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Abstract—A Walrasian Market can be modeled as a distributed
system consisting a set of independent buyers and sellers. The
Walrasian equilibrium theorem proves the existence of the
optimal price that results in the market clean state or Walrasian
Equilibrium where the sum of absolute excess demand is zero.
It is proved that finding this equilibrium price is an NP-hard
problem. In this paper, we present an efficient distributed control-
theoretic approach for finding the Walrasian equilibrium in
an exchange economy. We have modeled the price adjustment
process as a closed-loop control system where the sum of absolute
excess demand is measured as the system error that is fed to
commodity moderators in a distributed schema simultaneously,
and then each commodity moderator adjusts the price of its
related commodity. We devised a controller algorithm with low
complexity and fast convergence that iteratively moves the error
value to zero. The proposed scheme, finds the equilibrium price
and Pareto efficient allocation without knowing the shape of user
utility functions or their preferences. It is scalable and is usable
for exchange economies with multiple goods and many types of
users.

Index Terms—Walrasian equilibrium, Dynamic Spectrum Al-
location, Pareto efficient allocation, Price adjustment

I. INTRODUCTION

A Walrasian Market is formed by a number of independent

commodity providers in a competitive setting that are serving

possibly numerous independent buyers both acting in ratio-

nally selfish manner. The clean state market is the condition

where the total demand equals the total supply. Since the

demand is function of the commodity price, in clean state

market, the optimal price P ∗ is calculated by commodity

providers in a distributed manner where there would be no

available excess budget or commodity. Finding the equilibrium

condition in a fully competitive market is a well-known

problem. The existence of an equilibrium in these markets has

already been proven and has been a well-recognized theorem

[1], [2], [3]. However, finding the equilibrium allocations and

corresponding prices is an NP-hard problem [4]. There have

been many attempts to propose efficient solutions for various

categories of problems. In [5], the authors offer a solution

for the case where the utility functions are linear. In [6], the

authors developed an approximate scheme based on reducing

the calculation of a Walrasian equilibrium to a polynomial

number of concave maximizations. It involves construction of

simple subdivisions and some form of exhaustive search in

the labeling process and the results may not be very accurate.

The authors of [7] investigate a computable general equilib-

rium (CGE) modeling theory and provide a general algebraic

framework including numerical equations to be solved for the

equilibrium values of economic variables. However, it does

not provide a detailed solution or guidelines.

Developing algorithms to reach a fair market equilibrium

has been a point of interest in many fields and in particular

in the context of next generation wireless service networks

[8], [9], [10], [11]. Walrasian equilibrium governed by the

laws of demand and supply is of particular interest. There

are a number of previous attempts to develop theories and

algorithms to find or move the system towards a fair Walrasian

equilibrium [4], [6], [12]. None of these works, however,

produced a general numerically sound approach to solve the

Walrasian equilibrium problem. In [8], load balancing in a het-

erogeneous wireless access networks (HWAN) is considered.

A ‘heterogeneous handoff management system’ is proposed

where three sub-problems, base station (BS) and radio access

technology (RAT) by mobile terminals and ‘weight restriction’

technique used by the base stations, are independently solved

and it is shown that applying appropriate weight restriction

technique results in a balanced equilibrium condition. In [9],

an autonomous connection management (ACM) mechanism

is developed to strike a balance between the overall system

throughput, load distribution in the network, fairness in access

to resources and user satisfaction in in HWAN settings. A

stochastic equilibrium analysis framework was devised that

showed favorable system conditions under various scenarios.

In [10], authors modeled the system dynamics as a novel

three-stage game creating a unified framework for spectrum

allocation, network best response and user welfare. In this

work, frequency spectrum was considered as a commodity and

model the spectrum allocation was modeled as a market dy-

namics problem. System equilibrium was analyzed by finding

the Nash equilibrium of the game through which the influence

of regulatory decisions and impact of network/user strategies

is analyzed. The devised model provides a framework for

the regulatory and network operators for adjusting spectrum

allocation table towards maximizing the social welfare for all

the players. In [13], the economics of spectrum sharing, which

is referred to as spectrum trading, is addressed in cognitive

radio networks. The authors introduced a market-equilibrium-

based spectrum trading mechanism that uses spectrum demand

and supply of the primary and secondary users, respectively.

Since spectrum supply is stochastic in nature, a distributed



and adaptive learning algorithm was proposed to be used for

the secondary users to estimate spectrum price and adjust the

spectrum demand accordingly so that a fair market equilibrium

can be reached.

In this paper, we propose an iterative process based on the

theory of closed-loop control system that conveniently con-

verges to the Walrasian equilibrium. Stability and convergence

of the proposed algorithm is demonstrated through simula-

tions. Our main contributions in this work are as follows:

• We propose a numerical solution to find Walrasin equi-

librium without any assumption on the format of clients’

utility functions; it is only required that the clients’ utility

functions be quasi-concave;

• Scalability of the model in terms of the number of clients

is established through numerical results;

• Stability of the proposed approach to find the Walrasian

equilibrium is guaranteed as the sum on absolute excess

demand progressively converges to zero.

The rest of this paper is organized as follows. In Section

2, we formally state the principles of Walrasian equilibrium

in an exchange economy. In Section 3, we introduce the

proposed control-theoretic algorithm to find the Walrasian

economy. In Section 4, the convergence and stability of the

proposed algorithm is analyzed. Section 5 contains a case

study, applying the proposed algorithm in a dynamic spectrum

allocation problem as a sample application area and finally

Section 6 contains the conclusion and final remarks.

II. EXCHANGE ECONOMY AND WALRASIAN EQUILIBRIUM

Let us consider an exchange market where different sellers

and buyers are to exchange their commodities. In a clean

market state, all commodities are expected to be fully assigned.

There is an equilibrium price for each commodity at this

state. In addition, allocation of commodities to each client

is considered to be Pareto efficient [1]. That means, there is

no way to make someone better off without making someone

else worse off.

Consider the economy E where we have N commodi-

ties and M players, J = {1, . . . , N} is the index set of

commodities while I = {1, . . . ,M} is the index set of the

market players called clients here and that every client is

endowed with a non-negative amount of each commodity as

its initial asset. Client’s commodity preferences is defined on

the consumption set RN
+ , denoting positive real numbers, and

their utilities are represented by a utility function ui fulfilling

some set properties.

In the competitive exchange process, all clients know about

the prices of all commodities, and they act as both a buyer

and a seller; i.e., a client can sell her goods to buy goods

from other clients. Mapping this to a real market, money can

be also considered as a special commodity where the sellers

are only interested in this type of commodity.

Suppose p = (p1, . . . , pN ) ≫ 0 is the vector of prices

for N available commodities, and e
i = (ei1, . . . , e

i
N ) is the

initial asset or initial endowment of client i. The vector xi =
(xi

1, . . . , x
i
N ) denotes the amounts of client i from N different

commodities after redistribution of commodities that we call

it as “demand allocation vector”. Clients try to increase their

payoff through the exchange process simultaneously, which is

mathematically defined as follows:

max ui
(

x
i
)

(1a)

subject to: p · xi
6 p · ei (1b)

x
i ∈ RN

+ (1c)

The factor p · ei is a constant value in the optimization

problem that determines the client’s budget. Therefore, (1b)

demonstrates the client’s budget constraint and limits the

client’s purchase power to its total budget. The outcome of

this optimization problem solved independently by each client

i is χi(p) which represents the best and most favorable request

bundle for each client and depends on the current price vector

and the client’s initial asset (xi = χi(p)). However, the supply

limitation is not enforced, i.e. commodity availability is not

considered. Hence, the overall demand for some commodities

may excess the available supply. To formulate supply surplus

or shortage, we define the aggregate excess demand for

commodity j by zj :

zj =
M
∑

i=1

xi
j −

M
∑

i=1

eij . (2)

Here, eij denotes the amount of commodity j that client i

has and xi
j denotes the amount of commodity j that client i

desires to have. As xi is a function of price p, (xi = χi(p)), in

this regard, we can define zj as a function of price zj = zj(p).

There is excess demand for commodity j when zj(p) > 0,

and there is excess supply of this commodity when zj(p) < 0.

Thus, z(p) = (z1(p), . . . , zN (p)) is defined as the aggregate

excess demand vector as a function of price.

A. Principles of exchange economies

In the following, we describe the basic principles that apply

in an exchange economy that forms the basis for our proposed

algorithm explained in the next section.

1) Clients’ utility specification: Utility function ui for

client i, should be continuous, strongly increasing, and strictly

quasi-concave on RN
+ [1].

2) Existence and uniqueness of the demand allocation vec-

tor: For every price vector p, we have a unique solution,

X = [x1, ..,xM ], to the optimization problem in (1) which

represents the most favorable request bundle for the clients

under current commodity prices and clients’ purchase powers

[1]. This means the exchange process has a unique answer

for each price vector where the utilities of all clients would

be at their maximum possible values if there were no supply

limitations.



Fig. 1: A system-level view of Walrasian Analysis engine

3) Walrasian Equilibrium (WE): A price vector p
∗ ≫ 0

is called a Walrasian equilibrium if z(p∗) = 0 [1]. If such a

price vector exists, the sum of redistributions for a commodity

j is equal to its total initial supply by all clients:

∀j ∈ {1, . . . , N},

M
∑

i=1

xi
j(p) =

M
∑

i=1

eij . (3)

Let p
∗ be a Walrasian equilibrium for some economy with

initial endowments e, then X
∗ =

(

χ1(p∗), . . . , χM (p∗)
)

is

called a Walrasian equilibrium allocation, or WEA.

4) Existence of the clean market price: Assuming principle

II-A3 and given
∑M

i=1 e
i ≫ 0, then there exists at least one

price vector, p∗ ≫ 0, such that z(p∗) = 0 [1]. This claims the

existence of an equilibrium price vector p∗ ∈ RN
+ that moves

the excess demand vector to its optimal state (z(p∗) = 0).

5) First Welfare Theorem: Every Walrasian equilibrium

allocation is Pareto efficient [1]. Therefore, there is no way

to increase the payoff of one client without decreasing at least

one other client.

6) Second Welfare Theorem: Any price vector p̃ that makes

the excess demand zero (z(p̃) = 0) is a Walrasian equilibrium

(p̃ = p
∗), and the related allocation is WEA [1].

These principles establish the existence of the Walrasian

equilibrium and the related necessary conditions. However,

obtaining an actual solution is a daunting task and remains to

be a research issue. In the following, we endeavor to develop

a practical solution to find a price vector that results in zero

excess demand.

III. PROPOSED WALRASIAN ANALYSIS ENGINE

A conceptual view of the Walrasian analysis engine is

shown in Figure 1. The initial assets of clients and their utility

preferences that satisfies Principle 1 of exchange economies

act as inputs. Through interactions between the sellers and

buyers’ the price and demand vectors are adjusted indepen-

dently in a selfish manner. The final outcome of the system

is the optimal price and optimal allocations p
∗ and X

∗ that

results in clean-state condition.

We can consider the Walrasian analysis engine as a closed-

loop control system with feedback defined by iteratively

diminishing the error signal, z(p), its outputs converge to

the p
∗ and X

∗. The Walrasian analysis engine involves three

sub parts: client behavior simulator, market behavior simulator

and price adjustment feedback control box (Figure 2). Market

behavior is simulated based on optimization process defined in

Fig. 2: Sub parts of Walrasian Analysis engine.

(1). The feedback control algorithm used at price adjustment

box is the heart of the proposed approach that implements the

price adjustment process.

At each adjustment cycle t, the optimization problem in

(1) is solved by client entities. In our implementation, we

use CVX [14] optimization package to solve (1) to model

clients’ behavior as a convex optimization. By determining

all xi
j(p), ∀i, j in this phase, a central entity receives the

xi
j signals from all clients to calculate the aggregate excess

demand for each commodity j using equation (2). To arrive

at Walrasian equilibrium p
∗, the system needs to go through

the price adjustment process. At each iteration t, we adjust

the price in such a way that the excess demand to eventually

be zero. Hence, the key point in pricing is that the price

for commodities with positive excess demand should increase

and the price for commodities with negative excess demand

must decrease. We propose the following adjustment policy

that demonstrates favorable convergence properties with low

computational complexity for j ∈ {1, . . . , N}:

pj(t+ 1) = pj(t) +
|zj |

1 +
∑N

j=1 |zj |

(pj(t)
∑M

i=1 x
i
j

∑M

i=1 e
i
j

− pj(t)
)

,

(4)

where
∑M

i=1 x
i
j is total requested amount of commodity j

at time t. The term
|zj |

1+
∑

N
j=1

|zj |
controls the rate of price

adjustment. The price for commodities with higher error

value |zj | are updated with higher rate. This means that the

gain of the feedback loop is dynamically adjusted for faster

convergence. The term
pj(t)

∑
M
i=1

xi
j∑

M
i=1

ei
j

semantically determines

the optimal price for commodity j where pj(t)
∑M

i=1 x
i
j is

the total market budget clients are ready to be spent for

commodity j. This is divided to total amount of supply of

this commodity. This amounts to normalizing the error value



Fig. 3: Flowchart of the proposed approach for finding the Walrasian
equilibrium.

TABLE I: Three defined datasets

# M N Amount of Initial Asset
(

Ej =
∑M

i=1
eij

)

1 50 3 E = [185.60, 47.52, 171.85]
2 100 5 E = [206.93, 63.79, 223.72, 62.15, 191.52]
3 500 10 E = [490, 168, 490, 172, 502, 159, 500, 173, 500, 167]

proportional to the current price of the commodity. The term
(

pj(t)
∑

M
i=1

xi
j∑

M
i=1

ei
j

−pj(t)
)

is the error term that decreases through

system iterations.

The iterations stops when we meet the market clean state at

time τ , at which case, the excess demand converges to zero and

we have
∑M

i=1 x
i
j =

∑M

i=1 e
i
j for all j ∈ J . At this case, the

price vector converges to p
∗(∀t > τ ; pj(t) = pj(τ) = p∗j ).

The overall flowchart of the proposed algorithm to find the

Walrasian equilibrium is shown in Figure 3. Using defined no-

tation Walrasian ǫ-equilibrium in [6], we defined an adjustable

threshold, ǫ, for stopping the iterations which describes the

acceptable level of the residual error. Formally, a Walrasian

ǫ-equilibrium is a pair (p,X) where p ∈ RN
+ and X is an

allocation, we have
∑N

j=1 |
∑M

i=1 x
i
j(p) −

∑M

i=1 e
i
j | < ǫ or

∑N

j=1 |zj | < ǫ .

IV. SIMULATION RESULTS

To evaluate the proposed feedback based approach, we

generated some random datasets as reflected in Table I.

In our simulations, without loss of generality, we considered

the Constant Elasticity of Substitution (CES) utility function

as the following for each client:

(a)

(b)

Fig. 4: Utility function curve for a client in an exchange market with two
commodities: u(x) = ( 3

√
2x1 + 3

√
x2)3.

ui(xi) =
(

N
∑

j=1

r

√

wi
jx

i
j

)r

∀i ∈ 1, . . . ,M, (5)

CES is one of the most popular utility functions, which

is widely used in micro economic theories and is a suitable

model for natural behavior of consumers. The CES utility

functions are increasing and concave for r > 1. The parameter

wi
j determines the weight of commodity j from client i’s point

of view. Figure 4 shows the utility surface for a client in an

exchange market with two commodities. We can find that the

utility surface is strictly concave.

The initial asset and weight vectors for clients are generated

randomly and we set r = 3 for utility functions and used

the threshold ǫ = 0.5. The result of applying the proposed

algorithm to find the Walrasian equilibrium is depicted in

Figure 5.

As depicted in Figure 5, the total market utility increases

from the initial level after the exchange process in all cases.

Also the Walrasian equilibrium(p∗) for each dataset is pre-

sented for each case. The system convergence shows favorable

behavior rapidly converging to optimal condition. Using Lya-

punov stability theory [15], the convergence of the system can

be readily proved as the first derivative of system’s potential



(a) Results on Dataset 1

(b) Results on Dataset 2

(c) Results on Dataset 3

Fig. 5: The reduction of sum of absolute of aggregate excess demands

(SAAED) (
∑N

j=1
|zj |) in subsequent iterations and convergence of price to

Walrasian equilibrium.

Lyapunov function V (p) = zj(p) is proved to be negative and

hence the system is asymptotically Lyapunov stable.

V. CASE STUDY: PRICING AND BANDWIDTH ALLOCATION

IN WIRELESS ACCESS NETWORKS

As a case study, to apply the proposed Walrasian analysis

technique, we consider multi-tenant wireless access networks

as is the case in HWAN where many wireless network

providers (WNPs) share a common radio spectrum. These

WNPs offer interchangeable wireless services to the clients.

The clients rationally form their request bundles based on their

own preference vectors. Figure 6 depicts a sample scenario

with three different WNPs.

The pricing of services offered by the WNPs is a central

issue to achieve market equilibrium or clean-state. We use our

Fig. 6: HWAN environment

Walrasian analysis technique to derive the pricing strategy of

the WNPs and as a side product, the final service allocation

bundle of the clients are also determined.

For a HWAN with N WNPs and M clients, the overall

process is as follows:

• Prepare a Walrasian market for M agents to exchange N

commodities;

• Initial asset of agents (e); Each client has an initial

asset according to current amount of its commodity;

e = [eij ]M×N ;

• Commodities’ weight vector (W); Each client assigns

a weight for every available commodity in the market;

W = [wi
j ]M×N is an M × N matrix that wi

j indicates

the weight of commodity j from the viewpoint of agent

i;

• Uniform utility function: We use a uniform CES utility

function for mathematical tractability (5);

• Demand adjustment: All Clients’ adjust their demand

vector through an optimization process (1): x
i ←

χi
(

p(t)
)

;

• Evaluating the excess demand: Based on current price

vector in time t, we calculate the excess demand for each

commodity as the difference between requested amount

and total available amount of that commodity using the

relation (2);

• Price adjustment: To arrive at Walrasian equilibrium price

p
∗, the system goes through a price adjustment iterative

process. At each iteration t, we adjust the price in such a

way that the excess demand to be zero. Hence, the price

for commodities with positive excess demand should

increase and the price for commodities with negative

excess demand must decrease.

Here, we assume a HWAN environment with three WNPs

and 50 clients, Suppose w
i is the weight vector of client i.

The weight vector of all clients is generated randomly where

the average weights for three WNPs are [0.43, 0.41, 0.15] that

means the order of preference of WNPs is Net1 > Net2 >

Net3. As a numerical example, we assume WNPs’ prepared

service is S = [180, 270, 340] and the initial price (p0) for a

unit of WNPs service is 5 (p0 = [5, 5, 5]). We are looking for

X
∗ and p

∗.

In Figure 7(a), we show that the sum of absolute of

aggregate excess demands (SAAED) (
∑N

j=1 |zj |) that is

7587.67 in first iteration converges to 4.42 in 7’th it-



(a) evolution of SAAED (
∑N

j=1
|zj |)

(b) evolution of absolute aggregate excess demands for all com-
modities

(c) convergence of prices on iterations to [16.81,12.45,9.98]

Fig. 7: Evolution of system state (SAAED, excess demand per commodity,
price) through analysis iterations.

eration. We defined the condition
∑N

j=1 |zj | ≤ 2 to

stop the price adjustment. The values of sum of absolute

of aggregate excess demand in the first seven iterations

are [1832.04, 121.31, 26.62, 18.66, 4.55, 3.63, 1.70]. The ag-

gregate excess demand for all commodities is depicted in

Figure 7(b). We see that in the initial stages, there is excess

demand for WNPs 1 and 2 and excess supply for WNP 3 be-

cause the price of service for WNPs 1 and 2 are low rather than

price of WNP 3 and through Walrasian adjustment of prices,

the excess demand has dropped to zero. In the last iteration

the price vector (Figure 7 (c)) is p
∗ = [16.81, 12.45, 9.98].

In this case study, clients update their request bundle at

the same time and also, WNPs as the commodity moderators

adjust their related commodity prices simultaneously. While all

decisions are applied in distributed agents, we find that the sys-

tem rapidly converges to its equilibrium. We have developed

a simulation environment using proposed formulations that

emulates the behavior of agents (clients and WNPs) through

which we could find the Walrasian equilibrium and the best

price that cleans the market.

VI. CONCLUSION

In this paper, we presented a numerical approach for finding

the Walrasian equilibrium in exchange economic markets. We

modeled the Walrasian analysis engine as a control system

with feedback. Our proposed controller, all commodity mod-

erators adjust their prices simultaneously. We showed that over

time, the error rate decreases and hence the system converges

to its steady state, which is called ”cleaning market” state.

Based on Walrasian theorem, the steady-state prices reflect

the Walrasian equilibrium and the related allocation is Pareto

efficient. One of the most suitable fields for using the proposed

approach is HWANs where we have WNPs that compete to

sell their prepared service. We applied the proposed WAE

technique for pricing and bandwidth allocation in an HWAN as

a case study and deduced the WNPs’ pricing strategy and also

determined clients’ optimal service bundles. The convergence

of the system and the analysis speed was shown to be fast (only

four iterations in the scenario with 50 clients) with affordable

computational complexity.
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