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Abstract. Accurate identification of Mild Cognitive Impairment (MCI) based

on resting-state functional Magnetic Resonance Imaging (RS-fMRI) is crucial

for reducing the risk of developing Alzheimer’s disease (AD). In the literature,

functional connectivity (FC) is often used to extract brain network features. How-

ever, it still remains challenging for the estimation of FC because RS-fMRI data

are often high-dimensional and small in sample size. Although various Lasso-

type sparse learning feature selection methods have been adopted to identify the

most discriminative features for brain disease diagnosis, they suffer from two

common drawbacks. First, Lasso is instable and not very satisfactory for the

high-dimensional and small sample size problem. Second, existing Lasso-type

feature selection methods have not simultaneously encapsulate the joint correla-

tions between pairwise features and the target, the correlations between pairwise

features, and the joint feature interaction into the feature selection process, thus

may lead to suboptimal solutions. To overcome these issues, we propose a novel

sparse learning feature selection method for MCI classification in this work. It

unifies the above measures into a minimization problem associated with a least

square error and an Elastic Net regularizer. Experimental results demonstrate that

the diagnosis accuracy for MCI subjects can be significantly improved using our

proposed feature selection method.
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1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia in old people, which

severely interferes with their daily life and may eventually cause death [3]. Effective

and accurate diagnosis of AD at its early stage may possess crucial significance in

preventing progression of detrimental symptoms [3]. Recently, the identification of MCI

subjects is important for reducing the risk of developing AD and has attracted much

attention recently [11]. However, it is very challenging to identify MCI subjects due to

its mild clinical symptoms.

⋆ Co-First Author
⋆⋆ Corresponding Author: bailucs@cufe.edu.cn



2 L. Cui et al.

In the literature, MCI is generally believed to be associated with a disconnection

syndrome within brain networks. Therefore, constructing brain functional connectivity

(FC) networks based on the resting-state fMRI (RS-fMRI) BOLD signals of various

brain regions has become promising for MCI classification. In this paper, we use a

sliding window approach [9] to partition the RS-fMRI BOLD signal from each voxel

into multiple overlapping segments, in order to capture the time-varying interactions

between different ROIs and obtain a series of dynamic FC networks. We then extract

the corresponding FC features for the subsequent brain network analysis. However, the

number of the extracted features is much larger than that of the MCI subjects, and more

importantly, many features may be irrelevant to the classification task, thus leading to

the overfitting problem.

In pattern recognition and machine learning, feature selection are powerful tools

for identifying the most salient features from the original feature space and alleviat-

ing the overfitting problem [10]. In this regard, various feature selection methods have

been widely applied to detect the most discriminative features for AD prediction. In

some early works, Chyzhyk et al. [4] proposed an evolutionary wrapper feature selec-

tion using Extreme Learning Machines to determine the most salient features for AD

diagnosis. However, wrapper methods are often computational burdensome and the re-

sults are biased depending on the classifier [6]. To overcome these issues, many efforts

have been devoted to developing LASSO-type feature selection methods for AD di-

agnosis. For instance, Suk et al. [7] utilized a group sparse representation along with

a structural equation model to estimate FC from RS-fMRI. Wee et al. [9] proposed a

fused sparse learning algorithm for early MCI identification. Chen et al. [3] developed

a two-stage feature selection procedure to select a subset of the original features for

MCI classification. However, existing LASSO-type feature selection methods for MCI

classification suffer from two common limitations. First, LASSO shows instability and

is not very satisfactory for high-dimensional small sample size problem. Second, exist-

ing Lasso-type feature selection methods have not simultaneously encapsulate the joint

correlations between pairwise features and the target, the correlations between pairwise

features, and the joint feature interaction into the feature selection process, thus may

lead to suboptimal solutions.

To effectively tackle the issues of existing Lasso-type sparse learning feature se-

lection methods, we propose a new feature selection method, i.e., Tripple-EN for MCI

classification. We commence by defining three new information theoretic criteria to

measure: 1)the relevancy of pairwise features in relation to the target feature, 2) the

redundancy of pairwise features and 3)joint feature interaction. With these measures to

hand, we formulate the corresponding feature subset selection problem as a least square

regression model associated with an elastic net regularizer to simultaneously maximize

relevancy, minimize redundancy, and maximize joint interaction of the selected fea-

tures. An iterative optimization algorithm based on the alternating direction method of

multipliers (ADMM) [1] is proposed to solve the optimization problem.

The advantages of the proposed method are twofold. First, it encapsulates the pair-

wise feature relevancy, feature redundancy and joint feature interaction into a unified

learning model to improve the performance of feature selection. Second, by using the

elastic net regularizer, the proposed method can ensure sparsity and also promote a
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grouping effect of the features. Figure 1 shows an overview of the framework of this

paper, which consists of the following steps: (1) constructing brain FC networks using

a sliding window strategy, (2) identifying the most discriminative features using a new

sparse learning feature selection method, and (3) implementing classification following

the C-SVM method. Details of each step are illustrated in the following sections.

Sliding Window on Raw fRMI Time Series

… …

…
…

…
…

Constructing Brain Functional Networks

Standard Deviation

Standard Deviation

…
…

Pearson’s Correlations

Pearson’s Correlations

FS from Tripple-EN

…
…

dynamic FC

Stationary FC Selected Connectivity

Stationary FC

dynamic FC

Selected Connectivity

C-SVM Classifier

Fig. 1. Framework of this paper.

This paper is organized as follows. Section 2 introduces the construction of the func-

tional connectivity networks from brain networks. Section 2 illustrates the proposed

sparse learning feature selection method for MCI classification. Finally, Section 5 con-

cludes this paper.

2 Constructing Functional Connectivity Networks

In this section, we will introduce how to construct the functional connectivity networks,

which mainly consists of two steps, i.e., generating functional networks using RS-fMRI

and feature extraction.

2.1 Generating FC Networks using RS-fMRI

As in Fig 1, the preprocessed RS-fMRI data was parcellated using the Automated

Anatomical Labeling (AAL) atlas with 116 ROIs [3], which are represented by the time

series curves of different colors. We use a sliding window approach to partition the RS-

fMRI BOLD signal from each voxel into multiple overlapping segments, in order to

capture the time-varying interactions between different ROIs. Specifically, denote the

total length of image volumes as M and the length of the sliding windows as N . Then,

the total number of segments is K = ⌊(M −N)/s⌋. On each segment, within the GM,

a regional mean BOLD signal is computed by averaging the BOLD time series over all

voxels inside each ROI, which reflects the regional neural activity during a short period

of time. We use Ck
ij to denote the Pearson’s correlation coefficients between ROI i and

ROI j on the k-th sliding window. Then we can obtain the interregional dynamic FC
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(dFC), denoted as dFCij = [C1
ij , ..., C

k
ij , ..., C

K
ij ], which measures the time-varying

interactions of FC between ROI i and ROI j. As shown in Figure 1, we can obtain a se-

ries of dynamic time-varying FC networks. Note that, due to the symmetry of Pearson’s

correlation, the number of dFC is equal to the total number of ROI pairs.

2.2 Feature Extraction

To extract the features for further analysis, we calculate the standard deviation of a se-

ries of dynamic FC networks and obtain one stationary FC network for each subject.

Specifically, the corresponding FC network for a series of dynamic time varying net-

works is obtained by calculating the standard deviation as

√∑
K
k=1

(Ck
ij
−µ)2

K
, where µ is

the mean value of Ck
ij . With these FC networks to hand, a total of 6670 features was

generated. As shown in Figure 1, for a series of dynamic time-varying FC networks,

we can construct a stationary FC network for each subject, with each node representing

a specific ROI and each edge representing the corresponding connection between pair-

wise ROIs, which incorporates the information from a series of dynamic time-varying

FC networks.

3 The Proposed Sparse Learning Feature Selection for MCI

Classification

In this section, we focus on the proposed sparse learning feature selection method for

identifying the most discriminative FC features. We commence by introducing the pro-

posed information theoretic criteria for measuring the joint relevance (significance) of

different pairwise feature combinations with respect to target labels, the redundancy

of pairwise features, and the joint feature interaction, respectively. Based on these mea-

sures, we develop the corresponding optimization model for feature selection and sparse

learning. Finally, an iterative optimization algorithm based on ADMM is proposed to

solve the feature selection problem and identify the most discriminative feature subset.

3.1 Proposed Information Theoretic Criteria

Feature Relevancy. For a set of N features f1, . . . , fi, . . . , fN and the associated target

feature Y, the relevancy degree of each feature pair {fi, fj} in relation to the target

feature is estimated through Pearson’s correlation coefficients, which is defined as

W(fi,fj) = Cor(fi,Y)× Cor(fj ,Y). (1)

where Cor is the Pearson’s correlation measure. The first term Cor(fi,Y) measures

the relevance of feature fi with respect to the target. Similarly, the second term is the

corresponding relevance of feature fj with respect to the target. Therefore, W(fi,fj) is

large if and only if both Cor(fi,Y) and Cor(fj ,Y) are large (i.e., both fi and fj are

informative themselves with respect to the target).

Additionally, it is desirable that strongly correlated features should not be in the

model together, i.e., the selected features should be less redundant. Therefore, we pro-

pose the following criterion to measure the redundancy of pairwise features.
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Feature Redundancy. For a set of N features f1, . . . , fi, . . . , fN , the redundancy of

the feature pair {fi, fj} is calculated as

U(fi,fj) = Cor(fj , fj) (2)

where Cor is the Pearson’s correlation measure.

Joint Feature Interaction. We propose to use the following criterion to measure

the joint interaction of different pairwise feature combinations with respect to target

labels. For a set of N features f1, . . . , fi, . . . , fj , . . . , fN and the associated continuous

target feature Y, the joint interaction degree of the feature pair {fi, fj} is

Vfi,fj =
Cor(fi,Y) + Cor(fj ,Y)

Cor(fj , fj)
, (3)

where Cor is the Pearson’s correlation measure. The above measure consists of three

terms. The terms Cor(fi,Y) and Cor(fj ,Y) are the relevance degrees of individual

features fi and fj with respect to the target feature Y, respectively. The term Cor(fj , fj)
measures the relevance between the feature pair {fi, fi}. Therefore, Vfi,fj is large if and

only if both Cor(fi,Y) and Cor(fj ,Y) are large (i.e., both fi and fj are informative

themselves with respect to the target feature representation Y) and Cor(fj , fj) is small

(i.e., fi and fj are not correlated).

Furthermore, based on the proposed information theoretic measures, we construct

three interacted matrices denoted as W, U, and V respectively. Specifically, each ele-

ment Wi,j ∈ W represents the joint relevancy between a feature pair {fi, fj} based on

Eq.(1). Likewise, each element Ui,j ∈ U represents the redundancy between a feature

pair {fi, fj} based on Eq.(2). Moreover, each element Vi,j ∈ V represents the joint

interaction between a feature pair {fi, fj} based on Eq.(3). Given W, U, V and the

N -dimensional feature indicator vector β, where βi represents the coefficient for the

i-th feature, we can identify the informative feature subset by solving the following

optimization problem to ensure maximum joint relevancy, minimum redundancy, and

maximum joint interaction of the selected features,

max f(β) = maxβ∈ℜN νβTWβ − ωβTUβ + σβTVβ,
s.t. β ∈ ℜN , β ≥ 0.

(4)

where ν, ω and σ are the corresponding tuning parameters.

3.2 A Novel Sparse Learning Feature Selection Approach

Our discriminative feature selection approach is motivated by the purpose to ensure

maximum joint relevancy, minimum redundancy, and maximum joint interaction of the

selected features. In addition, it should simultaneously promote a sparse solution and a

grouping effect of the highly correlated features. Therefore, we unify the minimization

problem of Eq.(4) with the elastic net regression framework and propose the sparse

learning feature selection method as

min
β∈ℜN

1

2
‖yT −βTX‖22+λ1‖β‖1+λ2‖β‖

2
2−λ3β

TWβ+λ4β
TUβ−λ5β

TVβ, (5)
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where λ1 and λ2 are the tuning parameters for elastic net, λ3, λ4, and λ5 are the tuning

parameters for the relevancy matrix W, the redundancy matrix U, and the joint inter-

action matrix V, respectively. The first term in Eq.(5) is the least square error term, the

second term and the third term encourage sparsity and also promote a grouping effect

of the selected feature as in the elastic net model. The fourth term guarantees maximum

joint relevancy of selected features. The fifth term ensures minimum redundancy among

selected features. Finally, the last term ensures that the selected features are jointly more

interacted with the target class.

3.3 An Iterative Optimization Algorithm

To solve the optimization problem (5), we develop an iterative optimization algorithm

based on ADMM, which uses a decomposition-coordination procedure. By using AD-

MM, the solutions to small local subproblems are coordinated to find a solution to a

large global problem. This algorithm can be viewed as an attempt to blend the benefits

of dual decomposition and augmented Lagrangian methods for constrained optimiza-

tion.

Firstly, we reformulate the proposed feature selection problem into an equivalent

constrained problem in the ADMM form,

min
β∈ℜN

1

2
‖yT − βTX‖22 + λ2‖β‖

2
2 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ + λ1‖γ‖1

s.t. β = γ, (6)

where γ is an auxiliary variable, which can be regarded as a proxy for vector β. In this

way, the objective function can be divided into two separate parts associated with two

different variables, i.e., β and γ. This indicates that the hard constrained problem can be

solved separately. As in the method of multipliers, we form the augmented Lagrangian

function associated with the constrained problem (5) as follows

Lρ(β, γ, z) =
1

2
‖yT − βTX‖22 + λ2‖β‖

2
2 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ

+ λ1‖γ‖1+ < β − γ, z > +
ρ

2
‖β − γ‖22, (7)

where 〈·, ·〉 is an Euclidean inner product, z is a dual variable (i.e.,the Lagrange mul-

tiplier) associated with the equality constraint β = γ, and ρ is a positive penalty pa-

rameter (step size for dual variable update). By introducing an additional variable γ
and an additional constraint β − γ = 0, we have simplified the optimization problem

(5) by decoupling the objective function into two parts that depend on two different

variables. In other words, we can decompose the minimization of Lρ(β, γ, z) into two

simpler subproblems. Specifically, we solve the original problem (5) by seeking for a

saddle point of the augmented Lagrangian by iteratively minimizing Lρ(β, γ, z) over

β, γ, and z. Then the variables β, γ, and z can be updated in an alternating or sequential

fashion, which accounts for the term alternating direction. This updating rule is shown

as follows

(1) βk+1 = argminβ∈ℜp L(β, γk, zk), //β-minimization
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(2) γk+1 = argminβ∈ℜp L(βk+1, γ, zk), //γ-minimization

(3) zk+1 = zk + ρ(βk+1 − γk+1), //z-update

Given the above updating rule, we need to resolve each sub-problem iteratively until

the termination criteria is satisfied. We perform the following calculation steps at each

iteration.

(a)Update β
In the (k + 1)-th iteration, in order to update βk, we need to solve the following

sub-problem, where the values of γk and zk are fixed

min
β∈ℜN

1

2
‖yT − βTX‖22 + λ2‖β‖

2
2 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ

+ λ1‖γ‖1+ < β − γk, zk > +
ρ

2
‖β − γk‖22. (8)

Let the partial derivative with respect to β be equal to zero, we have

∂[minβ∈ℜN
1
2‖y

T − βTX‖22 + λ2‖β‖
2
2 − λ3β

TWβ + λ4β
TUβ − λ5β

TVβ]

∂β

+
∂[minβ∈ℜN λ1‖γ‖1+ < β − γk, zk > +ρ

2‖β − γk‖22]

∂β
= 0, (9)

because


























































∂( 1

2
‖yT−βTX‖2

2
)

∂β
= −Xy +XXTβ

∂(λ2‖β‖
2

2
)

∂β
= λ2β

∂(−λ3β
TWβ)

∂β
= −2λ3Wβ

∂(λ4β
TUβ)

∂β
= 2λ4Uβ

∂(−λ5β
TVβ)

∂β
= −2λ5Vβ

∂<β−γk,zk>
∂β

= zk

∂( ρ
2
‖β−γk‖2

2
)

∂β
= ρ(β − γk),

(10)

we have

−Xy +XXTβ + λ2β − 2λ3Wβ + 2λ4Uβ − 2λ5Vβ + zk + ρ(β − γk) = 0, (11)

that is,

βk+1 = (XXT + λ2I− 2λ3W + 2λ4U− 2λ5V + ρI)−1(Xy − zk + ργk). (12)

(b)Update γ
Based on the results, assume βk+1

i and zki are fixed, for i = 1, 2, ..., d, we update

γk+1
i by solving the following sub-optimization problem

min
γi

λ1

p
∑

i=1

‖γi‖1 −

p
∑

i=1

< γi, z
k
i > +

ρ

2

p
∑

i=1

‖βk+1
i − γi‖

2
2, (13)



8 L. Cui et al.

∂[minγi
λ1

∑p
i=1 ‖γi‖1 −

∑p
i=1 < γi, z

k
i > +ρ

2

∑p
i=1 ‖β

k+1
i − γi‖

2
2]

∂γi
= 0. (14)

We therefore have the following results

γk+1
i =











1
ρ
(zki + ρβk+1

i − λ1), if zki + ρβk+1
i > λ1

1
ρ
(zki + ρβk+1

i + λ1), if zki + ρβk+1
i < −λ1

0, if zki + ρβk+1
i ∈ [−λ1, λ1]

(15)

(c)Update z

Then, assume βk+1
i and γk+1

i are fixed, for i = 1, 2, ..., d, we update zk+1
i by using

the following equation

zk+1
i = zki + ρ(βk+1

i − γk+1
i ). (16)

Based on procedures (a), (b), and (c), we summarize the optimization algorithm

below

Input: X,y, β0, z0, λ1, λ2, λ3, λ4, λ5, ρ

Step1: While (not converged), do

Step2: Update βk+1 according to Eq.(12)

Step3: Update γk+1

i
, i = 1, 2, ..., d according to Eq.(15)

Step4: Update βk+1

i
, i = 1, 2, ..., d according to Eq.(16)

End While

Output: β∗.
Algorithm 1: The iterative optimization algorithm for the proposed Tripple-EN method.

4 Experimental Analysis

We evaluate the performance of the proposed feature selection method for MCI clas-

sification on the public available Alzheimer’s Disease Neuroimaging Initative (ANDI)

database. Specifically, 54 MCI patients and 62 NC subjects were selected from AD-

NI database. The images of each subject were acquired using a 3.0T Philips scanners

at centers in different places. The voxel size is 3.13 × 3.13 × 3.13mm3. SPM8 soft-

ware package was applied to preprocess the RS-fMRI data. To evaluate the discrim-

inative capabilities of the information captured by our method, we compare the clas-

sification results using the selected features from our method (Mu-InElasticNet) with

several state-of-the-art feature selection methods, i.e., a) Lasso [8], b) ULasso [2], c)

Group Lasso [5], and d) Elastic Net [12]. For the experiments, due to limited sam-

ples, a Leave One Out(LOO) cross-validation associated with C-SVM is applied to

benchmark the generalization performance of different methods. Specifically, given N

subjects, N-1 subjects are used as training data, and one subject is subsequently eval-

uated in terms of the classification accuracy. We repeat the procedure L times, and
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report the averaged classification result. Fig.2(a) exhibits that the C-SVM associated

with the proposed method can achieve the best classification accuracy, and the accuracy

(y-axis) increases with the increasing number of selected features (x-axis). Moreover,

Table.1 shows the best classification accuracy (ACC) for each method associated with

the corresponding number of selected features, as well as other four associated indices,

i.e., sensitivity (SEN), specificity (SPE), area under the receiver operating characteristic

curve (AUC), and F-score. We observe that the proposed method significantly outper-

forms the remaining methods on all indices. The reason for the effectiveness is that only

our method can simultaneously maximize relevancy and minimize redundancy of the

selected features. Finally, we also experimentally evaluate the convergence property of

the proposed method. Fig.2(b) indicates that the proposed method converges quickly

within 50 iterations tend to be stable after 150 iterations.

Table 1. Performance of different methods in MCI classification (NC vs MCI).

Methods Lasso ULasso GroupLasso ElasticNet Tripple-EN

ACC 0.6578 0.6842 0.7105 0.7192 0.7894

SEN 0.6663 0.6800 0.7143 0.7059 0.8261

SPE 0.6783 0.6875 0.7077 0.7143 0.7647

AUC 0.6723 0.6821 0.7110 0.7101 0.7954

F-score 0.6567 0.6538 0.6796 0.6857 0.7600

Feature Numbers 60 features 80 features 70 features 80 features 80 features

(a) Accuracies vs selected number of features (b) Convergence for the optimization
Fig. 2. Experiments for the proposed method.

5 Conclusion

In this paper, we have proposed a novel sparse learning feature selection method for M-

CI classification for AD diagnosis. Specifically, we devised three information theoretic

measures to evaluate feature relevancy, feature redundancy and joint feature interaction.

These measures are further encapsulated into the least square regression associated with

an elastic net regularizer to simultaneously maximize relevancy, minimize redundancy,

and maximize joint interaction of the selected features. Experiments demonstrated the

effectiveness of our method on MCI classification tasks.
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