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A B S T R A C T   

In this research article, the PVDF (polyvinylidene fluoride)–PANI (polyaniline)–titanium nanotube (TNT) based 
nanocomposite membranes were synthesised through phase inversion method. The composition and structural 
properties of nanocomposite membranes were characterised by X-ray photoelectron spectroscopy (XPS), Fourier- 
transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning 
electron microscope (SEM). The significant properties of synthesised membranes such as distribution of pore size, 
thermal properties, mechanical properties, and photocatalytic behaviour of membranes were also studied. The 
hydrophilic properties of the composite membranes increased with filler content (PANI-TNT) and results in 
improved pure water flux (484.8 ± 2.9 L/m2 h−1) compared to that (312.0 ± 1.91 L/m2 h−1) of the pure PVDF 
membrane. The pure PVDF and nanocomposite membrane were further analysed in terms of their filtration 
properties such as adsorption of dyes (methyl orange, Allura red) and UV self-cleaning properties. The newly 
developed nanocomposite membranes showed excellent pollutant removal efficiency (~90%). The synthesised 
nanocomposite membranes also showed photocatalytic activities due to the presence of TNTs, and adsorption of 
methyl orange (MO) reduces significantly with the UV light irradiations. The UV self-cleaning property of the 
composite membrane was further confirmed due to their high flux recovery ratio of about 94%. The results show 
that embedded PANI-TNT within nanocomposite was photo-catalytically active and degrade the dye molecules 
from the surface of the nano composite membrane.   

1. Introduction 

Water is essential for living organisms present on the earth. Human 
requires water for agriculture, drinking, washing and other living pur-
poses. Out of all the water on earth, only 3% (freshwater) is considered 
suitable for the consumption of humans, the rest of water is in oceans 
with a large number of dissolved salts [1]. Freshwater is significantly 
affected by hazardous human activities which results in water pollution. 
Wastewater is categorised into municipal and industrial wastewater. 

Wastewater discharged from industries is more dangerous for the 
environment because it contains toxic chemicals, dissolved salts, and 
other organic, inorganic volatile compounds [2,3]. For example, textile 
industries use different chemicals for their processes, such as 
manufacturing yarns or cloths, seizing, and dyeing. Dyeing is the process 
of colouring the cloths, which mainly includes dyes along with a large 
quantity of water [4]. These dyes are dissolved into water and then fixed 
on clothes with the help of compounds called fixers. The remaining 
water is considered as the wastewater which directly discharges in 
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watercourses [5]. This wastewater includes many dissolved and undis-
solved impurities like unused dyes, dissolved salts, and dye fixers along 
with some heavy metal ions and carcinogenic materials. Nowadays, the 
emission of these dyes and chemicals is of great concern as they are 
causing a lot of environmental hazards [6,7]. Therefore, textile waste-
water treatment is required to remove carcinogenic dyes for a sustain-
able environment [8]. 

Membranes are thin and porous sheets of material which can selec-
tively separate contaminants from water when a driving force is applied 
[9]. In this process, selective components (dyes) are separated due to the 
affinity with the membrane material [10]. Membranes are commonly 
used for water purification through micro and nano filtration [11]. 
Polymer membranes are being used from last few decades for water 
filtration [12]. Membranes can be prepared by sintering, sol-gel, 
leaching techniques and phase inversion methods [13]. The phase 
inversion method is unique to produce asymmetric membranes which 
contain micro or nano-voids, pores and macro-pores [14]. 

Many PVDF polymer membranes are commercially available and are 
used for water filtration. Moreover, PVDF membranes have also been 
extensively used for scientific research and industrial processes due to 
their outstanding properties such as high thermal stability and good 
chemical resistance. However, the hydrophobicity of PVDF makes it 
prone to contamination by organic compounds which causes the decline 
of water flux due to enhanced fouling on surface of membranes [15]. 
Also, these membranes have the inherent low strength, which restricts 
their use in the industries. Therefore, elimination of these inherent 
shortcomings is of great interest for researchers. A lot of research work 
has been done to increase hydrophilicity and mechanical properties of 
PVDF based membranes. Guo et al. studied the various methods to 
counter the membrane fouling and membrane wetting by hydrophilic 
and hydrophobic modifications [16]. Later Feng et al. successfully 
separated volatile organic compounds from water by using PVDF 
nanofiber membrane. The overall mass transfer coefficient for chloro-
form through the nanofiber membrane was the highest recorded value 
for this purpose [17]. Xiao et al. investigated the use of PVDF micro- 
filtration membranes prior to reverse osmosis process for reusing the 
reclaimed water. He conducted his study on secondary municipal 
effluent on the pilot-scale continuous filtration system. His work showed 
the possibility of using PVDF membranes for treating municipal waste-
water [18]. 

Nanocomposite membranes with two or more different materials 
have gained the theoretical and technological interest of researchers due 
to the combined advantages of materials to obtain better performance. 
The organic nanomaterials are of great interest due to their certain 
functional groups and large surface area as compared to bulk materials 
[19]. Recently, membranes have been modified by using titanium di-
oxide (TiO2) nanotubes; this modification usually result in change of 
shape and size of nanomaterials [20,21]. TiO2 nanotubes have also 
shown several benefits such as higher surface area, high hydrophilic 
properties, improved photocatalytic activity, increased robustness and 
excellent mechanical stability [21,22]. X. Cao et al. studied the effect of 
titania nanoparticles on the PVDF membrane. It was found that the 
addition of TiO2 nanoparticles has improved the self-cleaning properties 
of the membrane through photodegradation. The antifouling and 
permeability of the membranes were also significantly increased [23]. 

Polyaniline (PANI) is a special polymer due to its versatile properties 
such as easy preparation, high conductivity, chemical stability [24], 
nontoxicity, less cost, good steric hindrance and excellent separation 
properties [25]. Furthermore, it can also be used as substitute to 
improve hydrophilic characteristics of membranes due to its functional 
groups [26]. PANI based nanofibers also exhibit high hydrophilicity and 
surface area. So, they have been used to enhance hydrophilic charac-
teristics of surfaces. Teli et al. [27] synthesised polysulfone/TiO2 ul-
trafiltration nanocomposite membranes which shows enhanced 
antifouling and hydrophilic properties of membrane due to inclusion of 
TiO2. 

This research article focuses on the preparation of the nano-
composite membranes for effective removal of dye molecules from 
textile wastewater. TNTs can be used to enhance self-cleaning properties 
by photodegradation of pollutants adsorbed on the surface of mem-
branes. PANI and TNT also improve the hydrophilic nature of the 
nanocomposite membrane which enhances the water flux of mem-
branes. We used phase inversion method for the synthesis of pure PVDF 
and PVDF-PANI-TNT nanocomposite membranes and studied the effect 
of nanofiller (PANI-TNT) on membrane’s morphology, efficiency, and 
filtration performance. X-ray photoelectron spectroscopy (XPS), ther-
mogravimetric analysis (TGA), Fourier-transform infrared spectroscopy, 
Atomic force microscopy (AFM), scanning electron microscopy (SEM), 
X-ray diffraction (XRD) and universal testing machine were used to 
characterise the developed membranes. Meanwhile, the developed 
nanocomposite membranes were investigated for their permeation 
properties such as BSA rejection, porosity, shrinkage ratio, solvent 
contents, dyes rejection and water/dye flux. Moreover, the self-cleaning 
properties were studied under UV light to check the effect of photo-
degradation efficiency of novel nanocomposite membranes. To the best 
of our knowledge, no one has studied the combined effect of TNT and 
PANI on PVDF membrane, self-cleaning properties of PVDF-PANI-TNT 
membranes and their usage for textile wastewater treatment. 

2. Experimental 

2.1. Materials 

Chemical include the poly (vinylidene fluoride) with a M.wt of 
64.035 (Sigma-Aldrich), polyaniline (emeraldine salt) with a M.wt of 
10000 g/mol (Alfa Aesar) N,N-Dimethyl formamide (DMF) (synthesis 
grade, 97% (scharlu), Sulphuric acid (H2SO4) (scharlu), 1-propanol 
extra pure (C3H8O, ≥99%) (scharlu), Hydrogen peroxide (H2O2), 
NaOH (Sodium hydroxide, ≥98%) membrane, Acetic Acid (CH3COOH, 
≥97%), Ethanol (C2H5OH, ≥99.08%) (AnalaR®) were used as received. 

2.2. Synthesis of TiO2 nanotubes 

The sol-gel process was used to synthesise titania nanoparticles [28]. 
The mixing ratio of 7:2:1 of ethanol, acetic acid and water was used to 
prepare a solution. After that 5 mL titanium isopropoxide was added 
dropwise in prepared solution at constant temperature (60 ◦C) with 
continuous stirring in a closed container. Then the solution was stirred 
continuously for three hours to form the dope solution. Afterwards, dope 
solution was kept for agitation for 24 h until gel was formed. Vacuum 
oven was used to dry the gel at 60 ◦C for four hours. Then powder was 
grinded, sieved and calcined (for 5 h at 450 ◦C). Hydrothermal process 
[29] was used to convert titania nanoparticles to titania nanotubes. 5 g 
of TiO2 was mixed with 20 mL (10 M) NaOH solution and continuously 
stirred at 160 ◦C for 5 days after keeping in Teflon-lined autoclave. The 
developed precipitate was white in colour, and it was washed with water 
(5 to 6 times) and 0.01 M HCl until the solution becomes neutralised. 
Vacuum oven was used to dry the product at 100 ◦C for 4 h. The formed 
powder was ground, sieved and calcined at 360 ◦C for 4 h. 

2.3. Fabrication of PVDF-PANI-TNT nanocomposite membrane 

Polyaniline and titanium nanotube based composite were developed 
through in-situ chemical oxidation reaction with aniline monomer, 
where APS (ammonium persulfate) was used as an oxidising agent [19]. 
TNTs (4 g) were suspended in 40 mL HCl (1 M) solution and sonicated 
for one hour. 50 mL Aniline (0.1 M) was added in prepared solution. 
Then 3 mL ammonium persulfate (1 M) was added dropwise with 
continuous stirring using ice bath [30]. The mixture was kept under 
constant stirring for five hours to polymerise the solution, and then it 
was filtered and further washed with ethanol and water several times. 
Fig. 1 schematically illustrates the process of manufacturing the 
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nanocomposite membrane. As shown, oxygen molecules are adsorbed 
on the outer layer of titania nanotubes and generate O2−, O2−, O− ions, 
which results in positive charge on the surface of titania nanotubes by 
the emission of electron from titanium conducting bands [31]. When 
titania nanotubes were added in aniline solution, then the aniline 
monomer displays an electrostatic force of interaction with anion sur-
face of titania nanotubes [32]. During polymerisation of aniline mono-
mers, polyaniline slightly covers the surface of titanium nanotubes. 

Phase inversion method was used to synthesise the PVDF-PANI-TNT 
nanocomposite membranes [33]. Firstly, the pure PVDF membrane was 
synthesised with DMF solvent. Different concentrations of PANI-TNTs (1 
w/v % to 3 w/v %) were introduced to form composite membrane of 
PVDF-PANI-TNT. The resulting solution was sonicated for 2 h and stir-
red for 20 h. Then these prepared solutions were cast onto the glass plate 
substrate through hand casting knife, and then it was dipped immedi-
ately in the distilled water bath at 25 ◦C. After the process of phase 
inversion, synthesised membranes were left into the water bath for the 
extraction of remaining solvents entrapped in PVDF-PANI-TNT nano-
composite membranes. The compositions and codes are given in the 
Table 1. 

2.4. Characterisation 

Membranes were characterised by different techniques. The struc-
tural properties of samples were analysed by Panalytical 3040/60 X pert 
PRO diffractometer (XRD) using Cu (Kα) source in the range of 0θ to 80θ. 
The roughness of developed membranes was determined by using 
Atomic force microscopy. AFM micrographs were obtained with use of 
Bruker Multimode 8 AFM equipped with J scanner and Nu Nano Scout 
350 probes in ScanAsyst mode. The data was processed with use of 
Gwyddion software (tilt correction). FTIR spectra obtained from 1000 

Perkin Elmer within range of 400–4000 cm−1 was used to measure the 
functional groups of developed membranes. We investigate thermal 
stability of developed membranes by Thermal gravimetric analysis 
(TGA/DT Perkin-Elmer, USA). Surface and cross sectional morphology 
of prepared membranes were analysed by using SEM (VP-1450 Ger-
many, LEO) with an accelerating voltage of 20 kV. XPS spectra were 
measured using a Kratos Axis Ultra instrument equipped with a mono-
chromatic Al ka X-ray source (E = 1486.6 eV). A charge neutraliser was 
used to minimise charging and spectra are aligned on the binding energy 
scale relative to the hydrocarbon peak at 284.8 eV. Spectra were fitted 
using the CASA XPS software using Voigt-like peak shapes. Spin-orbit 
splitting ratios and splitting energies are constrained to obtain physi-
cally meaningful fits. Atomic composition of the samples was calculated 
from survey spectra with use of Shirley type background. The mechan-
ical properties of developed membranes were measured by the universal 
testing machine. 

3. Study of membrane properties 

To evaluate the effectiveness of composite membranes for the prac-
tical amplification in wastewater treatment, the following permeation 
properties of membranes were analyzed. 

3.1. Porosity 

Gravimetric method was used for the determination of tiny holes 
within the structure of nanocomposite membranes which also defines 
their porosity. Membranes samples of dimension 1 cm2 were dipped into 
the deionised water for 1 day [34]. The weight of membranes before and 
after saturation with water was measured. Porosity of developed 
membranes was calculated by using the following formula: 

Porosity(%) =
(W2 − W1)/ρw

W1/ρm
× 100  

ρw represent the density of water and ρm represent the membrane 
density while W1 is the weight before wetting and W2 represent the 
weight after wetting of membrane. 

Fig. 1. Schematic illustrations of the manufacturing process of nanocomposite membrane.  

Table 1 
Codes of PVDF/PANI-TNT composite membranes.  

Codes PVDF W/V 
(%) 

PANI-TNT W/V 
(%) 

DMF W/V 
(%) 

Total 
concentration 

0P  15.00 0 85  100.0 
PTP1  14.00 1 85  100.0 
PTP2  13.00 2 85  100.0 
PTP3  12.00 3 85  100.0  
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3.2. Solvent content 

The quantity of any solvent in membranes is referred to as solvent 
content which was evaluated by the same method used for porosity [35]. 
The membranes were dipped in solvents (water, methanol, ethanol and 
propanol) for 1 day. The membranes were weighed before and after 
saturation with solvents and following formula is used to calculate it. 

Solvent content(%) =
W2 − W1

W2

× 100 (2)  

W1 is the weight before wetting and W2 represent the weight after 
wetting of membrane. 

3.3. Shrinkage ratio 

Shrinkage ratio is defined as the volume of dry membranes to that of 
wet membranes. For the determination of shrinkage ratio, these mem-
branes were cut into square piece (area = 1 cm2). Then we dipped these 
pieces of membrane into the distilled water for 1 day. Their length, 
width and thickness were measured before and after saturation with 
water. For calculating shrinkage, the following formula was used: 

Shrinkageratio% =

[

1−
(a × b × d)

(ao × bo × do)

]

× 100 (3)  

do is thickness, ao is the length, and bo is the width of wetted membranes, 
however thickness of dry membranes is represented by ‘d’ while length 
and width are represented by a and b respectively. 

3.4. Water flux 

The quantity of water which flows across the developed membrane 
per unit area and time in the presence of trans membrane pressure is 
pure water flux [36]. For determining water flux, the developed mem-
branes were subjected to steady-state high pressure of approximately a 
few milli-bars. The formula used for the permeability calculation is as 
follow: 

Pure Water Flux(J) =
Q

At
(4)  

Symbol ‘t’ represent time, ‘A’ is area developed membrane (cm2) while 
‘Q’ is the quantity of water which passes through the composite mem-
brane within 1 min. 

3.5. Antifouling properties 

Bovine serum albumin (BSA) is a model protein for the calculation of 
antifouling properties of the nanofiltration membrane. Initial pure water 
flux (Jw1) was measured by passing the BSA aqueous solution (0.80 g/L) 
through the filtration cell for half hour at 0.1 MPa. Then, the fouled 
membranes were washed with deionised water by dipping it into the 
water bath for 60 min. After cleaning, we calculate the pure water flux 
(Jw2) again [37]. The flux recovery ratio of synthesised membranes was 
evaluated by using the following formula. 

FRR% =
JW1

JW2

× 100% (5)  

For the rejection (per cent) of BSA [38], we used the following formula, 

Dyerejection(%) =

(

1−
CP

Cf

)

× 100 (6)  

Cp represents molarity of permeate solution, Cf represent molarity of 
feed solution. To measure the λmax (280 nm) of permeate and feed so-
lution, UV-vis spectrophotometer was used. 

3.6. Determination of the dyes removal efficiency 

For the evaluation of removal efficiency of synthesised membranes, 
two model dyes Allura red (AR) and methyl orange (MO) were used 
under the vacuum filtrations. The sample solutions (before and after the 
filtration) were analysed through UV-vis spectrophotometer (DR5000, 
Hatch). For the calculation of dyes concentration in the sample solution, 
UV spectrometer detect the wavelength of maximum absorbance. 
Following formula was used for the analysis of dyes rejection, 

R(%) =

(

1−
CP

Cf

)

× 100% (7)  

Cp represents the molarity of the permeate solution, and Cf represent the 
molarity of feed solution. Calibration curves of model dyes (Allura red 
(λmax = 505 nm) and methyl orange (λmax = 464 nm)) are shown in 
Supplementary Data (Fig. S3). For the determination of dye removal (%) 
efficiency of synthesised membrane, we analysed our dyes solutions 
through fitting standard plot; (y = -0.7406 + 23.81x for Allura Red) and 
(y = -0.4317 + 9.715x for Methyl orange). 

4. Results and discussion 

4.1. Characterization of polyaniline titania nanotube composite 

The sol-gel method was used to synthesis TiO2 NPs and convert it 
into TNTs by hydrothermal process. The morphology of Titania nano-
particles and Titania nanotubes (TNT) was observed by SEM Fig. 2(A 
and B) respectively. As shown in Fig. 2(A), the size of TNPs is smaller 
than 1 µm. Fig. 2(B) demonstrates that the Titania nanotubes (TNT) have 
a tubular structure. The agglomeration was clearly observed that may 
occur due to the effects of the drying process. The average length of 
titania nanotubes were a few hundreds of nanometres. The synthesized 
TNTs were resembled to report by Abulhassan and colleagues [39]. 
Fig. 2(C and F) show that polyaniline is attached to the outer surface of 
the titania nanotube. Coating of polyaniline on TNT is multilayer ag-
gregations. XRD results in Fig. 2(D) represents that the sample of TiO2 
nanoparticles illustrate five sharp characteristic peaks at 24.30◦, 36.76◦, 
45.15◦, 52.78◦ and 62.75◦ that correspond to the crystalline planes of (1 
0 1), (0 0 4), (2 0 0), (1 0 5), (2 1 1) and (1 1 8) respectively. These were 
in excellent agreement with the reference (00–021-1272) of the joint 
committee on powder diffraction standards database [40]. According to 
Fig. 2(E), TNTs are synthesised into the anatase form. The significant 
peaks at 10.05◦, 36.76◦, 45.15◦, 52.78◦, 62.75◦ and 75.43◦ confirms the 
synthesis of titania nanotube. Fig. 2(G) illustrate the XRD analysis of the 
PANI-TNT composite. The graph shows that the intensity of peaks de-
creases due to the presence of amorphous polyaniline which weakens 
the diffraction peak of the titania nanotube. The crystallinity of titania 
nanotube was affected due to the agglomeration of polyaniline on their 
surfaces [41]. Fig. 2(H) show the FTIR analysis of the PANI-TNT com-
posite. The peak at 676 cm−1 correspond to the vibration peak of the 
TiO2 nanotube. Due to the presence of polyaniline within the composite, 
a broad peak at 1411 cm−1 shows the bending of the N-H group, 871 
cm−1 correspond to the aromatic rings and at 1252 cm−1 represent the 
stretching modes of C-N on benzoic rings. EDX analysis was also per-
formed to determine the elemental composition of the PANI-TNT com-
posite. Fig. 2(I) illustrates the presence of Ti, C, O and N, which also 
confirms the synthesis of polyaniline–titania nanotube composite. These 
characterisations give clear evidence on synthesis of homogenous PANI- 
TNT composite. 

4.2. Surface morphology of synthesised membranes 

Scanning Electron Microscopy was used for analysing the surface 
morphology of pure PVDF and PVDF-PANI-TNT composite membranes. 
Fig. 3(A1–D1) represent the SEM images of developed pristine PVDF and 
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Fig. 2. (A) SEM image of titania nanoparticles. (B) SEM image of titania nanotubes. (C) SEM image of polyaniline–titania nanotube composites. (D) XRD analysis of 
titania nanoparticles. (E) XRD analysis of titania nanotubes. (F) Close up of polyaniline– titania nanotube composites. (G) XRD analysis polyaniline–titania nanotube 
composite. (H) FTIR analysis polyaniline–titania nanotube composite. (I) EDX analysis of polyaniline–titania nanotube composite. 

Fig. 3. Surface morphologies of pure PVDF membrane (A), PTP1 membrane (B), PTP2 membrane (C) and PTP3 membrane (D).  
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nanocomposite membrane’s surfaces with various concentrations of 
polyaniline and titania nanotubes (PTP1, PTP2 and PTP3). SEM images 
of the synthesised membrane represent that the roughness and asym-
metry on the membrane’s surface enhance with the increase in the 
concentration of PANI-TNT within nanocomposite membranes. The 
membrane’s surfaces also showed porous structures [42]. When the 
casting solution is immersed in a coagulation bath, the DMF from the 
casted membrane was exchanged with water from a coagulation bath. 
Thus, the membrane becomes porous due to the relative diffusion of 
DMF and deionised water [14]. 

Geometric analysis of SEM images represents the porous structure of 
the synthesised membranes. Image J software was used to regenerate the 
size and shape of pores within the membranes [43]. Fig. 3(A2–D2) 
shows the distribution of the pores with an estimated diameter of pores 
on the surface of the synthesised membrane. The analyses represent that 
filler (PANI -TiO2) content increased the number of pores and decreased 
the pore’s diameter in comparison to synthesised PVDF membrane, the 
pores are not equally distributed throughout the surface of the mem-
brane and contain a relatively large pore diameter (about 1.53 μm) [44]. 
However, the average pore diameter of nanocomposite membranes 
(PTP1, PTP2, and PTP3) was 0.58(μm), 0.14(μm) and 0.009(μm), 
respectively. The Pore size of nanocomposite membrane was reduced 
due to excellent compatibility of filler content (PANI-TNT) with poly-
vinylidene difluoride [44]. The average diameter of pores in composite 
membranes decreases which improve the performance of membranes 
due to their excellent sieving mechanism [42]. The graphs of pore size 
distribution are shown in Fig. S2 (Supplementary Material). Fig. 3 
(A3–D3) show the cross-sectional images of developed PVDF and 
nanocomposite PVDF/PANI-TNT membranes. Results conclude that 
developed composite membranes show the excellent miscibility of 

polymers (PVDF, PANI) and titania nanotubes, so these images do not 
show phase separation throughout the membrane structure [45]. Cross- 
sectional images represent the asymmetric morphology of pores within 
developed membranes. The thickness of synthesised membranes was 
about 100–150 μm. Fig. 3(A3) show that pure PVDF membrane has 
dense upper surface, which may be due to fast phase inversion into the 
distilled water (coagulation bath). Composite membranes PVDF/PANI- 
TNT in Fig. 3(B3–D3) membranes show more porous texture with uni-
form pores distribution throughout composite membranes. 3D AFM 
analysis was done within range of a 20 μm × 20 μm area of scan to 
measure the surface roughness of developed membranes. Fig. 4(A, B) 
represent the AFM analysis of developed membranes, which conclude 
that the Ra value of pure PVDF membrane is smaller (54.8 nm) than 
developed composite membrane (554.3 nm). The RMS value of devel-
oped composite membranes is also higher (649.8 nm) than pure PVDF 
membrane (68.1 nm). It confirms that surface roughness effectively in-
creases to enhance the area of filtration which directly increase the pure 
water flux of composite membranes [2]. 

4.3. Surface composition of PVDF-PANI-TNT composite membranes 

XRD diffractograms were also used for the determination of the pu-
rity and the crystallinity of PVDF-PANI-TNT nanocomposite mem-
branes. XRD analysis of the pure PVDF and PVDF-PANI-TNT 
nanocomposite membrane with various concentration of TNTs was 
performed and the resulting graphs of composite membranes are plotted 
in Fig. 4(C). The spectra of pristine PVDF membrane show its charac-
teristic α peaks at 12.08◦, 20.4◦ and 35.11◦. XRD diffractograms of TNT- 
PANI containing membranes illustrated that the individual peak of 
titania nanotube disappeared due to the amorphous nature of 

Fig. 4. (A) AFM images of pure PVDF membrane. (B) AFM images of PVDF/PANI-TNT composite membrane. (C) XRD graphs of PVDF/PANI-TNT composite 
membrane (D) FTIR of PVDF-PANI-TNT composite membrane. (E) XPS analysis of PVDF/PANI-TNT composite membrane. (F) C1s spectrum of the composite 
membrane. (G) Ti2p spectrum of the composite membrane. (H) O1s spectrum of the composite membrane. (I) N1s spectrum of the composite membrane. 
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membranes and showed a hump at about 25.30◦, 37.76◦ and 47.91◦

[46]. Due to the crystalline nature of titania nanotube, α-phase peaks at 
10.08◦ was disappeared in nanocomposite membranes while a new peak 
at 20.5◦ appears that correspond to (2 0 0) and (1 1 0) planes at β-phase. 
These β-polymorph represent the chemical interactions of –C––O 
(carbonyl groups) present in nanocomposite (TNT-PANI) and the C –F 
groups in polyvinylidene difluoride. These similar patterns of XRD peaks 
of composite membrane were shown for different concentrations of filler 
(PANI-TNT). But with increasing the concentrations of filler content, we 
can observe a small shift within the positions of hump. 

Fig. 4(D) show the FTIR spectra of the synthesised membranes, 
which also confirmed the transformation of β-phase within the com-
posite membranes (PVDF-PANI-TNT). Some characteristic peaks of 
PVDF appear in both composite membranes and pristine PVDF mem-
brane at 792 cm−1 and 612 cm−1 which corresponds to CF2 bending and 
CH2 group respectively. All these peaks correspond to α-phase of syn-
thesised PVDF membrane. While the XRD diffractograms of nano-
composite membrane shows the peak at 1077 cm−1, 1271 cm−1 and 840 
cm−1 which represents the β-phase of the PVDF-PANI-TNT membrane. 
Due to the presence of polyaniline within the composite membrane, a 
broad peak at 1411 cm−1 show the bending of N –H group, 871 cm−1 

correspond to the aromatic rings and at 1252 cm−1 represent the 
stretching modes of C –N on benzoic rings [45]. In FTIR analysis, there 
are no significantly difference in peaks at different concentration of filler 
contents within the synthesised nanocomposite membrane but the in-
tensities of these composite membrane has a small change due to the 
restriction of vibrations with the incorporation of various concentration 
of titania nanotubes [47]. XPS analysis of PVDF/PANI-TNT composite 
membrane was also performed for the identification of chemical states 
on the membrane surface. Fig. 4(E) show the survey XPS spectra of C1s, 
N1s, Ti2p, O1s and F1s. C1s spectra of the composite membrane is 
shown in Fig. 4(F). Two major peaks of HC-CF and C –N are shown at 
284.2 and 285.6 (eV) respectively which confirm the presence of 
benzenoid rings of polyaniline and PVDF on the membrane surface. Less 

intense C=C peak at 288 (eV) represents the polymer chain of PVDF 
polymer. The peak of C –O shown at 290.8 (eV) corresponds to the 
linkage of composite (PANI-TNT) and PVDF [48]. Fig. 4(G) illustrate the 
characteristic peaks of Ti at 458 and 464 (eV). Fig. 4(H) show the 
characteristic peak of oxygen atom. Low intense peak at ~ 530 eV 
represents Ti –O –Ti. However, the peak at 531.6 eV and 533.7 eV 
correspond to −O –H and O –C bond [49].Therefore, XPS analysis 
provides evidence of surface elemental compositions and chemical 
states of the developed composite membrane. 

4.4. Mechanical stability and thermal of PVDF-PANI-TNT nanocomposite 
membranes 

To evaluate the mechanical properties of PVDF and nanocomposite 
PVDF-PANI-TNT membranes, Young’s Modulus and tensile strength 
were determined and shown in Fig. 5(A, B). By adding the nano-
composite (PANI-TNT), nanocomposite membranes become brittle, but 
these membranes were stronger than pure PVDF membrane. PANI-TNT 
entangle with the chain of PVDF that provide some extra binding sites 
for the membranes, and it shows the excellent compatibility between the 
filler and PVDF [50]. Due to these interactions, tensile strength and 
young’s modulus enhanced from 80.13 (MPa) to 178.04 (MPa) with the 
addition of nanocomposite (PANI-TNT). This increase in tensile strength 
of nanocomposite membranes is due to the presence of nanocomposite 
(polyaniline and titania nanotube), which contains a large surface area. 
It increases the molecular interactions between polyvinylidene fluoride 
and nanocomposite which is also proved by FTIR analysis. These me-
chanical properties of nanocomposite membrane shows good miscibility 
of filler content (PANI-TNT) with polyvinylidene fluoride [51]. The 
pressure resistance of the developed nanocomposite membranes was 
also tested, and results are discussed in the Supplementary material 
(Section 1). 

To investigate the thermal behaviour of the nanocomposite mem-
branes, Thermo Gravimetric Analysis (TGA) and differential scanning 

Fig. 5. (A and B) mechanical properties of nanocomposite membrane. (C) Graph of DSC analysis of membranes having different concentrations of TNT’s. (D) TGA 
properties of PVDF-PANI-TNT composite membranes. 
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calorimetry (DSC) were performed. These analyses were performed to 
find out the thermal properties such as thermal degradation temperature 
and glass transition temperature. TGA and DSC of pristine PVDF and 
PVDF-PANI-TNT nanocomposite membrane with different concentra-
tions of PANI-TNT, i.e. 1% (w/v) to 3% (w/v) are shown in Fig. 5(C, D). 
Composite membranes were heated from 35οC to 800οC, a considerable 
weight loss was observed in pure PVDF membrane in comparison to 
nanocomposite membrane. Thermal degradation temperature of com-
posite membrane rises from 517 ◦C to 596 ◦C with addition PANI-TNT 
nanocomposites [52]. Thermal properties of nanocomposite mem-
brane increase with increase thermal degradation temperature. Ac-
cording to DSC analysis, nanocomposite membranes show a sharp drop 
in the range of 155–195 ◦C, which shows the absorption of heat in the 
sample due to the glass transition temperature of nanocomposite 
membranes. But in the analysis of nanocomposite membranes with 
different concentration of PANI-TNT, there is a slight increase in the 
glass transition temperature. Increase in glass transition temperature is 
beneficial for our application as it can withstand a higher temperature 
during the filtration process without degrading the properties [53]. 

4.5. Membrane permeation properties of PVDF-PANI-TNT nanocomposite 
membrane 

Porosity is voids and empty spaces in the material. The increased 
porosity results in the higher flow of water from the membrane. The 
porosity of pure PVDF and nanocomposite membranes were determined 
by calculating the dry and wet weight of synthesised membrane with 
water density. Fig. 6(A) illustrate that level of porosity increased with 
the addition of PANI-TNT nanocomposite from 0 to 3% w/v. The level of 
porosity increased due to the hydrophilic nature of PANI-TNT content. 
The oxygen containing functional groups generated on the surface of 
polyaniline and titania nanotube composite which increases the level of 
hydrogen bonding with H2O molecule. It results in enhanced diffusion 
exchange rate with solvent content (DMF) [31]. The addition of PANI- 
TNT content also decreases the viscosity of solution, which also 

enhances the diffusion exchange rate of solvent and increases the 
porosity [54]. It also had a significant effect on percentage shrinkage 
ratio. As porosity increases, shrinkage ratio declined due to the 
enhanced hydrophilic character of the nanocomposite membranes. 
Fig. 6(A) also represent the percentage shrinkage ratio of nanocomposite 
membranes which is lower than pure PVDF membrane. It decreases with 
increasing the concentration of filler (PANI-TNT). It was lower than 13% 
in nanocomposite membranes which was found to be more effective for 
membrane filtration. 

The hydrophilic properties of pure PVDF and nanocomposite mem-
branes were determined by calculating their contact angle, which plays 
an important role in the antifouling and pure water flux properties. The 
hydrophilicity of nanocomposite membranes increased with decrease in 
contact angle of membrane’s surface [55]. When the contact angle of 
nanocomposite membranes decreased then water molecules easily form 
a compact layer on the surface of the membrane which repelled organic 
depositions on their surface and improves its antifouling property. 
Therefore, this property is beneficial for filtration process to reduce 
membrane fouling [56,57]. The inclusion of PANI-TNT also introduced 
–NH group on surface of membrane and formed hydrogen bonding with 
water molecules which enhanced hydrophilicity of nanocomposite 
membranes [58]. This evidence is confirmed by the decline in contact 
angles as illustrated in Fig. 6(B). 

To measure the hydrophilic nature of nanocomposite membranes, 
pure water flux (PWF) was calculated at 0.1 (MPa) pressure. Fig. 6(C) 
represents the results of pure water flux of developed membranes. PWF 
of PVDF-PANI-TNT nanocomposite membranes enhances with filler 
content which demonstrates its hydrophilic nature [59]. Nature of the 
nanocomposite membranes were determined by four different solvent’s 
polarity. These are arranged as ascending order in polarity from prop-
anol to water. The absorption of solvent in the nanocomposite mem-
branes was calculated by 1 cm2 of pure PVDF and nanocomposite 
membranes that were immersed into the various solvents (propanol, 
methanol, ethanol and water) for 1 day. These were analysed with 
weight of dry and wet pieces of membrane. The investigated result of 
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Fig. 6. (A) Graph for shrinkage ratio and porosity synthesised membranes. (B) Contact angle of PVDF-PANI-TNT composite membranes. (C) Pure water flux of 
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solvent contents of these membranes are given in the Fig. 6(D). Results 
illustrate that the water content within the membrane enhanced with 
inclusion of filler content (PANI-TNT) and increase the hydrophilic 
characteristics of nanocomposite membranes. It also increases the water 
permeability by attracting water molecules towards membrane and 
facilitated their passage through the nanocomposite membranes. 

4.6. Performance of PVDF-PANI-TNT nanocomposite membrane in water 
purification 

4.6.1. Dyes rejection, dye flux and effect of dyes concentration on 
nanocomposite membrane 

Water purification properties of fabricated membranes were deter-
mined by two different type of dye solutions (100 ppm) of methyl orange 
(MO) and allura red (AR) in distilled water. Fig. 7 shows the rejection of 
dye molecules from contaminated water through PVDF (0P) and nano-
composite membrane (PTP1, PTP2 and PTP3). Dye solutions were 
passed through the membranes at 0.1 MPa pressure. Dye rejection 
though membranes was because of the sieving nature of membranes 
[60]. The molecular weight of these dyes also contributed to the rate of 
dye rejection, so the same nanocomposite membranes were used to 
calculate their effect on performance. Results show that with the in-
crease in molecular weight of dyes, the rejection rate was also slightly 
enhanced [61]. Fig. 7(A, B) illustrate that the nanocomposite membrane 
PTP3 has a higher dye rejection rate, about 90% for AR and 87% for MO. 
The hydrodynamic diameter of the two dye molecules are greater than 
pore size of nanocomposite membranes, so we can say that sieving 
mechanism of nanocomposite membranes control the flow of contami-
nated water [62]. Furthermore, the value of dye flux for developed 
PVDF membrane is less (~324 L m−2 h−1), while for nanocomposite 
membrane (PTP1, PTP2 and PTP3) fluxes are about 407, 439 and 475 ( 
L m−2 h−1), respectively. Fig. 7(A, B) represents that efficiency of dye 
removal through nanocomposite membranes for allura red was greater 
than methyl orange due to the high molecular weight and different 
structure of AR dye (496.4 g mol−1) than MO (327.3 gmol−1) [63]. Fig. 7 
(C) and (D) represents the UV results of permeate solutions of MO and 
AR from synthesised nanocomposite membrane, respectively. As PANI- 
TNT content enhanced, the value of UV absorbance of permeate solu-
tions decreases due to excellent dyes filtration capacity of 

nanocomposite membrane. The insets of Fig. 7(D) and (E) illustrates the 
solutions after filtration through different membranes (a) PTP3 (b) PTP2 
(c) PTP1 and (d) 0P. For reproducibility within the results, mean values 
are calculated with standard deviation of all experiments. Table 2 pro-
vides a detailed comparison of the dyes removal, contact angle and pure 
water flux of previous research works. 

According to the equation of Film Theory [79], different concen-
trations of dyes in feed solution showed significant effect on nano-
composite membrane performance. Five series of experiments with 
different concentrations (50–800 ppm) of dyes (MO) were analysed to 
find their effect on nanocomposite membranes flux and removal of dyes 
molecule. Fig. 7(C) represent the dye flux of synthesised membrane was 
gradually decreased with increasing the concentrations of dye feed so-
lutions due to deposition and aggregation effect of dyes molecule onto 
surface of nanocomposite membrane [80]. Moreover, these deposits and 
aggregates may block the membrane pores through the adsorption 
process and increase the fouling on the surface of synthesised mem-
brane. So, the flux of 0P, PTP1, PTP2, PTP3 were decreased by 35.1%, 
20.9%, 18.1% and 12.2%, respectively. The slight decline in dye flux of 
PTP3 nanocomposite membrane illustrates its good antifouling proper-
ties [81]. According to Fig. 7(F), dye concentration in feed solution 
significantly affects dye removal efficiency. Removal efficiency of dyes 
for nanocomposite membrane PTP3 at 50 mgL−1 was less effected and it 
demonstrate excellent rejection of dye molecules (86%). 

4.6.2. Photocatalytic activities under UV light for PVDF-PANI-TNT 
nanocomposite membranes 

According to the preliminary studies, the degradation efficiency of 
MO for pure PVDF membrane was very low about 0.9% but it increased 
with the addition of TNTs within nanocomposite membranes. For this 
purpose, TNTs and PANI were embedded in the structure of the mem-
branes. Photodegradation efficiency of the pure PVDF membrane and 
nanocomposite membranes (PTP1, PTP2, PTP3) for MO degradation are 
shown in Fig. 8(A). PTP3 nanocomposite membrane showed excellent 
photocatalytic activity due to the presence of large number of active 
sites within the membranes. The kinetics study for MO degradation by 
PVDF-PANI-TNT nanocomposite membranes were studied according to 
the kinetic model of Langmuir–Hinshelwood [82]. The rate of the first- 
order constant was measured through the plot slope of ln (Co/Ct) and 

Fig. 7. (A) Dye rejection (Allura Red) and flux of PVDF-PANI-TNT composite membranes. (B) Dye rejection (methyl orange) and flux of PVDF-PANI-TNT composite 
membranes. (C) Dye concentration effect on dye flux. (D) UV–vis Spectroscopy of Allura Red. (E) UV–vis spectroscopy of methyl orange. (F) Dye concentration effect 
on dye rejection. 
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irradiation time (t). As represented in Fig. 8(B), the MO degradation by 
PVDF-PANI-TNT nanocomposite membranes followed first order ki-
netics reaction. The photocatalytic reaction is also affected by changing 
pH [83]. To study their effect, the experiments at two different pH 
values (pH = 3.5 and pH = 9.5) were performed. Fig. 8(C) represents 
that photodegradation efficiency of the nanocomposite membrane for 
MO is greater in acidic medium (pH = 3.5) than in basic medium (pH =
9.5). Under alkaline conditions, a large amount of OH− ions are present 
in the solution that create the hindrance in the adsorption of organic 
pollutant on the surface of the nanocomposite membrane. So, it can be 
concluded that PVDF-PANI-TNT nanocomposite membranes showed 
good photodegradation activity for MO under a basic medium. Photo-
degradation rate of PVDF-PANI-TNT nanocomposite membranes for MO 
at various concentrations of H2O2 is shown in Fig. 8(D). It is illustrated 
that H2O2 improved the photocatalytic efficiency of the nanocomposite 
membrane for MO degradation H2O2 was used as a strong oxidant to 
trap electron generated from polyaniline. Only a specific concentration 
(less than 1.5 mL) is suitable for photodegradation. Excessive amount 
slowed down the reaction by the formation of H2O. Its oxidation is less 
than oxidation of OH−. 

Fig. 8(E) represent photo degradation activity under UV light for 
PVDF-PANI-TNT nanocomposite membranes for MO. The performance 
of filler content (PANI-TNT) within the nanocomposite membrane was 
significantly more excellent than TNTs or PANI under UV light. Degra-
dation of dye molecules occurs when UV light interact with the catalytic 
membrane. The energy of molecules within the composite membrane 
becomes higher than their threshold energies which transferred the 
electron from the valance band to the conduction band and created a 
hole into the valance band [84]. These photogenerated induced holes 
oxidise dye molecules (MO) and degrade them into nontoxic molecules 
(CO2 + H2O + NH3 + SO3−). Secondly, the electron in the conduction 
band reacts with oxygen molecules and generate anion superoxide 
radical (O2−) which react with dye molecules and degrade them into 
nontoxic compounds. Fig. 8(E) shows the possible mechanism for the 
photo degradation of charge carriers on the surface of PVDF-PANI-TNT 
nanocomposite membranes. Under UV light, polyaniline absorbs light 
for π → π* transition, to transport excited-state electrons on the π* 
orbital, excited electrons can be transformed into the TiO2 conduction 
band, which are transferred on surfaces of membranes. These react with 
adsorbed water molecule and oxygen molecule to form hydroxyl or su-
peroxide radicals and their holes react with OH− for the formation of 
hydroxyl radicals. 

4.6.3. BSA rejections and antifouling properties of nanocomposite 
membrane 

Flux of nanocomposite membranes during filtration process declined 
due to the deposition of solute particles on membrane surface or into the 
pores of membranes which caused membrane fouling. Although, the 
fouling on the membrane surface is an unavoidable problem, but it can 
reduce through useful strategy such as by introducing some hydrophilic 
filler content into the composition of synthesised membranes. In this 
study, PANI-TNT nanocomposite was added into the casting solution. As 
results, it increases the hydrophilic character of nanocomposite mem-
branes and reduced the membrane fouling. The model foulant (BSA) was 
used to evaluate the antifouling properties of synthesised membranes. 
Before and after filtration of BSA as feed solutions, pure water flux 
(PWF) was measured and described as the flux recovery ratio [82]. Fig. 9 
(A) illustrate that pure PVDF membrane show hydrophobic character-
istics, so it was less effective for BSA rejection (39%) but the rejection 
rates of nanocomposite membranes (PTP1, PTP2, PTP3) were improved 
(69%, 73%, 77%, respectively) due to the addition of PANI-TNT nano-
composite [85]. 

Textile wastewater (solution of methyl orange) was used to evaluate 
antifouling characteristics and reusability of nanocomposite mem-
branes. The contaminated nanocomposite membranes were washed 
with anhydrous ethanol and water for 30 min to remove the organic 
foulant after every cycle, then dried nanocomposite membranes were 
used for testing reusability of membranes [86]. Fig. 9(B) illustrates that 
the dye molecules adsorption onto the surface of membrane surface 
affected the flux of synthesised membrane. With passage of time, dye 
flux of synthesised membrane was decreased due to the blockage of 
pores within the membranes. After cleaning for thirty minutes, syn-
thesised membranes show favourable flux recovery within the dye flux 
of synthesised nanocomposite membranes. Fig. 9(C) represent the FRR 
of nanocomposite membrane (PTP1, PTP2 and PTP3) was greater in 
comparison to pristine PVDF membranes after three different cycles. 
Dye flux for long period of time through synthesised membranes illus-
trated in Fig. 9(D). Dye flux of synthesised membranes gradually 
decreased after specific period of time. The decline in flux through PTP3 
membrane was less due to the photocatalytic activity of titania nano-
tubes that can easily degrade dyes molecules present on the surface of 
membrane [87]. These nanocomposite membranes are hydrophilic in 
nature. So, they can easily repel hydrophobic contaminant from the 
membrane surface during water purification process. 

Table 2 
Detailed comparison of the dyes removal, contact angle and pure water flux of previous research works.  

Membrane Composition Preparation Method Water flux (L/m2 

h1) 
Contact 
Angle 

Dyes Rejection 
(%) 

Ref. 

PVDF/PVDF-g-POEM Atom transfer radical polymerization (ATRP) 148 82 77 [64] 
PVC/Al2O3 – 165 86 89 [65] 
PVDF/PAN/ 

PVA 
Extrusion method 201 – 39 [66] 

PVDF/PANI Phase Inversion method – 65 51 [67] 
PES/PEG/PVP One step electro spinning 212.80 – 81 [68] 
Poly(p-phenylene 

sulfide/GO 
Solution casting 325.65 54 94.2 [69] 

PVDF-g-PVP De-fluorination of double bond hydration with graft 
polymerisation 

192.2 71 94 [70] 

PS/PES Interfacial polymerization 35.43 – 90.9 [71] 
PVDF/Tetrahydrofuran Phase inversion 171.80 75 80.3 [72] 
PVDF/H3PO4 Electrospinning 124.2 84 81 [73] 
PAN/ Chitosan free radical graft copolymerization 229.82 84 89.04 [74] 
Polypropylene/PVA Dip coating method 118.73 62.43 89.2 [75] 
Sulfated polyelectrolyte/ Chitosan Solution casting 110.32 72 79.9 [76] 
PVDF/TiO2 Dip coating 150.3 124 49.2 [77] 
Polyamide/carboxyl-functionalized 

graphene oxide 
Interfacial polymerization 311.02 89.32 85 [78] 

PVDF/PANI-TiO2 Phase inversion 484 65.11 90 This 
Work  
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5. Conclusion 

In our research paper, we explained synthesis process of PANI-TNTs 
through sol gel process and its composite membrane with PVDF by using 
the phase inversion methods. The optimised concentration of filler 
content (PANI-TNT) for water purification membrane is 3% w/v. After 

the consideration of structural and morphological evidence of syn-
thesised membrane, following conclusions were drawn.  

1. The addition of filler content (TNTs and PANI) enhances roughness 
on surface of composite membrane and improves the hydrophilic 
properties which decreases the contact angle (from 102.32◦ to 
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66.11◦) of nanocomposite membrane. It confirms the presence of 
oxygen containing functional groups on the surface of nano-
composite membranes. 

2. Pore size and shrinkage ratio of PVDF-PANI-TNTs composite mem-
brane are lower in comparison to the developed PVDF membrane. It 
indicates that filler content improves membrane’s permeation 
properties.  

3. Pure water flux of nanocomposite membranes increases from 312 to 
484 L m−2 h−1. Titania nanotube-polyaniline increases the rate of 
BSA rejection of nanocomposite membranes from 36.60% to 80.31%.  

4. Mechanical and Thermal stability improved with addition (Titania 
nanotube-polyaniline) composite in synthesised membranes. Td in-
crease from 517οC to 596 ◦C and glass transition temperature in-
crease from 15 ◦C to 195 ◦C with the inclusion of nanocomposite 
(PANI-TNT) in pure PVDF membranes. Mechanical properties of 
nanocomposite membrane also improved by increasing the Young’s 
Modulus from 80.1 (MPa) to 178.03 (MPa).  

5. Water purification performance such as BSA rejection, flux recovery 
ratio and long-term stability of nanocomposite membrane also 
improved with increment in concentration of fillers (TNTs and 
PANI).  

6. TNTs and PANI composite within the synthesised membrane 
improve the removal efficiency of dye molecules (AR is 88% and MO 
is 90%). Synthesised nanocomposite membranes also showed the 
excellent self-cleaning properties by photocatalytic activity of titania 
nanotubes. 

In view of above discussed conclusions, we can predict that novel 
PVDF-PANI-TNT nanocomposite membranes have great potential for 
textile wastewater treatment. 
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