, as the network
layer goes deeper, each vertex’s features appears to be similar and loses its
distinct information. This is called the over-smoothing problem [8]. As analyzed
and proved by Liu et al. [8], with more neighbors of larger distances aggregated,
each vertex will tend to lose its distinction ultimately.

Latent Relations Between Substructures To overcome the over-smoothing
issue mentioned above, many methods are proposed[7, 8]. In particular, it has
been shown that methods using random walks[18] are able to overcome this
problem through considering sub-graphs or substructures locally. Although more
efficient, the proposed methods suffer from the following issue, i.e., two distant
substructures’ latent relations cannot be learned well, or even can be ignored.
Methods mentioned above either learned these links too late or just ignored these
distant links. This lead to significant loss of the latent information.

3.2 Graph Transformer Unit

To learn latent relations timely, we propose the Graph Transformer(GT) unit.
Indeed, the great success of the transformer[14] has inspired us deeply. One
main advantage of GT is that it can take distant tokens into consideration.
More specifically, the proposed GT unit is composed of a graph attention layer,
a layer norm and a linear layer. Detailed structure of GT can be observed in
Fig. 3. We specifically discuss the graph attention layer in this section.

Attention Layer Similar to the attention equation mentioned by Vaswan et
al. [14], we propose our graph version:

Attention(l)(R(l−1),X(l−1)) = softmax(
R(l−1)W

(l)
qkX

(l−1)T

√
d

)X(l−1)W(l)
v (2)

where R(l−1) ∈ R
N×d is the root vertices of SCN’s last output with shape

N ×d, X(l−1) ∈ R
N×d is the last output of GT unit or the input graph features,

d denotes the dimensions of each vertex and W
(l)
qk ∈ R

d×d and W
(l)
v ∈ R

d×dout

are two learnable matrices. Usually, the attention layer requires three inputs
including query, key, and value. Here we define the last output of SCN as query,
and the final output of GT unit or input graph features are considered as key
and value. Then we develop the graph multi-head layer as below.

MultiHead(l)(R(l−1),X(l−1)) = ||hi=1Attention
(l)
i (R(l−1),X(l−1))WO (3)

where || denotes concatenation of all attention heads and WO ∈ R
hd×out is a

projection matrix. Then we concatenate the output and the input altogether
and the concatenation is fed to the remaining layers.
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3.3 Discussions of the proposed GT unit

Practically As mentioned above, distant vertices’ latent relations can hardly
be learned through the existing methods. However, thanks to the advantages of
multi-head attentions and the local information learned by SCN, these latent
relations can be well-attained. According to Eq. 2, similarity between the local
info and graph representations are calculated, thus similar substructures are
guaranteed to be aggregated no matter how distant they are. Hence, the GT

unit with multi layers can capture meaningful potential relations and

learn better representations of multiple scales.

Theoretically We show that the core of GT, i.e. a multi-head layer, is a more
generic type of GCNs. Because each head of multi-head layer can learn a unique
adjacency matrix respectively, GT can aggregate vertices or substructures of
similar representations and learn both the local and global information well.
More specifically, for each headi, the calculation of softmax part in Eq. 2 is
Ãlatent ∈ R

N×N and it can be considered as a normalized latent adjacency
matrix, where Ai,j denotes the hidden relation between vertexi and vertexj .
Thus, Eq. 2 can be transformed to the following equation.

Attention(l)(R(l−1),X(l−1)) = ÃlatentX
(l−1)W(l)

v (4)

which is quite similar to Eq. 1. Instead of using existing adjacency matrix,

GT is able to learn a better graph representation through a learnable

relation matrix. Hence, each head can learn a distinct latent relation and a
multi-head layer is able to learn multiple latent relations. With these better
learned representations on hand, GCNs can solve the problems mentioned above
better.

4 Mixed Graph Network

In this section we propose a novel mixed network structure, i.e., GTMN that
combines random walk method with GCNs, e.g. SCN with DGCNN, through
the proposed GT units. As shown in Fig. 1, the detailed procedure can be sepa-
rated into three main sections: 1. feature extraction (GT with SCN), 2. neighbor
aggregation(GCNs) , 3. Classification (Layered SortPools with rest parts). First,
we elucidate each section concretely. Then we discuss advantages of the proposed
mixed graph network.

Feature Extraction we use the proposed GT units with SCN to learn better
graph representations, as GT can extract features without using the adjacency
matrix. Specifically, for each vertex of a graph, we generate its m-ary K-depth
subgraph for SCN[17]. Instead of using quantum walk, we sorted each node by
its degree for simplicity. Then we feed both the root of subgraphs and graph
vertices into GT for feature extraction. Note that the channels of GT’s output
is equal to its input. For K-depth subgraphs, we perform K-step GT extraction
and have K + 1 outputs(including raw input).
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Neighbor Aggregation For each output of the first section, we separately
feed it to n-layer GCNs. Then we concatenate all outputs of GCN at layer i and
denote the concatenation as Xi (layer 0 contains all raw inputs).The GCN layers
help learn structural information that GT cannot well attain, as they concerns
about the. After this section, n big feature maps are generated.

Classification For graph classification task, we need to convert the irregular
feature maps to grid structures. Inspired by SortPool[17] and the hierarchical
approach of Bai et al. [2], we propose a multiple SoortPooling layer called Lay-
ered SortPool. In general, this is a more generic version of DGCNN’s. Detailed
procedures can be seen in Fig. 4. Moreover, we expand each output of Layered
SortPool and perform 1d-convolution with both step and kernel size equal to
the channels of feature maps. This extracts more features for each vertex and
outputs a reduction of a big feature map. Then for all conv1d outputs, we con-
catenate them altogether and feed the concatenation forward to get the final
probabilities for each class.

Discussions of the Proposed Mixed Graph Network Compared with
state-of-the-art spatial GCN models, the proposed GTMN has a number of ad-
vantages. First, because the proposed GT units can learn latent relations be-
tween substructures, the proposed GTMN can get better graph representations
before feed into GCN layers. This helps avert the problem of over-smoothing as
only few convolution operations need to perform for learning neighboring infor-
mation with the adjacency matrix. As discussed earlier, the GT units tend to
learn relations globally, and GCN can extract more local features. Second, we
combine SCN with DGCNN through the proposed GT units. More generally,
each two methods of graph approaches can be mingled by the proposed GT.
This helps the network to take advantage of the two underlying methods and
relieve their individual drawbacks. Specifically, the method that GT takes in just
plays subsidiary role to learn better local information. The other method that
GT outputs to is the main model to learn the representations learned by GT. In
conclusion, GTMN can learn both local and global information simultaneously.
With any two methods combined, GTMN is able to well-extract latent relations
between substructures and output better graph representations.

5 Experiments

In this section, we evaluate the performance of the proposed GTMN model,
and compare it with state-of-the-art methods, i.e., some graph kernels and deep
learning method for graph classification on five graph benchmarks[9]. Specifically,
these benchmarks are abstracted from the bioinformatics and social networks.
Details of these datasets are summarized in Table.1.
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Fig. 4. Detailed procedures for Layered SortPool. Specifically, DGCNN’s SortPool uses
concatenation of all GCNs’ outputs. However, this may lead to some feature loss. Hence
we generalize the SortPool by making it layered, to learn features at different levels.

Table 1. Details of the Graph Benchmarks
Datasets Graphs Classes Avg.Nodes Avg.Edges Labels Description

MUTAG 188 2 17.93 19.79 7 Bioinformatics
PTC 344 2 14.29 14.69 19 Bioinformatics
PROTEINS 1113 2 39.06 72.82 3 Bioinformatics
IMDB-B 1000 2 19.77 96.53 - Social

Experimental Setup We compare the performance of the proposed GTMN
model on graph classification tasks with a) four alternative state-of-the-art graph
kernels and b) five alternative SOTA deep learning approaches for graphs. Con-
cretely, the graph kernels include 1) the Weisfeiler-Lehman subtree kernel (WL-
SK)[12], 2) the shortest path graph kernel (SPGK)[3], 3) the random walk graph
kernel (RWGK)[6], and 4) the graphlet count kernel (GK)[13]. The deep learning
methods include 1) the deep graph convolutional neural network (DGCNN)[17],
2) the quantum-based subgraph convolutional neural networks (Qs-CNN)[18],
3) the backtrackless aligned-spatial graph convolutional networks (BASGCN),
4) the deep graphlet kernel(DGK)[15], and 5) the diffusion convolutional neural
network(DCNN[1].

Table 2. Classification Accuracy (In%± Standard Error) for Comparisons

Datasets MUTAG PROTEINS PTC IMDB-B

WLSK 82.88±0.57 73.52±0.43 58.26±0.47 71.88±0.77
SPGK 83.38±0.81 75.10±0.50 55.52±0.46 71.26±1.04
RWGK 80.77±0.72 74.20±0.40 55.91±0.37 67.94±0.77

GK 81.66±2.11 71.67±0.55 52.26±1.41 65.87±0.98

DGCNN 85.83±1.66 75.54±0.94 58.59±2.47 70.03±0.86
Qs-CNN 93.13±4.67 78.80±4.63 65.99±4.43 -
BASGCN 90.05±0.82 76.05±0.57 61.51±0.77 74.00±0.87

DGK 82.66±1.45 71.68±0.50 57.32±1.13 66.96±0.56
DCNN 66.98 61.29±1.60 58.09±0.53 49.06±1.37

GTMN 91±3.14 81.08±0.363 68.66±2.49 69.9±1.15
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For the evaluation, we adjust a number of hyperparameters to get the best
performance of each dataset, as shown in Table.5 . Note that every GT’s head
number are set equal to its input channel, and all outputs of the first two sec-
tions(SCN, GCN, GT) is equal to convolution. We use tanh function in SCN and
GCNs, leakyReLU in each linear layer as well as in conv1d layers. Also, each lin-
ear layer is followed by a dropout rate. To optimize the GTMN model, we use the
Adam optimizer with the default parameters. For our model, we perform 10-fold
cross-validation to compute the classification accuracy, with nine training folds
and one validating fold. For each dataset, we repeat the experiment 10 times
and report the average classification accuracy and standard errors in Table.2.
For the alternative graph kernels and deep learning methods except Qs-CNN, we
report the best results collected and experimented by Bai et al. [2]. We report
the best results for Qs-CNN from the original paper[18]. Classification accuracy
and standard error of each competing approach are also shown in Table.2.

Table 3. Hyperparameters settings for each dataset.
Parameters K m gcn num conv conv1d fc fc num batch lr L2norm dropout

MUTAG 5 6 6 256 32 32 5 16 0.0001 0 0
PROTEINS 4 9 2 32 32 256 3 64 0.0003 0 0.05
PTC 4 5 3 256 64 64 3 128 0.0001 0 0
IMDB-B 4 9 2 64 256 256 2 256 0.001 0 0.5

Experimental Results and Discussions Table.2 indicates that the proposed
GTMN significantly outperforms either the competing graph kernel methods or
the deep learning methods for graph classification.

Overall, the reasons for the effectiveness of our method are fourfold. First,
the graph kernels with C-SVM classifier are shallow learning methods, while the
proposed GTMN can provide an end-to-end deep learning architecture. Thus
GTMN can learn better graph characteristics. Second, as elucidated earlier, most
deep learning approaches of graph classification can not well-avert problems of
over-smoothing and learning distant relations. Instead, the proposed GT units
can relieve these problem and learn better graph representations. Third, con-
sider the proposed Qs-CNN and DGCNN, GTMN simplify the quantum walk
procedure, generalize the SortPool layer and obtain better performance. This
empirically demonstrate the effectiveness of the proposed GTMN.

6 Conclusions

In this paper, we have introduced a novel spatially-based GCN model, i.e., the
Graph Transformer with Mixed Network (GTMN), to learn the latent relation-
s between substructures without using the adjacency matrix and alleviate the
problem of over-smoothing. Unlike most existing spatially-based GCN models,
We propose an attention-based Graph Transformer with a Mixed Network to
learn these potential features and learn better graph representations. Experi-
mental results on graph benchmarks indicate the effectiveness of the proposed
GTMN.
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