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Abstract

Background: People with neurodegenerative disorders show diverse clinical

syndromes, genetic heterogeneity, and distinct brain pathological changes, but

studies report overlap between these features. DNA methylation (DNAm) provides a

way to explore this overlap and heterogeneity as it is determined by the combined

effects of genetic variation and the environment. In this study, we aim to identify

shared blood DNAm differences between controls and people with Alzheimer’s

disease, amyotrophic lateral sclerosis, and Parkinson’s disease.

Results: We use a mixed-linear model method (MOMENT) that accounts for the

effect of (un)known confounders, to test for the association of each DNAm site with

each disorder. While only three probes are found to be genome-wide significant in

each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson’s

disease (and none with Alzheimer’s disease), a fixed-effects meta-analysis of the three

disorders results in 12 genome-wide significant differentially methylated positions.

Predicted immune cell-type proportions are disrupted across all neurodegenerative

disorders. Protein inflammatory markers are correlated with profile sum-scores

derived from disease-associated immune cell-type proportions in a healthy aging

cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-

scores, calculated using effect sizes of the 12 differentially methylated positions as

weights.

Conclusions: We identify shared differentially methylated positions in whole blood

between neurodegenerative disorders that point to shared pathogenic mechanisms.

These shared differentially methylated positions may reflect causes or consequences

of disease, but they are unlikely to reflect cell-type proportion differences.

Keywords: Neurodegenerative disorders, DNA methylation, Mixed-linear models,

Methylation profile score, Out-of-sample classification, Inflammatory markers

Background

Neurodegenerative disorders are a heterogeneous group of disorders that cause pro-

gressive disruption of structure and function of the central or peripheral nervous sys-

tem. Considerable genetic heterogeneity is often observed across patients [1, 2], who

can display diverse clinical syndromes that mostly relate to specific brain regions af-

fected by pathology [3]. Nonetheless, studies have also reported overlap between gen-

etic risk factors, mechanisms, and pathological features of these disorders [3, 4].

Common neuronal pathways altered in multiple neurodegenerative disorders include

protein quality control, the autophagy–lysosome pathway, mitochondria homeostasis,

protein seeding and propagation of stress granules, synaptic toxicity, network dysfunc-

tion, and altered immune responses [3]. Importantly, the combination of unique and

overlapping clinical and pathological features can lead to difficulty in the diagnosis of

individual cases and perhaps calls for an overview of the biological processes that are

shared or unique, to allow better classification of disease.

Genetic studies have been widely employed in relation to neurodegenerative disor-

ders, with trait architecture mostly unique to each disease [5–7]. Although the herit-

ability of neurodegenerative disorders ranges from 40 to 80% [8–11], a substantial

fraction of the variance in liability is non-genetic, with robust evidence for environmen-

tal exposures as important contributors to disease pathogenesis [12]. DNA methylation

which in mammals primarily refers to the reversible addition of a methyl group to a
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cytosine residue at a CpG dinucleotide is the most widely studied chemical modifi-

cation of DNA. DNA methylation can repress transcription directly, by inhibiting

the binding of specific transcription factors, or indirectly, by recruiting methyl-

CpG-binding proteins and their repressive chromatin remodeling activities. There

has been increasing evidence that alterations in DNA methylation play an import-

ant role in neurodegenerative and other brain disorders, with reports of significant

associations with Alzheimer’s disease (AD) [13–16], Parkinson’s disease (PD) [17,

18], amyotrophic lateral sclerosis (ALS) [19, 20], and schizophrenia [21, 22], both

in the brain and blood. Additionally, DNA methylation data can capture signatures

of unmeasured environmental exposures. In this context, DNA methylation changes

often show large effects; for example, composite DNA methylation scores explained

61% and 12.5% of the phenotypic variance of smoking status (current/ever/never)

and alcohol intake (units per week), respectively [23]. Imputation of unmeasured

environmental exposures could therefore help stratify patients across diagnostic

boundaries, which may provide stimuli for additional analyses and clinical follow-

up.

Using a similar concept to genome-wide association studies, methylome-wide associ-

ation studies (MWAS) methods have started to emerge in order to address the effect of

differentially methylated positions (DMPs) on complex diseases. Recently, the OmicS-

data-based Complex trait Analysis (OSCA) software has been developed [24]. OSCA

implements two reference-free mixed-linear model approaches that model different

genome-wide architecture of DNA methylation: MOA and MOMENT (see the

“Methods” section). Both methods have been shown, through extensive simulations

[24], to better account for known (cell type proportion, smoking, age, batch effects) and

unknown confounders than other methods. We have previously applied both MOA

and MOMENT to two independently collected ALS case-control cohorts [20]. Both

methods showed higher out-of-sample classification accuracy compared to linear re-

gression, with MOMENT showing the best performance, despite detection of fewer sig-

nificantly associated probes.

In this study, we investigated blood DNA methylation differences between patients

and healthy controls across neurodegenerative disorders, including AD, ALS, and PD.

We used both MOA and MOMENT to test for association between each DNA methy-

lation site and the traits. We included schizophrenia, because of the previously reported

genetic correlation between schizophrenia and ALS [25], and rheumatoid arthritis, a

long-term autoimmune disorder, with a clearly defined pathogenic role of peripheral

immune cells [26]. Analyses of schizophrenia and rheumatoid arthritis demonstrate if

differences we find are specific to neurodegenerative diseases.

Results

Study design

Figure 1 shows an overview of the study design and analyses we used to investigate the

shared DNA methylation alterations across brain disorders. After data preprocessing,

quality control (QC), and normalization of DNA methylation data conducted in each

cohort (see the “Methods” section and Additional file 1: Supplementary Note), 5551

genetically confirmed unrelated (except in the The Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) and AddNeuroMed cohorts) cases and 4343 controls were available

for analyses, across 11 different cohorts (Fig. 1).

DNA methylation was measured in whole blood, with 450k Illumina arrays, ex-

cept for the Australian Imaging, Biomarkers and Lifestyle (AIBL) and ADNI co-

horts, which were measured with EPIC Illumina arrays. Prior to analysis, we

removed probes that failed QC, probes linked to sex-chromosomes, probes overlap-

ping with SNPs, and probes with non-unique hybridization and extension, follow-

ing recommendations described elsewhere [28]. We also excluded remaining probes

on a per-cohort basis for which the standard deviation (s.d.) of measurements was

< 0.02. This decision is justified, because power to detect an association depends,

in part, on the variance between individuals and (standardized) effect sizes. Exclud-

ing these DNA methylation sites also reduces the multiple testing burden in associ-

ation studies. The number of DNA methylation sites used for analyses in each

cohort ranged from 206K to 254K, except for the AIBL cohort (EPIC array) for

which 373 K sites passed QC (Additional file 2: Table S1). A description of the

Fig. 1 Study design flowchart. (1) Whole-blood DNA methylation (DNA methylation) data was available for

three amyotrophic lateral sclerosis (AUS, KCL and NL), two Parkinson’s disease (SGPD and PEG), and three

Alzheimer’s disease (AIBL, ADNI and AddNeuroMed), for which a subset of individuals was diagnosed with

mild cognitive impairment (MCI). The MCI patients were not included in analyses, due to lack of power. We

also had available two schizophrenia (SCZ1 and SCZ2) and one rheumatoid arthritis cohorts, used to check

specificity of results to neurodegenerative disorders. In total, 5551 cases and 4343 controls were available

for analyses, after quality control (QC). (2) QC and normalization of DNA methylation data were conducted

using the R package meffil [27], which applies an automated estimation of functional normalization

parameters that reduces technical variation in DNA methylation levels, thus reducing false positive rates

and improving power. (3) To discover differentially methylated positions (DMPs), we applied mixed-linear

model-based association studies of DNA methylation for each of the eight available cohorts, using two

different methods: MOA and MOMENT [24]. To discover DMPs shared between neurodegenerative

disorders, MOMENT results were meta-analyzed, between AUS, KCL, NL, SGPD, PEG, and AIBL cohort. We

also found a similar distribution pattern of predicted immune cell-type proportions (CTP) between cases

and controls of all disorders. We then attempted to validate our results using out-of-sample classification

between disorders—with profile scores derived from CTP and DNA methylation effect sizes—and checking

for overlap with GWAS, eQTL, mQTL, and haQTL (xQTLs) signals. Finally, we investigated the relationship

between the CTP and DNA methylation-derived scores and blood inflammatory markers in a healthy aging

cohort (Lothian Birth Cohort 1936)
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sample characteristics can be found in Additional file 1: Supplementary Note, Add-

itional file 1: Figure S1 and Additional file 2: Table S2.

Meta-analysis of MOMENT mixed-linear model association studies identifies differentially

methylated positions across neurodegenerative disorders

To discover differentially methylated positions (DMPs) between cases and controls, we

conducted MOMENT and MOA MWAS for each available cohort (Additional file 1:

Figures S2, and S3, respectively). We have previously applied both MOA and MO-

MENT to two independently collected ALS case-control cohorts [20]. Both methods

showed higher out-of-sample classification accuracy compared to linear regression,

with MOMENT showing the best performance, despite detection of fewer significantly

associated probes. Thus, our focus is the MOMENT results, but the MOA analyses aid

with interpretation given potential confounding factors. We did not find evidence of

genomic inflation with either method (i.e., the median of χ2 test-statistics of all DNA

methylation sites divided by its expected value under the null: λ = [0.98–1.04]) (Add-

itional file 1: Figures S2, and S3).

The only probe found to be significantly associated with schizophrenia in the MO-

MENT MWAS was cg05575921 (annotated to AHRR; p = 2.79 × 10−27) (Additional file

1: Figure S2), a well-replicated DMP that has been previously associated with cigarette

smoking [23, 29–31]. Due to extensive epidemiological evidence that showed elevated

smoking rates and intensity in patients with schizophrenia [32, 33], we fitted predicted

smoking scores in the schizophrenia MWAS, to adjust for its confounding effect in all

downstream analyses.

Next, we applied fixed-effects inverse-variance-weighted [34] meta-analyses to the

MOMENT results of the disease-specific cohort MWAS, i.e., within ALS (Ncases = 3032

and Ncontrols = 1522) (Additional file 1: Figure S4) and within Parkinson’s disease (PD)

(Ncases = 1132 and Ncontrols = 999) (Additional file 1: Figure S5). We then meta-analyzed

results across Alzheimer’s disease (AD), ALS and PD (Ncases = 4325, Ncontrols = 2992).

The results for m = 151,506 probes (the low number of probes reflects different probes

with s.d. < 0.02, between cohorts) included in the meta-analysis of the three neurode-

generative disorders can be found in Fig. 2a and show no evidence of genomic inflation

(Fig. 2b, λ = 1.1). Compared to the very few genome-wide significant hits in the individ-

ual MWAS (Additional file 1: Figure S2), 12 CpGs pass the Bonferroni corrected

genome-wide significance threshold (p = 3.30 × 10−7) (Table 1). In contrast, the MOA

meta-analysis shows 41 genome-wide significant results (Additional file 1: Figure S6A),

with higher genomic inflation (λ = 1.15) (Additional file 1: Figure S6B). Importantly,

only five of the 12 DMPs were genome-wide significant in the ALS and PD MOMENT

meta-analyses whereas the AD MOMENT MWAS (Additional file 1: Figure S2) showed

no genome-wide significant associations (Additional file 2: Table S3). As expected, the

significantly associated probes show the same direction of effect across all cohorts, but

three probes show significant heterogeneity in effect size between cohorts [35] (I2 =

60.2%, probe cg06690548 in SLC7A11, I2 = 73.2%, for probe cg17901584 in RP11-67

L3.4;DHCR24 and I2 = 81.1% probe cg26033520) (Table 1).

Adding the schizophrenia cohorts to the analysis results in twelve additional genome-

wide significant CpGs (Additional file 1: Figure S7A), with effect sizes highly correlated

Nabais et al. Genome Biology           (2021) 22:90 Page 5 of 30



between analyses (rPearson = 0.89, p < 2.2 × 10−16, Additional file 1: Figure S7B). Lastly,

we added the rheumatoid arthritis cohort to the meta-analysis with AD, ALS, and PD,

as a positive control, i.e., to demonstrate the specificity of results to neurodegenerative

or brain disorders. Interestingly, we found two additional genome-wide significant

probes: cg01447828, annotated to gene PRX (pMETA_NDs_RA = 1.48 × 10−7) and

cg03785076, annotated to gene SNED1 (pMETA_NDs_RA = 3.1 × 10−7) (Additional file 1:

Figure S7C), with effect sizes highly correlated between analyses (rPearson = 0.95, p <

2.2 × 10−16, Additional file 1: Figure S7D).

GWAS signals do not overlap with loci centered at the 12 differentially methylated

positions

We next investigated if the 12 DMPs overlapped with brain [36] or blood [37] methyla-

tion quantitative trait loci (mQTL) regions (p < 5 × 10−8) and SNPs (p < 5 × 10−8) from a

sample-size weighted meta-analysis of publicly available GWAS summary statistics for

AD (N = 368,440) [38], ALS (N = 80,610) [39] and PD (minimum N = 520, maximum

N = 482,730, excluding the 23andMe cohort) [40] (Additional file 1: Figure S8). Three

of the 12 DMPs overlapped with blood mQTLs (number of mQTLs; m = 266), and an-

other four overlapped with brain mQTLs (m = 86) with the top mQTLs presented in

Additional file 2: Table S4. We found no evidence for mQTL overlap with GWAS hits

(Additional file 2: Table S4), which could reflect lack of power in both MWAS and

GWAS, as has previously been observed for body-mass index (BMI) [41].

Since lack of power could hide potential causal genetic relationships to disease with

marginal signals in GWAS that may be present in the DNA methylation data as well,

we further investigated whether the loci located ± 500 kb of each of the 12 DMPs over-

lapped with the previously mentioned GWAS signals from each disorder and our meta-

analysis (Additional file 1: Figures S9-S12). For AD, we additionally compared with

Fig. 2 Manhattan (a), quantile-quantile (b) and volcano plots (c) of the MOMENT meta-analysis, of ALS, PD,

and AD cohorts (Ncases = 4328, Ncontrols = 2994). The solid black lines in a and c refer to the genome-wide

significant p value threshold (p = 3.30 × 10−7) and the dashed line refers to the suggestive p value threshold

(p = 1 × 10−5). The dashed lines in b mark the upper and lower confidence intervals at 95%, for the p values.

λ is the genomic inflation factor (the median of χ2 test-statistics of all DNA methylation sites divided by its

expected value under the null)

Nabais et al. Genome Biology           (2021) 22:90 Page 6 of 30



GWAS results from clinically diagnosed AD cases, from Kunkle et al. (N = 63,926) [42]

(Additional file 1: Figure S13). As for the mQTL analysis, we found no evidence for

overlap with GWAS signals (i.e., with p < 5 × 10−8) in the pre-defined loci. The stron-

gest overlapping signal was from our meta-analysis of AD, ALS, and PD GWAS, albeit

non-significant: SNP rs112184630 (pMETA_GWAS = 5.91 × 10−7), located in chromosome

9q, which has been shown to be a blood eQTL for genes TOR1A (p = 6.74 × 10−16),

FBP1 (p = 3.04 × 10−15), C9orf78 (p = 9.52 × 10−12) [43], and also PTGES (p = 7.92 ×

10−6) [44].

Finally, we expanded our query within these loci to brain eQTL (N = 1433), mQTL

(N = 411), and haQTL (N = 411) summary statistics from the AMP-AD consortium [45,

46]. Six of the twelve loci showed significant signals across all xQTLs, suggesting these

results could be relevant to brain tissue in a panQTL manner (Additional file 1: Figure

Table 1 DNA methylation sites significantly associated with the traits at p < 3.3 × 10−7, in a

MOMENT meta-analyses of AD, ALS and PD. Chr—chromosome number; Probe—probe

identification number as provided by Illumina; bp—base pair position in the genome;

Gene—closest genes the probe is annotated to, based on distance to transcription starting site,

following the method described elsewhere [28]; Orien—DNA strand orientation, F = forward, R =

Reverse [28]; bMETA—effects sizes (increase (positive sign) or decrease (negative sign) of

methylation between cases and control per standard deviation unit) of meta-analysis results;

pMETA—p values of meta-analysis models; s.e.META—standard errors from meta-analysis; pMETA—p

values from meta-analysis; Direction—direction of effect sizes, within each cohort (AUS, KCL, NL,

SGPD, PEG, AIBL, respectively); I2—proportion of total variation in study estimates that is due to

heterogeneity between the six cohorts in the meta-analysis [35]

Chr Probe bp Gene Orien bMETA s.e.META. pMETA Direction I2 Q pQ

6 cg03546163 35686586 FKBP5 R − 0.43 0.06 3.42 ×
10−12

– 46.2 9.29 0.10

15 cg26272088 98900110 IGF1R F 1.39 0.20 5.74 ×
10−12

++++++ 0 2.11 0.83

2 cg24166814 55840142 – F −

0.83
0.13 5.60 ×

10−11
– 36.8 7.91 0.16

22 cg04431254 46288875 TTC38 F −

1.44
0.25 1 ×

0−8
– 10.4 5.58 0.35

4 cg06690548 138241654 SLC7A11 R 0.52 0.09 1.36 ×
10−8

++++++ 60.2 12.58 0.03

8 cg14195992 47353350 SPIDR R −

0.85
0.15 1.48 ×

10−8
– 40.4 8.38 0.14

4 cg17786255 107893233 RP11-
286E11.1;
SGMS2

R −

0.62
0.11 3.45 ×

10−8
– 37.9 8.05 0.15

12 cg11881599 92420308 RP11-693
J15.4;
CLLU1OS;
CLLU1

R 0.85 0.15 3.57 ×
10−8

++++++ 0 2.25 0.81

9 cg13953978 129838509 USP20 F 0.99 0.18 5.28 ×
10−8

++++++ 0 0.93 0.97

1 cg17901584 54,888033 RP11-67
L3.4;
DHCR24

F 0.48 0.09 1.39 ×
10−7

+++++− 73.2 18.69 2.20 ×
10−3

6 cg18120259 43926902 – F 0.67 0.13 2.29 ×
10−7

++++++ 0 1.30 0.94

10 cg26033520 72244313 – F −

0.58
0.11 2.74 ×

10−7
– 81.1 26.40 7.47 ×

10−5
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S14). The top eQTL per gene in the queried 1Mb window can be found in Additional

file 2: Table S5.

Out-of-sample classification accuracy within- and across-disorders from DNA

methylation-derived profile scores

Out-of-sample classification provides independent evidence that differences in DNA

methylation between cases and controls reflect differences associated with disease sta-

tus rather than technical confounding effects, although they could also reflect shared

disease-associated confounders (e.g., smoking status and schizophrenia). It can also le-

verage DNA methylation differences between cases and controls that do not achieve

statistical significance. Thus, we performed pairwise out-of-sample classification using

DNA methylation-derived profile scores (MPS), with DNA methylation effect sizes as

weights multiplied by each corresponding site in the target cohort. MPS were calcu-

lated keeping effect sizes that passed different p value thresholds in each MOA or MO-

MENT MWAS. Classification accuracy of the MPS was evaluated by the area under the

receiver-operator characteristic (ROC) curves (AUC) (see the “Methods” section). AUC

ranges from 0.5 (random classification) to 1 (perfect classification) and can be inter-

preted as the probability that a case ranks higher than a control (either in the sample

or in the population from which the sample was drawn). We use the notation AUCX:Y

to denote a predictor based on probes and effect sizes estimated in data set of disorder

X and used to classify cases and controls of disorder Y.

The maximum AUC obtained with MOA- and MOMENT-MPS is summarized in

Additional file 1: Figure S15. The maximum AUC is obtained when classifying rheuma-

toid arthritis cases from controls with any other brain disorder used as the discovery

MWAS, using MOA-MPS calculated from DNA methylation sites associated at less

stringent p value thresholds. These results may sound surprising, since one would ex-

pect brain disorders to share more similarly disrupted DNA methylation patterns with

each other than with rheumatoid arthritis. However, in the majority of cases, and par-

ticularly obvious at lower p value thresholds (Fig. 3), these AUC patterns differed for

MOA- and MOMENT-MPS, with MOMENT-MPS giving higher AUC values within-

disorders. For instance, when we use the System Genomics of Parkinson’s disease

(SGPD) cohort DNA methylation effect sizes with p < 1 × 10−4 to calculate the MPS,

the maximum MOA-MPS AUC is obtained when classifying rheumatoid arthritis pa-

tients from controls (AUCSGPD:RA = 0.69, m = 27, p = 9.1 × 10−16), whereas the max-

imum MOMENT-MPS AUC is obtained when classifying PD patients from controls

(AUCSGPD:PEG = 0.68, m = 26, p = 1 × 10−9) and AUCSGPD:RA is much reduced with

MOMENT-MPS (AUCSGPD:RA = 0.58, m = 27, p = 6.8 × 10−4) (Fig. 3). Since rheumatoid

arthritis is a long-term autoimmune disorder, with a clearly defined pathogenic role of

peripheral immune cells [26], we hypothesized that the effects of cell-type composition,

particularly at higher p value thresholds, were driving the high AUC values.

Analysis of DNA methylation-derived immune cell-type proportions

We used the EpiDISH algorithm [47] to predict immune cell-type proportions (CTP)

of B lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, granulocytes, mono-

cytes, and natural killer cells, as empirical cell-type measurements were not available to
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us. Visual inspection of the CTP distributions between cases and controls showed very

similar patterns between all disorder (Fig. 4). A subset of individuals in the AD cohorts

was diagnosed with mild-cognitive impairment (MCI). Although we did not include

these individuals in any analyses due to lack of power, the upwards trend in granulo-

cytes (and in turn a decrease in other CTP) is worthy of note, with MCI patients show-

ing a midway value between controls and AD patients (Fig. 4). These results were

replicated across all AD cohorts (Additional file 1: Figure S16), suggesting a potential

link with disease progression (that can be cause or consequence of disease).

To assess the association between each CTP and disorder we used multiple logistic

regression models, with case-control status of the discovery cohorts fitted as response

variable and CTP (excluding CD8+ T cells, due to redundancy in proportion data and

their lower abundancy), sex, DNA methylation age [48] and DNA methylation-derived

smoking score [23] fitted as covariates. We excluded individuals with outlying CTP

values (N = 464) prior to fitting the models (see the “Methods” section). We found no

significant associations of estimated proportion of cell-types for the AIBL and the Aus-

tralian ALS cohort (AUS), after Bonferroni correction (i.e., p < 0.01) (Additional file 2:

Table S6). The odds ratio (OR) of being classified as a case given an increase in granu-

locytes proportions (per one-point percentage increase) ranged from 1.02–1.12, after

controlling for the other covariates. The highest OR were observed for the rheumatoid

arthritis (OR = 1.12, CI95% = [1.07–1.18], p = 4.4 × 10−7) and the SCZ1 cohort (OR =

1.12, CI95% = [1.04–1.19], p = 1.67 × 10−3) and the SGPD cohort (OR = 1.04, CI95% =

[1.01–1.07], p = 2.82 × 10−3). Notably, we found the direction of effect sizes to be highly

consistent between disorders for some of the CTPs (e.g., granulocytes), but in different

directions for other cell-types (e.g., B lymphocytes) (Additional file 2: Table S6).

We also assessed the pairwise out-of-sample classification accuracy of CTP-derived

scores (sum scores of effect sizes estimated from the previously described logistic re-

gression models, multiplied by the corresponding CTP in the target cohort) (Additional

file 1: Figure S17). Similar to the MPS, the maximum AUC using CTP-scores is

Fig. 3 Accuracy of out-of-sample classification in each target cohort, measured by the area under the curve

(AUC) statistics obtained from DNA methylation profile scores (MPS), using MOA (top-row) or MOMENT

(bottom-row) results at p value < 1 × 10−4, from each discovery cohort (column). AD, Alzheimer’s disease

(dark blue); ALS, amyotrophic lateral sclerosis (yellow); PD, Parkinson’s disease (gray); RA, rheumatoid arthritis

(light blue); SCZ, schizophrenia (red). Bars indicate 95% confidence intervals of AUC values; m = number of

probes used in the classifier; stars represent p values lower than Bonferroni threshold (i.e., p < 0.05/700

tests), from logistic regression
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obtained when classifying rheumatoid arthritis cases from controls, strengthening our

hypothesis that these results are mainly driven by CTP. Indeed, if we adjust the MPS

that give maximum AUC by the CTP in a linear model and use the residuals to deter-

mine the AUC of the resulting ROC curves, the overall maximum accuracy of both

MOA and MOMENT MPS goes down (Additional file 1: Figure S18).

Significant correlation of CTP profile scores with blood protein markers of inflammation

in a healthy aging cohort

To determine if CTP-scores and MPS were capturing immune-related signals, we cal-

culated correlations between these scores and blood inflammatory markers in the Lo-

thian Birth Cohort 1936 (LBC1936). The LBC1936 is a healthy aging elderly cohort for

whom we had access to whole blood DNA methylation data measured from 450k Illu-

mina arrays (N = 980), 92 blood inflammatory protein markers measured with the

Olink® inflammation panel (pg/mL) (N = 1048), and real cell-counts (109/L), including

lymphocytes, monocytes, and granulocytes measured at wave 1 (N = 909). After quality

control (see the “Methods” section), 823 individuals had blood DNA methylation, mea-

sured cell counts and inflammatory markers measures available, and were included in

the correlation analyses.

As expected, many blood inflammation markers are highly correlated with measured

white cell counts (Additional file 1: Figure S19), although the observed absolute magni-

tude of correlation coefficients was low to moderate (|rPearson| = 0 to 0.4). Some

markers, such as transforming-growth factor alpha (TGF-alpha), showed moderate

Fig. 4 Violin plots of predicted cell-type proportions (CTP) in cases and controls of each discovery cohort.

ALS, amyotrophic lateral sclerosis; AD, Alzheimer’s disease; MCI, mild cognitive impairment; PD, Parkinson’s

disease; RA, rheumatoid arthritis; SCZ, schizophrenia. The boxplot horizontal black line marks the median

CTP value in that group. The red circle inside the boxplots marks the mean CTP value in that group. The

lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The

upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where

IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends

from the hinge to the smallest value at most 1.5 * IQR of the hinge
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positive correlations with all disease-associated CTP-scores: AIBL CTP-scores (rPear-

son = 0.22, p = 2.78 × 10−10), AUS CTP-scores (rPearson = 0.21, p = 1.81 × 10−9), SGPD

CTP-scores (rPearson = 0.17, p = 9.88 × 10−7), rheumatoid arthritis CTP-scores (rPearson =

0.14, p = 9.41 × 10−5), and schizophrenia CTP-scores (rPearson = 0.13, p = 2.21 × 10−4)

(Fig. 5). To the contrary, markers such as TNF-beta were negatively correlated with

CTP-scores from neurodegenerative disorders specifically: SGPD CTP-scores (rPearson =

− 0.23, p = 2.38 × 10−11), AIBL CTP-scores (rPearson = − 0.18, p = 2.08 × 10−7), and AUS

CTP-scores (rPearson = − 0.11, p = 3.52 × 10−3) (Additional file 1: Figure S20). All disease-

associated CTP-scores were highly positively correlated with granulocyte counts (rPear-

son = [0.49–0.62]) and negatively correlated with lymphocyte counts (rPearson = [− 0.32 to

− 0.43]) (Additional file 1: Figure S21), with the difference in sign of correlation likely a

consequence that the CTP-scores were estimated from proportion data.

Additionally, we investigated the relationship between the protein inflammatory

markers, with three DNA methylation-derived scores: a C-reactive protein score (CRP-

MPS), derived from a chronic low-grade inflammation MWAS [49, 50] and MOA- and

MOMENT-MPS, calculated using genome-wide significant probes that were present in

the LBC1936, from the MOMENT (Fig. 2) or MOA (Additional file 1: Figure S3) meta-

analyses of neurodegenerative disorders, as weights (m = 11 and m = 38, respectively). It

is important to note that the LBC1936 was used to estimate the effect sizes used as

weights in the CRP-MPS and thus these may be slightly inflated. We note both CRP-

MPS and MOA-MPS are highly positively correlated with many markers of inflamma-

tion, in contrast to MOMENT-MPS (Additional file 1: Figure S22). This is also

reflected in the correlation between scores: MOA-MPS are strongly positively corre-

lated with all CTP-scores, CRP-MPS, and granulocytes counts (rPearson = [0.50–0.77]),

whereas MOMENT-MPS are strongly negatively correlated (rPearson = [− 0.29 to − 0.59],

suggesting MOMENT could be over-correcting for CTPs (Additional file 1: Figure

S21).

Discussion

In this study, we aimed to identify shared effects of blood DNA methylation in three

neurodegenerative disorders: ALS, AD, and PD. Here, we used MOA and MOMENT

[24], two mixed-linear model methods, to test for association of each DNA methylation

site with the traits on a per-cohort basis (Fig. 1). In simulations, MOMENT has been

shown to be more powerful and generate fewer false positive associations than standard

methods, given known and unknown confounding effects that can generate high correl-

ation of DNA methylation levels across the genome. Our focus is thus the MOMENT

results, but the MOA analyses aid with interpretation given potential confounding fac-

tors. While only three probes were found to be genome-wide significant in each MO-

MENT association analyses of ALS and PD (and none with AD), in the MOMENT

meta-analysis of the three disorders, 12 DMPs passed the Bonferroni-corrected

genome-wide significance threshold (p = 3.30 × 10−7, Table 1). This result is not ex-

pected by chance and implies that neurological disorders may have similarly affected

biological mechanisms in blood, although whether this is part of the causal pathway to

disease or as a result of disease cannot be shown from these data. We did not find any

overlap with the top signals from a previous AD blood MWAS [15]. Five and 6 DMPs

from our meta-analysis overlapped with the top signals from a blood MWAS of PD
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[18], and ALS [20], respectively (Additional file 1: Figure S23), but it is important to

note the PD and ALS cohorts from these studies were included in our meta-analysis.

The 12 DMPs were annotated to genes which encoded proteins involved in intracel-

lular trafficking/protein quality control, such as co-chaperone activities involved in

glucocorticoid signaling, deubiquitination involved in beta-2 adrenergic receptor recyc-

ling and anionic amino-acid transport (FKBP5, USP20, and SLC7A11, respectively),

tyrosine kinase activity involved in cell growth and survival control (IGF-1R), double-

stranded DNA damage repair (SPIDR), and lipid metabolism (SGMS2 and DHCR24).

Lastly, some of these probes were also annotated to intergenic regions and to a gene

with unknown function (CLLU1) that has mainly been studied in the context of chronic

lymphocytic leukemia [51].

The probe cg03546163, located at the promoter of gene FKBP5, showed the strongest

association in the MOMENT meta-analysis of neurodegenerative disorders (pMETA =

3.42 × 10−12, decreased blood DNA methylation in cases compared to controls). De-

methylation at this site has previously been reported in patients with Cushing’s syn-

drome (marked by chronic excess and attenuation of the endogenous diurnal variation

in cortisol secretion) [52] and Behçet’s disease compared to controls, in the same direc-

tion of effect as for neurodegenerative disorders. Especially relevant to neurodegenera-

tive disorders is the finding that FKBP5 expression has been shown to progressively

increase with normal aging, concomitant with reduced FKBP5 DNA methylation [53],

Fig. 5 Scatterplot of TGF-alpha and disease-associated CTP-scores, real white blood cell counts, CRP-MPS,

MOA-MPS, and MOMENT-MPS in the Lothian Birth Cohort 1936 (N = 823). Scatterplots and marginal

histograms of TGF-alpha (rank-based inverse transform) vs disease-associated CTP-scores (dark red), real

white blood cell counts (109/L, in orange), DNA methylation-derived CRP-scores (gray), MOA- (dark green),

and MOMENT-MPS of meta-analyses of three neurodegenerative disorders (dark blue), which included

amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. The red line shows the best linear

fit to the data, with gray background representing the s.e.
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which correlated with Braak staging in human brains and increased tau pathology both

in vitro and in mouse models of AD [53, 54]. Additionally, a recent study suggested a

model whereby aging and stress-related phenotypes synergize to decrease DNA methy-

lation at selected enhancer-related FKBP51 sites, epigenetically upregulating FKBP5 in

whole blood and in distinct immune cell subtypes. Higher FKBP5 in turn would pro-

mote NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)-driven

peripheral inflammation [55]. Nonetheless, it is important to note that in all these stud-

ies, the authors did not adjust for cell type composition, a widely recognized con-

founder in DNA methylation studies [56, 57]. Although we find reassurance in these

past findings, we also point out a negative correlation between predicted granulocyte

proportions and DNA methylation levels (and positive correlations with other cell sub-

types due to the nature of proportion data) at cg03546163, which does not exclude

confounder effects induced by shifts in CTP between cases and controls (Additional file

1: Figure S24). Due to space restrictions we provide a more thorough discussion of the

remaining associated probes in Additional file 1: Supplementary Note.

The addition of schizophrenia and rheumatoid arthritis cohorts to the meta-analysis

of neurodegenerative disorders resulted in additional genome-wide significant associa-

tions, a result that is also not expected by chance and implies that neurological disor-

ders may have similarly affected biological mechanisms in blood with psychiatric and

auto-immune disorders. For example, the association with probe cg01447828 (pME-

TA_NDs_ SCZ = 1.17 × 10−7, pMETA_NDs_RA = 1.48 × 10−7, decreased methylation blood

DNA methylation in cases compared to controls), annotated to the gene PRX encoding

periaxin, is significant only when adding schizophrenia or rheumatoid arthritis to the

MOMENT meta-analyses. Periaxin is a structural membrane-associated protein re-

quired for maintenance of the myelin sheath of peripheral Schwann cells and normal

remyelination after nerve injury. We note that mutations in PRX have been previously

shown to cause peripheral neuropathies [58, 59], which are not uncommon in Parkin-

son’s disease and rheumatoid arthritis patients, but do not speculate on the relationship

between these observations.

Some case-control DNA methylation differences, driven by aging, cell type compos-

ition, or environmental exposures, medications, or complications of the disease, could

be considered confounders to the trait of primary interest, or alternatively, could be of

primary interest themselves depending on the context of the scientific question. While

the effects of aging in neurodegenerative disorders are well-recognized and widely stud-

ied [60], associations with other risk factors such as smoking or heavy metals are still

highly debated. In the context of cell-type composition, there is accumulating evidence

for an active role of immune cells, and inflammation in general, in neurodegenerative

disorders (both as cause and consequence of disease) [61, 62]. We have found CTP to

be major drivers of high MPS classification accuracy (as measured by AUC), given by

MPS calculated at lower p value thresholds. Although at more stringent p value thresh-

olds, AUC values given by MOMENT-MPS were generally higher when classifying

within-disorders, in contrast to MOA-MPS, we also note the overlap of confidence in-

tervals between AUC, and thus disease-specificity cannot be completely assumed (Fig.

3).

To help us determine if the associations with the 12 DMPs in the MOMENT meta-

analysis were due to confounding with CTP, we assessed the relationship between MPS
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derived from the 12 DMPs and well-known blood inflammatory markers, in a healthy

aging cohort. We then compared the results obtained when utilizing disease-associated

scores derived from CTP, low-grade chronic inflammation-related CRP-scores, or with

measured cell counts. As expected, we found measured cell counts, CTP-scores, and

low-grade chronic inflammation-related CRP-scores to be highly positively correlated

with blood protein inflammatory markers, whereas MOMENT-MPS (derived from

genome-wide significant results of a meta-analysis of ALS, AD and PD) showed no sta-

tistically significant correlations (Additional file 1: Figure S19), suggesting these MPS

are not strongly confounded by CTP.

Our study has several limitations. Firstly, although growing in number, the current

scarcity of homogeneously collected DNA methylation datasets, largely from small co-

horts, makes it difficult to perform replication analyses, particularly in a mixed-linear

model setting due to lack of power, as we previously performed for ALS and PD [18,

20]. Secondly, a perceived limitation of our study is that blood is not a relevant tissue

for understanding the biological mechanisms underlying brain disorders, due to the

tissue-specificity of most DNA methylation patterns. However, in the context of diag-

nosis/prognosis or biomarker discovery, more accessible peripheral tissues (e.g., whole

blood), will always prove more useful, especially if the concordance of genome-wide

DNA methylation of the tissue analyzed with DNA methylation in live brain tissue is

taken into consideration [36, 63, 64]. This hypothesis is further supported by findings

that variation between people in DNA methylation controlled by SNP variation has

been shown to have high correlation between brain and blood [36, 64]. Lastly, as real

cell-type composition measures were unavailable we studied predicted cell-type propor-

tions from DNA methylation. These CTP are inherently estimated with error (Add-

itional file 1: Figure S25), which also depends on DNA methylation measurement noise

that may be cohort-dependent. Furthermore, CTP-scores are highly correlated with

granulocyte proportions (Additional file 1: Figure S21), because these are the most

abundant cell types in whole blood potentially masking biologically relevant actions

from other cell-types.

Although it is economically unfeasible to collect DNA methylation data at single-cell

resolution for these sample sizes, these results advocate that it would be good practice

to collect single-cell data in at least a subset of individuals to validate results from

whole-blood analysis. A similar conclusion is supported by a recent study assessing the

co-variability of DNA methylation across peripheral cells and tissue [65]. We annotated

our 12 DMPs from the MOMENT meta-analysis to characteristic scores supplied by

the authors, to determine which cell types are potentially affected by the significant dif-

ferences reported (Additional file 2: Table S7). The scores for each DNA methylation

site and cell type were calculated by fitting a one-sided Levene’s test comparing the

variation of a single cell type against the variation across all samples from the other

four cell types, specifically testing for a larger variance in that cell type (i.e., one-tailed

test). DNA methylation sites were determined to be characteristic of single cell type if

the P value from Levene’s test was < 9 × 10−8. We have found only cg04431254 and

cg11881599 reflected variation in a single cell type, CD8T and B cells, respectively.

None of the remaining probes reflected significant variation in any of the cell types, al-

though it is possible that the cell-type driving variation at this site have not been inter-

rogated in this study.

Nabais et al. Genome Biology           (2021) 22:90 Page 14 of 30



Despite some limitations, taken together these results show the presence of aberrant

peripheral DNA methylation differences and CTP distribution patterns that point to

shared pathogenic mechanisms between neurodegenerative disorders, which are likely a

reflection of neuroinflammatory dysregulation. Larger samples with blood collected

prior to diagnosis and with deep clinical phenotyping are needed to allow investigation

of the potential predictive ability of DNA methylation/CTP-based biomarkers in neuro-

degenerative disorders and to distinguish which of these mechanisms are cause or con-

sequence of disease.

Conclusions

In this study, we identified shared DMPs, in whole blood, and similar CTP distribution

patterns between neurodegenerative disorders that point to shared pathogenic mecha-

nisms, which are likely a reflection of neuroinflammatory dysregulation. Larger samples

with blood collected prior to diagnosis and with deep clinical phenotyping are needed

to allow investigation of the potential predictive ability of DNA methylation/CTP-based

biomarkers in neurodegenerative disorders and to distinguish which of these mecha-

nisms are cause or consequence of disease.

Methods

Cohorts description

Amyotrophic lateral sclerosis (ALS) cohorts

Australian ALS cohort The Australian ALS cohort (AUS) and DNA methylation as-

says have been previously described elsewhere [20]. Part of the Australian sample com-

prised patients and controls that were ascertained from the University of Sydney as

part of the Australian MND DNA bank, which recruited participants from April 2000

to June 2011. Cases were white Australians older than 25 years recruited from around

Australia via state-based MND associations with diagnosis verified by a neurologist.

Control individuals were either partners or friends of patients with ALS or community

volunteers. The remainder of Australian cases were recruited from clinics across

Australia between 2015 and 2017 diagnosed with definite or probable ALS according to

the revised El Escorial criteria [66]. Control subjects were healthy individuals free of

neuromuscular diseases, recruited as either partners or friends of patients with ALS or

community volunteers or from the Older Australian Twin Study (OATS) [67]. ALS

cases with a recorded family history of ALS were excluded. The DNA methylation was

measured using Illumina Infinium HumanMethylation450 BeadChip.

Netherlands ALS cohort—Project MinE The Netherlands ALS cohort was collected

under Project MinE [68]. The participants of this study consisted of 1866 Netherlands

individuals (1222 ALS cases and 644 control individuals) [69]. All ALS cases were diag-

nosed with definite or probable ALS according to the revised El Escorial criteria [66],

and those with a recorded family history for ALS were excluded. All participants gave

written informed consent, and the institutional review board of the University Medical

Center Utrecht approved this study. DNA methylation data for the NL sample were
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measured using Illumina Infinium HumanMethylation450 BeadChip and generated

under similar protocols to the AUS cohort.

King’s College London ALS cohorts The King’s College London (KCL) ALS cohort

was collected under Project MinE [68]. The participants of this study consisted of

a subset of 1433 individuals of UK nationality from the UK National DNA Bank

for MND Research who were put forward for DNA methylation profiling. Cases

were diagnosed with ALS in one of 20 UK hospitals by neurologists specialized

in motor neuron diseases; patients had no family history for ALS and were of

self-reported European descent. All cases and controls gave written informed

consent. The national Integrated Research Approval System (IRAS) approved the

study, reference: 08/H0405/60. DNA was extracted by use of standard methods at

three centers within 1 week of the blood being drawn (usually on the same day)

and was stored centrally at the UK DNA banking network in Manchester. We

used a barcode-based sample tracking system to minimize the risk of clerical

error. DNA methylation status of the participants was extracted from whole

blood samples using Illumina Infinium HumanMethylation450 BeadChip array

following manufacturer’s protocol. These samples were run in two separate

batches at two different time points (batch1 N = 666; batch2 N = 767). Both

batches followed the same quality control pipeline and DNA methylation data

were normalized together. Since we did not observe major batch effects, we

analyze them as a unique cohort.

Parkinson’s disease (PD) cohorts

System Genomics of Parkinson’s Disease (SGPD) cohort The SGPD case-control co-

hort comprises genotype, phenotype and DNA methylation data for a total of 2333

participants (1292 PD cases, 1041 controls) recruited from three different studies

across Australia and New Zealand: (1) the Queensland Parkinson’s Project (QPP),

(2) the New Zealand Brain Research Institute PD case-control cohort (NZBRI), and

(3) the Sydney PD case-control cohort (SYD). The study design, diagnostic criteria,

and DNA methylation assays have been described elsewhere [18], but briefly, the

QPP cohort includes 1791 participants (867 PD cases, 924 controls), mostly of

European ancestry (individuals with genetically confirmed non-European ancestry

were excluded prior to analysis). The NZBRI cohort comprises 210 participants

(151 PD cases, 59 matched-controls) recruited by the NZBRI. Exclusion criteria for

PD patients were prior history of learning disability, severe head injury, stroke, or

other neurological impairment and major psychiatric complications at the point of

study entry. Whole-blood samples were collected at the same time as phenotypic

measurements, which included demographic, medical, and environmental exposure

information for all participants. In the SYD cohort, 332 participants (274 PD cases,

57 matched-controls) were recruited from the Parkinson’s Disease Research Clinic,

Brain and Mind Research Centre at the University of Sydney. The DNA methyla-

tion data were measured using Illumina Infinium HumanMethylation450 BeadChip.
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Parkinson’s disease, environment, and genes (PEG) cohort The PEG study is a large

population-based study of PD of mostly rural and township residents of California’s

central valley [70]. The PEG study comprises of 508 European (289 PD cases, 219 con-

trols) and 63 Hispanic individuals (45 PD cases, 18 controls) for a total of 334 PD cases

and 237 controls. Study design, diagnostic criteria, and DNA methylation assays have

been described elsewhere [70, 71]. The DNA methylation data measured using Illumina

Infinium HumanMethylation450 BeadChip.

Alzheimer’s disease (AD) cohorts

The Australian Imaging, Biomarkers and Lifestyle (AIBL) cohort The AIBL cohort

is a prospective longitudinal study of aging aimed to recruit 1000 individuals aged over

60 to assist with prospective research into AD. Data was collected by the AIBL study

group. AIBL study methodology has been reported previously [72]. Participants with

AD (N = 211) had neuropsychological profiles which were consistent with AD and were

more impaired than participants with mild cognitive impairment (MCI) (N = 133) or

healthy controls (N = 768), who performed within expected norms for age on neuro-

psychological testing. A subset of the AIBL cohort (N = 162 AD cases, N = 94 MCI

cases, and N = 485 controls) were subjected to a similar DNA methylation assay proto-

col as the AUS ALS cohort [20], but bisulfite DNA samples were hybridized to the 8

sample, HumanMethylationEPIC BeadChip Array.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) ADNI is a consortium of

universities and medical centers in the United States and Canada. They launched in

2003 as a public-private partnership, led by principal investigator Michael W. Weiner,

MD. ADNI was established to develop standardized imaging techniques and biomarker

procedures in normal subjects, subjects with MCI, and subjects with mild AD [73]. The

main goal of ADNI is to characterize cross-sectionally and longitudinally clinical mea-

sures in normal controls, subjects with MCI, and subjects with mild Alzheimer disease

(AD) to enable the assessment of the utility of neuroimaging and chemical biomarker

measures. The study design, enrolment process, neuropsychological assessments, and

diagnostic criteria have been previously described elsewhere [73]. Briefly, a total of 819

subjects (229 cognitively normal, 398 with MCI, and 192 with AD) were enrolled at

baseline and followed for 12 months using standard cognitive and functional measures

typical of clinical trials [73]. Whole-genome DNA methylation profiling was done from

blood samples of ADNI participants. DNA was isolated and plated out at NCRAD and

DNA methylation profiling was performed at AbbVie Inc. for a total of 1920 samples,

including 1719 unique samples and 201 technical replicates (653 unique individuals).

Longitudinal DNA samples at baseline, + 1 and + 2 years were obtained from all sub-

jects. The Illumina Infinium HumanMethylationEPIC BeadChip Array was used for

methylation profiling. Samples were randomized using a modified incomplete balanced

block design, whereby all samples from a subject were placed on the same chip, with

remaining chip space occupied by age- and sex-matched samples. Subjects from differ-

ent diagnosis groups were placed on the same chip to avoid confounding. Unused chip
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space was leveraged for technical reproducibility assessment via replicated DNA

samples.

AddNeuroMed—the European collaboration for the discovery of novel biomarkers

for Alzheimer’s disease AddNeuroMed is part of the Innovative Medicines in Europe

initiative (InnoMed), and was established with the goal of biomarker discovery for Alz-

heimer’s disease (AD) [74, 75]. Participants were recruited at six centers throughout

Europe (Kuopio, Finland; Łódź, Poland; London, UK; Perugia, Italy; Thessaloniki,

Greece; Toulouse, France), following standardized procedures. Ethical approval was ob-

tained at each site, and informed consent was obtained according to the declaration of

Helsinki (1991). Recruited participants included individuals with AD diagnosed accord-

ing to the NINCDS-ADRDA criteria [76], individuals with mild cognitive impairment

(MCI) according to Petersen’s criteria [77], and controls who showed no symptoms of

dementia and had a mini mental state examination (MMSE) score of 28 or higher. Par-

ticipants were excluded if they had depression or any other neurological syndrome.

A subset of 301 samples were selected from the cohort for DNA methylation profil-

ing, including 96 controls, 111 individuals with MCI, and 94 AD cases. DNA extraction

methods have previously been described elsewhere [15, 78]. DNA methylation was

measured using Illumina HumanMethylation450 BeadChip arrays and the Illumina

HiScan System. Samples were randomized by sex, diagnostic status, and recruitment

center. Clinical data for this cohort can be accessed according to the data terms of use

for AddNeuroMed https://www.synapse.org/#!Synapse:syn2790911/wiki/235389.

Schizophrenia cohorts

University College London schizophrenia cohort (SCZ1) The University College

London schizophrenia case–control sample study design, diagnostic criteria, DNA

methylation collection details, and assay characteristics have been thoroughly described

elsewhere have been described elsewhere [21, 79], but briefly comprises of unrelated

ancestrally matched cases (N = 353) and controls (N = 322) from the UK. Case partici-

pants were recruited from UK National Health Service (NHS) mental health services

with a clinical International Classification of Diseases 10th edition (ICD-10) diagnosis

of schizophrenia. The DNA methylation data were measured using Illumina Infinium

HumanMethylation450 BeadChip.

Aberdeen schizophrenia cohort (SCZ2) The Aberdeen schizophrenia case–control

sample study design, diagnostic criteria, DNA methylation collection details and assay

characteristics have been thoroughly described elsewhere have been described else-

where [21, 80], but briefly contains patients with schizophrenia (N = 414) and controls

(N = 433) who have self-identified as born in the British Isles (95% in Scotland). All

cases met the Diagnostic and Statistical Manual for Mental Disorders fourth edition

(DSM-IV) and ICD-10 criteria for schizophrenia. The DNA methylation data were

measured using Illumina Infinium HumanMethylation450 BeadChip.
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Rheumatoid arthritis cohort

The raw methylation data from Illumina Infinium HumanMethylation450 BeadChip ar-

rays and phenotypic data for rheumatoid arthritis cases and controls were obtained

from the publicly available Gene Expression Omnibus submitted dataset GSE42861,

which was part of the Epidemiological Investigation of Rheumatoid Arthritis (EIRA)

study [81, 82]. Only incident rheumatoid arthritis cases were invited for the study

within the years 1996–2009 from middle Sweden. The controls matched by sex, age,

smoking status, and residence area were selected from the same population. The cohort

and DNA methylation collection details and assay characteristics have been thoroughly

described elsewhere [81].

Lothian Birth Cohort 1936 (LBC1936)

LBC1936 [83, 84] was used for out-of-sample DNA methylation classification and cor-

relation analyses with protein inflammatory markers. LBC1936 is a cohort comprising

individuals born in 1936, who were aged approximately 70 years at recruitment. Whole

blood DNA methylation was measured using the measured using Illumina Infinium

HumanMethylation450 BeadChip arrays in 1004 participants from samples collected at

mean age 70 years. The DNA methylation collection details and assay characteristics

have been thoroughly described elsewhere [85, 86].

Quality control (QC) and normalization of DNA methylation data

Data QC and normalization were conducted using the meffil R package [27]. The same

pipeline for DNA methylation data processing and QC was applied to all samples. QC

threshold parameters (Additional file 1: Supplementary Note) determined samples and

DNA methylation sites to exclude prior to normalization. Functional normalization was

performed to remove technical variation, as described elsewhere [87]. Briefly, probe in-

tensity quantiles were normalized between samples by fitting linear models with these

quantiles to the top principal components of the control probe matrix. After

normalization, the most variable probes (m = 20,000) were extracted, decomposed into

principal components, and each component regressed against slide, chip column, chip

row, and sex to test for batch effects. The association detection p value threshold was

set to 0.01. Sex-chromosome linked probes, probes overlapping with SNPs, and probes

with non-unique hybridization and extension were also removed prior analysis, follow-

ing general masking recommendations described elsewhere [28]. Afterwards, we re-

moved remaining probes with s.d. < 0.02. This decision is justified, because power to

detect an association depends in part on the variance between individuals and (stan-

dardized) effect sizes. Excluding these DNA methylation sites also reduces the multiple

testing burden in MWAS.

Protein measurements with Olink® inflammation panel, measured at wave 1 of the

Lothian Birth Cohort 1936 (LBC1936) and subsequent quality control measures

Plasma was extracted from 1047 blood samples and collected in lithium heparin tubes

at mean age 69.8 ± 0.8 years (wave 1). Plasma samples were analyzed using a 92-plex

proximity extension assay (Olink® Bioscience, Uppsala Sweden). The proteins assayed

comprise the Olink® inflammatory biomarker panel. Briefly, 1 μL of sample was
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incubated in the presence of proximity antibody pairs linked to DNA reporter mole-

cules. Upon appropriate antigen-antibody recognition, the DNA tails form an amplicon

by proximity extension which is quantified by real-time PCR. Data pre-processing was

performed by Olink® using NPX Manager software. We retained all protein measures

with at least 80% of individuals above the limit of detection (below 3 times standard de-

viation over background). The remaining 73 proteins were transformed by rank-based

inverse normalization prior to analysis, to ensure normally distributed values. One pro-

tein from the panel, BDNF, failed quality control and was removed from the study.

Statistical analyses

Mixed linear model-based omics association (MOA) and multi-component mixed lin-

ear model-based omics association excluding the target (MOMENT) MWAS analyses.

One of the most well-recognized challenge in MWAS (and other omics-based ana-

lyses) is how to better control the false-positive rate (FPR) in the presence of confound-

ing factors (e.g., cell type proportion, smoking, age, batch effects), since failing to

account for their effects may lead to spurious associations [57, 88]. To address this

issue, the software OSCA has been recently developed [24]. OSCA implements two

reference-free mixed-linear model approaches: MOA and MOMENT. Briefly, the MOA

method fits a random genome-wide DNA methylation factor per person with variance-

covariance matrix between individuals built from genome-wide DNA methylation sites

(equivalent to a model of fitting all DNA methylation sites as random effects); this

model is analogous to the MLM association method implemented in EMMAX [89] and

GCTA [90] for SNP data. The MOMENT method fits an MLM with two random-

effect components for each probe tested with the DNA methylation sites grouped by

their associations with the trait (leaving out the DNA methylation sites in a window

around the target probe being tested for association) [24], allowing a different genome-

wide architecture of DNA methylation compared to MOA; in MOMENT DNA methy-

lation effect sizes genome-wide are drawn from two distributions with the variances of

the distributions estimated from the data. Both methods have been shown, through ex-

tensive simulations [24], to have lower FPR than other methods. MOMENT has slightly

less power compared to MOA when a single distribution of effect sizes is appropriate

for the trait under study. We conducted mixed-linear model MWAS using both MOA

and MOMENT [24]. The MOA MWAS model is:

y ¼ wibi þWuþ e ð1Þ

where y is an n × 1 vector of phenotype values of n individuals, wi (a n × 1 vector of

DNA methylation measures (β values) of a probe i, i.e., the target probe) and bi (the ef-

fect of probe i on the phenotype; fixed effect), W is an n x m matrix of m standardized

DNA methylation values, where m is the number of DNA methylation sites, u is an m

× 1 vector of the joint random probe effects on the phenotype, and e is an n × 1 vector

of residuals. The variance of y is var.(y) = V ¼ WW
0

σ2u þ Iσ2e . We can re-write this

equation as V ¼ Aσ2o þ Iσ2e with A =WW′/m and σ2o ¼ mσ2u , where A is then the

omics-data-based relationship matrix and σ2u is the variance between individuals attrib-

uted to genome-wide DNA methylation differences. The null hypothesis (H0: bi = 0) can
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then be tested by a two-sided t test given b̂i and its s.e. The variance components can

be estimated by REML.

In this model, the probe being tested is fitted twice, once as a fixed and also as a ran-

dom effect, which results in slightly reduced power compared to a (hypothetical) model

in which the focal probe is excluded from W, but this would be computationally very

demanding. It is also assumed that all probe effects follow a single distribution, which

may not reflect the true distribution. In the MOMENT model, DNA methylation probe

effect sizes are drawn from two effect size distributions for different probes sets, se-

lected according to their association statistics in an initial linear regression model, with

each group then fitted as a random-effect:

y ¼ wibi þ
X

j

W ju j þ e ð2Þ

where Wj is an n x mj matrix of standardized DNA methylation probe values in the jth

group, and mj is the number of DNA methylation sites in the group (excluding the DNA

methylation sites in a 100 Kb region of centered at the probe to be tested). When the

number of probes in the first group is too large, the analysis becomes slow because the

program needs to re-estimate the variance components whenever one or more probes are

removed from the first group (to avoid proximity contamination) [24]. This may also

cause convergence problem because of too much variation explained by the first random-

effect component. However, OSCA implements a version of MOMENT where an add-

itional stepwise selection procedure to reduce the number of probes in the first group.

Simulation shows that this method has approximately the same level of false positive rate,

but slightly higher power compared to the initial MOMENT implementation (https://

cnsgenomics.com/software/osca/#EWAS). We thus performed MWAS for the AUS, NL,

KCL, SGPD, PEG, AIBL, SCZ1, SCZ2, and rheumatoid arthritis cohorts separately and for

consistency always used the --moment2-beta function for MOMENT analyses, as imple-

mented in the OSCA software. DNA methylation sites were then mapped to the latest

GRCh38/hg38 genome build [28] and annotated to genes, based on GENCODE v22.

Meta-analyses of MOMENT MWAS within and between neurodegenerative disorders to

identify DMPs

We conducted inverse-variance weighted meta-analyses using the MOMENT results

from each individual cohort, using METAL [91]. We only kept probes in common be-

tween all datasets in the analyses. We performed meta-analyses within ALS (AUS, NL,

and KCL cohorts, Ncases = 3035, Ncontrols = 1524), within PD (SGPD and PEG, Ncases =

1133, Ncontrols = 998), and between neurodegenerative disorders (ALS, PD, and AD,

Ncases = 4329, Ncontrols = 2993). We conducted meta-analyses to identify shared DMPs

using MOMENT results, since this method as shown to be more robust to (un)ob-

served confounders [24].

Meta-analyses of publicly available meta-GWAS summary statistics between

neurodegenerative disorders

To assess the potential overlap of the MWAS meta-analyses results with methylation

quantitative trait loci (mQTL) and GWAS SNPs, we first performed a meta-analysis of
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three publicly available meta-GWAS summary statistics, for AD (N = 368,440) [38],

ALS (N = 80,610) [39], and PD (minimum N = 520, maximum N = 482,730, excluding

23andMe SNPs) [40]. We conducted sample-size weighted meta-analyses, using META

L [91], for all SNPs in common between datasets. Sex-linked SNPs, SNPs with minor

allele frequency (MAF) < 0.01, and SNPs with incongruent MAF or base pair position

between datasets were excluded.

IGAP summary statistics

When looking for overlap with GWAS signals, we analyzed summary statistics provided

by the International Genomics of Alzheimer’s Project (IGAP), in addition to the sum-

mary statistics from the GWAS above. IGAP is a large three-stage study based upon

GWAS on individuals of European ancestry. In stage 1, IGAP used genotyped and im-

puted data on 11,480,632 single nucleotide polymorphisms (SNPs) to meta-analyze

GWAS datasets consisting of 21,982 Alzheimer’s disease cases and 41,944 cognitively

normal controls from four consortia: The Alzheimer Disease Genetics Consortium

(ADGC); The European Alzheimer’s disease Initiative (EADI); The Cohorts for Heart

and Aging Research in Genomic Epidemiology Consortium (CHARGE); and The Gen-

etic and Environmental Risk in AD Consortium Genetic and Environmental Risk in

AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Con-

sortium (GERAD/PERADES). In stage 2, 11,632 SNPs were genotyped and tested for

association in an independent set of 8362 Alzheimer’s disease cases and 10,483 con-

trols. Meta-analysis of variants selected for analysis in stage 3A (n = 11,666) or stage 3B

(n = 30,511) samples brought the final sample to 35,274 clinical and autopsy-

documented Alzheimer’s disease cases and 59,163 controls.

Multiple logistic regression to estimate disorder-specific effect sizes of predicted cell-type

proportions (CTP)

We used the EpiDISH algorithm [47] to predict DNA methylation-derived propor-

tions of B lymphocytes (Bcell), CD4+ lymphocytes (CD4T), CD8+ T lymphocytes

(CD8T), eosinophils (Eosino), monocytes (Mono), neutrophils (Neu), and natural

killer cells (NK). We then used multiple logistic regression models with case-control

status (excluding MCI) as response variable, to estimate effect sizes of CTPs associ-

ated with each disorder. Predicted CTP, predicted DNA methylation age [48], DNA

methylation-derived smoking scores [23], and study site were included as covariates

in the models. We summed the Neu and Eosino proportions, since these are biologic-

ally classified as granular leukocytes. We excluded CD8T proportions from analyses

due to redundancy in proportion data. Prior fitting the models, we excluded outlying

CTP values that were larger than mean(CTP) ± 3 × SD(CTP) (N = 524, including

MCI), as such extreme CTP may be indicative of current sickness in these elderly par-

ticipants. A summary of the models can be found in (Additional file 2: Table S7). To

fit the regression models, we used the glm function in the stats R package, with a bi-

nomial error distribution and logit link function. We calculated Wald 95% confidence

intervals for the exponentiated log odds using the confint.default function in the

MASS R package [92].
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Out-of-sample classification using cell-type-proportion (CTP) and DNA methylation profile

scores (MPS)

A profile score is calculated for each individual in the target sample as the sum of CTP

or DNA methylation values (MPS) weighted by their effect sizes, estimated in a discov-

ery sample. Classification efficacy of the profile scores was evaluated by the area under

the receiver-operator characteristic curve (AUC) that relates the false positive rate (spe-

cificity) to the true positive rate (sensitivity), from logistic regression, with case-control

status as dependent variable and MPS or CTP-scores as independent variable. We used

the R package pROC [93] to plot the receiver-operator characteristic curves and calcu-

late AUC for each profile score. The CI95% for the AUC was calculated using the ci.auc

function, using the DeLong method. We conducted out-of-sample classification using

the MOA/MOMENT results of the AUS, SGPD, SCZ1, and AIBL cohorts, as discovery

samples. We conducted both within-trait and cross-trait classification. We calculated

MPS using DNA methylation probes that passed significance at the following p value

thresholds: p < 0.5, p < 0.2, p < 0.1, p < 1 × 10−2, p < 1 × 10−3, p < 1 × 10−4, p < 1 × 10−5.

We only kept probes in common between all cohorts in the analyses. The CTP effect

sizes, used to calculate the CTP-scores were estimated from multiple logistic regression

models, as described above.

Correlation of CTP-scores and MPS in the Lothian Birth Cohort 1936 (LBC1936), a healthy

aging cohort

To assess if disease associated CTP-scores and MPS were capturing inflammation sig-

nals, we calculated correlations with blood protein inflammatory markers, as measured

by the Olink® panel, in the LBC1936, a healthy aging cohort (see above). We calculated

MPS using DNA methylation probes effect sizes from the MOA/MOMENT meta-

analyses of neurodegenerative disorders (AD, ALS, and PD). Additionally, we calculated

disease-associated CTP-scores, with effect sizes estimated from multiple logistic regres-

sion models, described above. As before, we excluded outlying CTP values in the

LBC1936 that were larger than mean(CTP) ± 3 × SD(CTP) (N = 46). Finally, we calcu-

lated an inflammation-related profile score for each individual in the LBC1936, as de-

scribed by Barker et al. [49]. Briefly, CRP-related probes were selected based on a

recent methylome-wide association study by Ligthart et al. [50]. This selection was lim-

ited to 7 CpG probes (spanning a total of 9 genes) that showed the strongest evidence

for a functional association with CRP levels, including cg06126421 (standardized effect

size = − 0.0052), cg06690548 (− 0.0048), cg10636246 (− 0.0069), cg18181703 (− 0.0053),

cg19821297 (− 0.0051), cg25325512 (− 0.0031), and cg27023597 (− 0.005). All analyses

were conducted in R version 3.6.0, Rstudio v1.2.1335, and OSCA version 0.45.
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