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Abstract. Statistical mechanics provides effective means for complex
network analysis, and in particular the classical Boltzmann partition
function has been extensively used to explore network structure. One
of the shortcomings of this model is that it is couched in terms of un-
weighted edges. To overcome this problem and to extend the utility of this
type of analysis, in this paper, we explore how the Debye solid model can
be used to describe the probability density function for particles in such
a system. According to our analogy the distribution of node degree and
edge-weight in the network can be derived from the distribution of molec-
ular energy in the Debye model. This allows us to derive a probability
density function for nodes, and thus is identical to the degree distribu-
tion for the case of uniformly weighted edges. We also consider the case
where the edge weights follow a distribution (non-uniformly weighted
edges). The corresponding network energy is the cumulative distribution
function for the node degree. This distribution reveals a phase transition
for the temperature dependence. The Debye model thus provides a new
way to describe the node degree distribution in both unweighted and
weighted networks.

Keywords: Debye’s solid model, Degree Distribution, Weighted Net-
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1 Introduction

The study of complex networks has attracted sustained interest since it allows
the otherwise intractable interactions between the different units of complex
systems to be represented and analysed [8]. This usually involves the study
of the unweighted or weighted ”edges” between vertices using methods from
graph theory [4]. However, the node degree distribution also plays a critical
role, since it describes the topological structure of networks and may determine
the evolution characteristics of a network [2]. It is widely confirmed that many
different types of real-world network exhibit a power-law degree distribution
and this can be induced by a linear preferential evolution mechanism [1]. This
property illuminates the statistical nature of structural connections in a network.
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However, the literature mainly focusses on the analysis of the degree distri-
bution for unweighted networks, and rarely considers the distribution of edge
weights. This limits the exploration of the nature of network structure based
on information concerning the distribution of edge degree combinations or edge-
weights. Recently, sophisticated tools from statistical physics have provided pow-
erful ways to extend this kind of analysis [6, 5]. These computationally efficient
methods rely on thermodynamic analogies to describe the different structural or
topological properties of networks [3]. For example, the Boltzmann distribution
provides expressions for the macroscopic thermal characteristics such as temper-
ature, energy and entropy from a microcosmic point of view [7]. This provides a
novel framework to analyse and understand the statistical structural properties
in weighted networks.

This aims to establish effective statistical mechanical methods for measuring
the probability density function for nodes (and node degree) in weighted net-
works. We commence from a thermal analogy using Boltzmann statistics, which
provides a physical meaning of the temperature and energy states in a network.
This allows us to introduce and leverage the Debye solid model to calculate the
degree distribution.

The Debye solid model originates is a statistical mechanical tool for the analy-
sis of the distribution of phonon energy lattice structures from solid state physics.
Specifically, it considers the vibrations (or phonons) of the atomic lattice. This
treats the solid as an ensemble of harmonic oscillators. The model exhibits sim-
ilar connectivity patterns to those found in complex networks. The connected
nodes are analogous to the atoms, and the edge weights can be regarded as the
phonon energies of the harmonic oscillators. Since, in this more general thermal
analogy, the degree in the network has two degrees of freedom, i.e., in-degree
and out-degree, the model builds on analogies with two a dimensional crystal.

Using this model, we find that for a given distribution of edge weights, the
node probability in a weighted network not only depends on the node degree but
also on the global temperature parameter. Furthermore, the corresponding net-
work energy is just the cumulative distribution function for the node probability.
Moreover, this reveals a phase transition for the temperature dependence.

2 Graph Representation

2.1 Preliminaries

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V .
The edge-set can be represented by an adjacency A, with elements A(u, v) = 1
if (u, v) ∈ E and A(u, v) = 0 otherwise. The diagonal degree matrix D has
diagonal elements D(u, u) = d(u), where du =

∑
v∈V Auv is the degree of node

u, and off diagonal elements D(u, v) = 0 if u 6= v. Then, the Laplacian matrix is
given by L = D −A.

For a weighted network Gw, the pair of nodes (u, v) has an associated real
non-negative weight w(u, v) for each edge, i.e., u ∈ V, v ∈ V , and u 6= v. The
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adjacency matrix Aw for a weighted network is given by

Aw =

{
w(u, v) if (u, v) ∈ E
0 otherwise.

(1)

where, for the undirected network, the weighted adjacency is symmetric, i.e.,
w(u, v) = w(v, u) for all pairs of nodes such that (u, v) ∈ E, u 6= v.

2.2 Thermodynamic Representation

Here to model networks using a thermal analogy based on Boltzmann statistics,
each network is regarded as an isolated system with a fixed number of both nodes
|V | and edges |E|. The nodes in the network are mapped onto the particles in the
thermal system. Each edge has a unit weight. The corresponding node degrees
are analogous to the discrete energy states. and the energy associated with each
node is proportional to the node degree, that is

ωu = εk (2)

where ωu is the energy per node which is identical to the node weight; and ε = 1
for an unweighted network, k is the degree per node; and k ∈ Z which is a
positive integer or zero and equal to the number of edges connecting to the node
u. Thus, the occupation number of the energy states depends on the degree of
the nodes connected by edges.

According to the Boltzmann distribution, the probability for an individual
node to be at a particular energy state is given by the exponential function

Pu =
1

Z
e−βωu (3)

where Z is the partition function subject to the constraint of energy conservation
and given by

Z =

|V |∑
u=0

e−βωu (4)

The average energy then can be derived from the Boltzmann partition func-
tion

Ū = − 1

Z

∂Z

∂β
= −∂ logZ

∂β
(5)

This allows us to treat a network as a statistical ensemble with associated
thermal properties such as a partition function and a total energy.

3 Statistical Ensembles

For a network subject to Boltzmann statistics and in thermal equilibrium with
a fixed number of nodes and edges, the entropy can be computed using Boltz-
mann’s law, i.e S = κB logW (U), where W (U) is the multiplicity of states and
the total energy in the network is

U = ε|E| (6)

which is an integer number equal to the total number of edges when the weight
is unity.
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The entropy relates to the number of ways for choosing |E| edges among the
available U + |V | − 1 possibilities. This is given by the combinatorial formula in
terms of the factorials

W (U) =
(U + |V | − 1)!

U !(|V | − 1)!
(7)

When number of nodes and edges are large, then the expression logW (U)
can be simplified by using Stirling’s approximation log n! ≈ n log n and as a
result

S = κB lnW (8)

= log[(U + |V | − 1)!]− log(U !)− log[(|V | − 1)!]

= (U + |V | − 1) log(U + |V | − 1)− U logU − (|V | − 1) log(|V | − 1)

where κB is the Boltzmann constant.
For a thermodynamic system of constant volume, the temperature (or equiv-

alently the parameter β, i.e., the inverse temperature) is the rate of change of
energy with respect to entropy of the network. That is given by

β =

(
∂S

∂U

)
|V |

=
1

w
log

U + |V | − 1

U
(9)

Given the temperature the partition function for the equilibrium state of the
thermal network system can be represented by the series expansion

Z =

|V |∑
u=0

e−βωu =
1− e−|V |βω

1− e−βω
≈ 1

1− e−βω
(10)

From Eq.(3), the probability for a given node at a particular energy state depends
on the node degree

P (du = k) =
1

Z
e−βωu =

(
1− e−βω

)
e−βεk (11)

This leads to definitions of energy and entropy that associated with the network
structure.

4 The Debye Model

The above analysis makes the rather limiting assumption that the weight for each
edge is uniform and the energy states for each node are discrete. It effectively
assumes that the density of states is simply a delta function. It is better to
assume a distribution of edge weights to make the nodal energy continuous by
replacing a density distribution.

4.1 Node Probability
Hence, we would like to incorporate a function g(ω) which describes the density
of edge weights to allow us to make a more detailed analysis. The number of edge
states with weights between ω and ω + dω is given by g(ω)dω and we require
that the total edge weights sums to to the number of edges, i.e. is given by∫

g(ω)dω = |E| (12)
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Eq.(2) is equivalent to assuming that the node energy corresponds to the degree.
Here,on the other hand, we allow a more complex vectorial representation which
accommodates the more general case of directed networks, which admits both
node in-degree and out-degree.

For the space of node in-degree and out-degree, we require two integers to
specify each node, i.e. the probability density for each node is bivariate depending
on two variables kin and kout and is normalised by the sum order these two
integers or equivalently by an integral over the volume element dkin, dkout in the
node. The discrete summation can thus be rewritten as the integral, that is∑

k

(· · · ) =
1

4

∫ ∞
0

2πkdk(· · · ) (13)

Then, the density of states per node as a function of k is given by

g(k)dk =
S

(2π)
2 · 2πkdk · 2 =

Sk

π
dk (14)

where the nodes in a network are assumed to be the square of area S = |V |2
and the factor 2 corresponds to the two degrees of freedom for edges.

Thus, the corresponding density of weights for each node is given by

g(ω)dω =
S

πε2
ωdω (15)

To derive the thermal quantities in the Debye model as a function of temper-
ature, we begin by writing down the logarithm of partition function as follows,

logZ =

∫ ωT

0

g(ω)dω log

[
1

1− e−βw

]
= −

∫ ωT

0

g(ω)dω log
[
1− e−βw

]
(16)

Then, from Eq.(5), we can calculate the energy of the network using

U = −∂ logZ

∂β
=

∫ ωT

0

g(ω)dω · ω

eβω − 1
=

S

πε2

∫ ωT

0

ω2

eβω − 1
dω (17)

Substituting Eq.(2) into Eq.(17), the corresponding energy is related to the
degree and is given by

U =

∫ ωT

0

Sε

π
· k2

eβεk − 1
dk =

∫ ωT

0

P (β, k)dk (18)

As a result the probability of each node given the degree k and temperature β
is

P (β, k) =
Sε

π
· k2

eβεk − 1
=
|V |2

2π|E|
· k2

eβεk − 1
(19)

where S = |V |2, U = 2|E|ε. This describes the degree distribution in the weighted
network. It not only relates to the node degree, but also depends on the global
temperature parameter as well.

4.2 Upper Weight Boundary

Because there is an limit on the total number of edges given the number of nodes
in the network, the weight distribution has an upper bound ωT . This is defined
by
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0

g(ω)dω = 2|E| (20)

which, using Eq.(15), implies that

ωT =

(
4π
|E|
|V |2

)1/2

ε (21)

This allows us to rewrite Eq.(15) as

g(ω)dω =
4|E|ω
ω2
T

dω (22)

Thus, we now have all the ingredients necessary to apply the Debye model
to derive the macroscopic thermal characterisations for the network.

4.3 High- and Low-temperature Limits

Now we substitute Eq.(22) into Eq.(16) to write the logarithm of the partition
function as

logZ = −4|E|
ω2
T

∫ ωT

0

ω log
[
1− e−βw

]
dω (23)

According to Eq.(7), the average energy is

Ū =
4|E|
ω2
T

∫ ωT

0

ω2

eβw − 1
dω =

4|E|
ω2
Tβ

3

∫ xT
β

0

x2

ex − 1
dx (24)

where x = βω = βεk. This equation does not lead to a simple temperature
dependence of average energy. This is because a) exponential term is both degree
and temperature dependent, and b) the integral is degree dependent. However,
we can analyse and simplify the low and high temperature limits.

High-temperature Limits At high temperature, β → 0 and hence ex → 1+x.
Hence, the average energy Ū behaves as

Ū → |V |2

πε2β3

∫ εk

0

xdx =
|V |2

2π
· k

2

β
(25)

The corresponding node probability in Eq.(19) is

P (β, k) =
|V |2

2π|E|
· k
β
∼ kβ−1 (26)

Low-temperature Limits At low temperature, β → ∞ and hence ex � 1.
The average energy is given by

Ū → |V |2

πε2β3

∫ ∞
0

x2

ex
dx =

|V |2

πε2β3
IB(2) (27)

where IB(2) = ζ(3)Γ (3) is the Bose integral, where ζ(3) is a Riemann zeta
function and Γ (3) a gamma function.

Then, the corresponding node probability in Eq.(19) is

P (β, k) =
C

ε2β3
· 1

k2T
∼ k−2T β−3 (28)

where C = |V |2IB(2)/π is a constant, and kT = ωT /ε.
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5 Experiments and Evaluations
5.1 Data Set

Data Set 1: Here we use real world complex networks from the KONECT
database. This database contains a variety of networks including

– The collaboration graph for authors of scientific papers from the arXiv’s
High Energy Physics-Theory (hep-th) section. Here an edge between two
authors represents a common publication [9]. There are 22,908 vertices and
2,763,133 edges in the network.

– Facebook friendships network is the undirected network containing friend-
ship of users. A node represents a user and an edge represents a friendship
between two users [10]. There are 63,731 vertices and 817,035 edges.

– The Orkut network is the social network of Orkut users and their connec-
tions. There are 3,072,441 vertices and 117,185,083 edges. [11].

– The PPIs dataset extracted from STRING consisting of networks which de-
scribe the interaction relationships between histidine kinase and other pro-
teins [13]. There are 216 vertices and 5,389 edges in the network.

Data Set 2: This data comes from the New York Stock Exchange. It consists
of the daily closing prices of 3,799 stocks traded continuously on the New York
Stock Exchange over 2619 trading days. The stock prices were obtained from
the Yahoo! financial database [12]. A total of 415 stock are selected with the
historical stock prices from the beginning of January 2010 to the end of June
2020. In the network representation, the nodes correspond to stock and the edges
indicate that there is a statistical similarity between the time series associated
with the stock closing prices.
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Fig. 1. The node probability varying with the degree k and inverse temperature β in
Eq.(19). (a) node probability with degree; (b) node probability with inverse tempera-
ture

5.2 Experimental Results

We first conduct a numerical analysis on the node probability in Eq.(19). Fig.1
plots how the node probability varies with the degree k and inverse temperature
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Fig. 2. Network energy varying with degree according to Eq.(18)

β, respectively. In Fig.1(a), there is a phase transition for the probability varying
with the node degree. When the value of inverse temperature β increases, the
peak corresponding to the phase transition shifts towards zero. In Fig.1(b), the
node probability exponentially decays with the inverse temperature. The larger
value of node degree, the faster in decay.

（a） （b）

（c） （d）

Fig. 3. Degree distributions for real-world networks. The red curves are the actual
degree distributions and the blue curves are the result of simulation using Eq.(11).

Next we analyse the behaviour of the energy given in Eq.(18) with both
degree and temperature. The expression in Eq.(18) is quite complicated and it is
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not obvious by inspection how energy depends on temperature. This is because
exponential term is both degree and temperature dependent and the integral is
degree dependent. Fig.2 shows the full degree dependence for the energy. The
energy increases with degree until reaching a plateaux value when the node
degree is large. The energy also decreases rapidly when the inverse temperature
β increases.
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Fig. 4. The average energy and inverse temperature in S&P500 Index Stock Data
(2010–2020) for original financial networks.

We now turn our attention to the real-world datasets. We examine the pre-
dictions of the node probability distribution in Eq.(11) for the complex network
dataset. Fig.3 shows four degree distributions for different complex networks.
The red curves are actual degree distributions and the blue curves are the pre-
dictions of our model. The four real networks come from the KONECT dataset,
and are the arXiv hep-th network, the Facebook network, the Google Orkut
user network, and a protein-protein interaction network. It is clear that, instead
of following the power law degree distribution many real world complex net-
works follow the exponential distribution that we derived in Eq.(11). Actually,
our model fits well at the low degree range, and at high-degree the power-law
applies.

Finally, we use the time evolving financial networks to evaluate the energy
and inverse temperature. Fig.4 plots the derived energy and inverse temperature
for the stock exchange networks over the past decade. The stock market networks
undergo rapid structural fluctuation during critical financial events. These events
are listed in the caption of the figure. Compared with the energy, the temperature
is more sensitive to the fluctuations of the financial markets. Sharp peaks in both
energy and temperature indicate significant changes in network structure during
the different financial events.

In summary, our derived expression for the degree distribution can therefore
be used to fit the degree distributions of real complex networks. The correspond-
ing energy and temperature associated with the network structure can also be
used to identify abrupt changes of the pattern of edge connectivity.
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6 Conclusion
In this paper, we make use of the Debye model to describe the node probability
distribution in weighted networks. We commence from a thermal analogy de-
scribed by the classical Boltzmann distribution. The particles in this thermal
system are analogous to the nodes in a network. The energy is determined by
the edge weights and node degree, which provides a physical interpretation for
temperature. Then, the Debye solid model leads to an exponential expression
for the probability density function of node degree. This the depends on the
edge weights and the global temperature parameter, both related to the con-
figuration of nodes and edges. The node probability density function together
with the cumulative distribution function for energy reveal a phase transition
for both the degree and temperature dependence. Experimental results show
that the derived distribution can be used to fit the degree distribution in natu-
rally occurring networks and identify the anomalous structure in time evolving
networks.
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