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Abstract

JavaScript (JS) is a popular, platform-independent program-
ming language. To ensure the interoperability of JS pro-
grams across different platforms, the implementation of a JS
engine should conform to the ECMAScript standard. How-
ever, doing so is challenging as there are many subtle defini-
tions of API behaviors, and the definitions keep evolving.

We present COMFORT, a new compiler fuzzing framework
for detecting JS engine bugs and behaviors that deviate from
the ECMAScript standard. COMFORT leverages the recent
advance in deep learning-based language models to auto-
matically generate JS test code. As a departure from prior
fuzzers, CoMFORT utilizes the well-structured ECMAScript
specifications to automatically generate test data along with
the test programs to expose bugs that could be overlooked
by the developers or manually written test cases. COMFORT
then applies differential testing methodologies on the gen-
erated test cases to expose standard conformance bugs. We
apply COMFORT to ten mainstream JS engines. In 200 hours
of automated concurrent testing runs, we discover bugs in
all tested JS engines. We had identified 158 unique JS en-
gine bugs, of which 129 have been verified, and 115 have
already been fixed by the developers. Furthermore, 21 of the
CoMFORT-generated test cases have been added to Test262,
the official ECMAScript conformance test suite.

CCS Concepts: - Software and its engineering — Com-
pilers; Language features; - Computing methodologies
— Artificial intelligence.
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1 Introduction

JavaScript (JS) is one of the most popular programming lan-
guages [2]. It is a core technology that underpins the web
browser, server-side web deployments and many embedded
and smartphone applications. The implementation of a JS
engine (compiler) should conform to the ECMAScript spec-
ification, ECMA-262 [1], that ensures the interoperability
of JS code across different JS platforms. Non-standard JS
engine implementations can confuse the application devel-
oper, leading to unexpected software behavior and poor user
experience during deployment. Still, writing a JS engine that
conforms to ECMAScript is hard due to the complexity of
modern JS interpreters, the large number of JS APIs! and
object types, the constantly evolving language specification,
and the diversity of JS code and inputs seen in real-life de-
ployments. Hand-written JS test cases for testing JS engines,
while important, are inadequate for covering all parts of the
JS language standard to test a sophisticated JS engine.
Random test case generation - or fuzzing - is a widely used
technique for automated compiler bug detection [11, 13, 39].
It is often used together with differential testing [31, 45, 54]

1The ECMA-262 2020 Edition defines over 750 JS APIs.
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to discover unexpected program behavior. In the context
of fuzzing JS compilers, a randomly generated JS program
and its input forms a test case, which is executed by multiple
JS engines. Any unexpected behavior, including crashing,
freezing or inconsistent compliation or execution outcomes
among engines, indicates a JS compiler bug.

The success of compiler fuzzing requires generating bug-
exposing test cases with the right program and test input to
trigger buggy behavior [12]. Unfortunately, doing so is chal-
lenging as there are many ways to construct a program and
its input. Existing fuzzing techniques for JS typically follow
a generative or mutational approach. Generative approaches
build a new test case from the ground up using predefined
grammar rules [27, 65] or by reassembling synthesizable
code segments from a program corpus [24, 49]. By contrast,
mutational approaches synthesize a test case from existing
seed programs and inputs [61]. Both strategies require expert
involvement to construct the grammar rules or preparing a
high-quality seed code corpus to ensure the coverage of the
test cases, but doing so becomes increasingly difficult due
to the complexity and constantly evolving nature of the JS
language standard.

We present COMFORT?, a generative fuzzer for JS engines.
Unlike existing JS fuzzers that aim to detect crashing bugs
or vulnerabilities [49], COMFORT focuses on exposing stan-
dard conformance bugs. CoMFORT leverages the advances in
deep-learning (DL) based program synthesis [14] to generate
JS programs by automatically learning a generation model.
Specifically, ComrorT employs GPT-2 [50], a recently pro-
posed language generation model, to generate JS code by
learning from a corpus of open-source JS programs. GPT-2
improves the long short-term memory (LSTM) model used
in state-of-the-art DL-based fuzzers [14, 33, 37] by gener-
ating valid JS programs with a higher success rate, as it
can model longer dependencies in the program source code.
ComFoRT then uses differential testing to detect buggy JS
engine behavior.

Existing compiler fuzzers use a random input generation
strategy by relying on the typing information of a variable
[14, 31] to generate kernel or function parameters. However,
JS is a weakly typed language, where a variable can be of
an arbitrary type and can be of multiple types throughout
the execution. This feature increases the space of possible
input settings, making it harder for a random input gen-
eration strategy to trigger compiler bugs with reasonable
cost. To effectively generate test program inputs, COMFORT
draws hints from ECMA-262. It leverages the well-structured
specification rules defined in the specification document to
narrow down the scope of argument types and boundary
values for JS APIs and edge cases that are likely to trigger
unusual behavior. By narrowing down the scope, COMFORT
is able to generate inputs that are more likely to cover the

2ComrorT = COMpiler Fuzzing fOr javascRipT
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special cases overlooked by JS engine developers and manu-
ally written test cases. The result is a new way of leveraging
the language specification for compiler fuzzing.

We evaluate CoMFORT® by applying it to ten mainstream
JS engines. The JS engines that we target include those used
in mainstream web browsers: JavaScriptCore (JSC) in Ap-
ple Safari, V8 in Google Chrome, ChakraCore in Microsoft
Edge, SpiderMonkey in Firefox, JS engines for mobile and
embedded systems: Hermes, Quick]S, Rhino, Nashorn, and
JerryScript, and Graaljs that is specifically designed to be
compatible with ECMAScript 2020. Our large-scale evalua-
tion shows that CoMFORT is highly effective in generating
syntactically correct JS programs with a better test coverage,
where 80% of the generated code is syntactically correct. This
success rate translates to 2.6X improvement over the success
rate given by DeepSmith [14], a state-of-the-art DL-based
generative fuzzer. We show that CoMFORT is more efficient
in producing bug-exposing test cases by uncovering at least
2x more unique bugs within the same test running time,
when compared to state-of-the-art JS fuzzers [22, 24, 33, 49].
In 200 hours of automated concurrent testing runs, COMFORT
discovers bugs in all tested JS engines. We have identified
158 unique JS compiler bugs, covering 109 newly discov-
ered bugs. Of the submitted bugs, 129 have been verified and
115 have been fixed by the relevant JS compiler developers.
Moreover, 21 of the test cases produced by CoMFoRT has
been added to Test262 [4], the official ECMAScript confor-
mance test suite.

This paper shares our experience and findings of exploit-
ing ECMA-262 to detect JS compiler bugs through fuzzing.
It makes the following contributions:

e It is among the first studies on employing compiler
fuzzing to expose conformance bugs in JS compilers;

e It is the first random program generator for leveraging
the language specification document to generate test
data for compiler fuzzing (Section 3.3);

e It provides a large study independently validating the
effectiveness of the recently proposed DL-based test
program generation method [14] in a new domain
(Section 3.2).

2 Background and Motivation
2.1 JavaScript Standard

ECMA-262* is the standardized specification for JavaScript.
The first edition of ECMA-262 was developed in 1997, and
the 11th edition, officially known as ECMAScript 2020, was

3Code and data are available at: https://github.com/NWU-NISL-Fuzzing/
COMFORT.

4 Another ECMAScript document called ECMA-402 provides additional
definitions for internationalization APIs for, e.g., the numbering system,
calendar, and formats, used by different human languages and countries.
We do not target ECMA-402 in this work.
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String.prototype.substr( start, length )

Let S be ToString(O).

ReturnIfAbrupt(S).

Let intStart be Tolnteger(start).

ReturnIfAbrupt(intStart).

If length is undefined, let end be +x; else let end be Tolnteger(length).

ReturnIfAbrupt(end).

Let size be the number of code units in S.

If intStart <0, let intStart be max(size + intStart, 0).
10. Let resutLength be min(max(end, 0), size - intStart).

© PN W R 0N
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11. If resutLength <0, return the empty String

12. Return a String containing resutLength consecutive code units from ...

Figure 1. Expected behavior of the substr function defined
in the ECMAScript 2015 specification.

published in June 2020. ECMA-262 is a well-structured docu-
ment that uses a mixture of natural language descriptions
and pseudo-code to describe the expected observed behavior
for JS APIs. Figure 1 shows an example pseudo-code for the
substr function defined in ECMA-262.

Test262 [4] is an ECMA-262 conformance test suite for
checking how closely a JS implementation follows the EC-
MAScript specification. As of August 2020, this test suite has
140 contributors, containing over 38,000 test cases - each of
which tests some specific ECMA-262 specification rules.

2.2 Problem Scope

We now define the notion of the conformance bug for the JS
engine, and then introduce the concept of the conformance
testing before scoping our work.

Definition 2.1 (Conformance bug). Given implementations
of multiple JS engines J and a version of the ECMA-262
specification E, a conformance bug is an unexpected behavior
in J that occurs due to a violation to the specification in E.

Definition 2.2 (Conformance testing). Given an implemen-
tation 7; of a JS engine and an ECMA-262 specification E,
conformance testing is a technique that aims to identify if 7;
meets the requirements of E. Conformance testing is used
to discover conformance bugs.

Prior work on JS compiler fuzzing is primarily concerned
about detecting crashing bugs or vulnerabilities [22, 24, 33,
49], but detecting engine conformance using fuzzing is largely
overlooked. CoMFORT is designed to expose JS compiler bugs,
including conformance bugs. We remark that COMFORT is
not designed to automate bug confirmation. Instead, it will
report the potential buggy behavior to the JS engine devel-
opers to ask for developer confirmations. In this work, when
testing a JS engine, we restrict our scope to the ECMA-262
edition that the targeting engine version claims to be compat-
ible with. Therefore, we remove test programs that contain
unsupported JS APIs in our test dataset when fuzzing a JS
engine. We also manually inspected the failed test cases of
a compiler version and only reported bugs if the feature is
supported by the relevant ECMA-262 version.

PLDI ’21, June 20-25, 2021, Virtual, Canada

var name = foo(s, pre.length, len);
print(name);

1 function foo(str, start, len) {

2 var ret = str.substr(start, len);
3 return ret;

4 2

5 wvar s = "Name:_Albert";

6 var pre = "Name:_";

7 var len = undefined;

8

9

Figure 2. A test case generated by CoMroRT, which exposes
a conformance bug of Rhino.

2.3 Using JS Specifications for Fuzzing
To demonstrate how ECMA-262 can help in identifying con-
formance bugs, consider the JS example shown in Figure 2.
This code uses the substr API (line 2) to extract a sub-
string of str, starting at the position defined by the start
argument and extending for a given number (defined by 1len)
of characters afterwards. According to the ECMA-262 rules
in Figure 1 (line 6), if the parameter length (1en in Figure 2)
is undefined, the function should extract the substring from
start to the end of the string. For this example program,
it should print “Albert” as an output. However, the latest
version of the Rhino JS engine produces an empty string,
which is thus a standard conformance bug. To generate this
bug-exposing input, the fuzzer needs to be aware of the con-
text, i.e., it needs to produce a String object and ensure the
len variable (line 7 in Figure 1) is undefined before passing
to substr. Existing compiler fuzzers would struggle to gen-
erate such a test case because they typically use an input
generation strategy to assign random values to variables;
since simply leaving a variable undefined before it is used
without knowing the context will frequently trigger many
correctly handled runtime exceptions. As we will show later
in the paper, by using ECMA-262 to guide the test input
generation, CoMFORT successfully produced this test case
and uncovered a new bug in Rhino, which was not covered
by the hand-written Test262 test suite.

2.4 Transformer-based Test Program Generation
Our program generator is based on GPT-2, a Transformer-
based neural generation architecture [50]. Most of the re-
cently proposed deep-learning-based compiler fuzzers [14,
19, 25, 33, 37] use a recurrent neural network (RNN), e.g.,
LSTM [26], to model the program source code sequence to
generate test programs. A Transformer architecture does
not rely on any RNN mechanism. Instead, it uses an atten-
tion mechanism to model the sequence dependence. The
attention mechanism takes an input sequence and decides
at each step which other parts of the sequence are impor-
tant. Prior studies showed that the Transformer outperforms
RNN in modeling long-term sequence dependence for nat-
ural language processing [42]. In this work, we utilize an
open-source pre-trained GPT-2 model [50] but re-target it to
model and generate JS programs (Section 3.2).
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Figure 3. Overview of CoMFORT. We use GPT-2 to generate test JS programs. For JS APIs in a test program, we utilize the
API definitions and boundary conditions from the ECMA-262 database to generate test data. We execute multiple JS engines
on the test cases and use differential testing to identify potential buggy behaviors.

3 COMFORT

Figure 3 provides a high-level overview of ComrorT. Com-
FORT is designed to use the language specification to guide
test case generation. To this end, we build an automated
parser to extract the pseudo-code-like JS API rules (see Fig-
ure 1 for an example) from ECMA-262. We store the parsing
results in a structured database. To generate JS test programs,
we first use our GPT-2 program generator to produce ran-
dom JS programs (Section 3.2). To create test data for a test
program, COMFORT first extracts the APIs and their argu-
ments from the program (Section 3.3). It then looks up the
extracted API rules to generate inputs (i.e., by assigning val-
ues to variables in the JS code) that can trigger the boundary
conditions of an API definition. To enrich the pool of inputs,
we also generate some random input values. A JS test pro-
gram and one of its datasets then form a test case, and a test
program can be associated with multiple input datasets. The
generated test cases are used to test JS engines through dif-
ferential testing (Section 3.4). Before presenting a potentially
buggy-exposing test case to the developer, we apply a simple
test case reduction algorithm to reduce the test case (Section
3.5). Finally, to minimize developer involvement, we use an
incrementally built knowledge base to automatically analyze
the testing outcomes to filter out test cases that may trigger
identical miscompilation behaviors seen before (Section 3.6).

3.1 Extracting ECMA-262 Specification

The goal of our ECMA-262 parser is to extract specifica-
tion rules from ECMA-262. In this work, we use the HTML
version of the ECMA-262 document. Given the ECMA-262
document, our parser first detects the scope of a function,
class or object by analyzing the metadata. Specifically, we use
Tika [58], a content analysis library, with the help of hand-
written regular expressions (regex) to extract the metadata
(i.e., ECMA-262 specification rules) of the HTML document.
For example, we use the regex "Let $Var be $Func$Edn$
to extract the initialization condition defined at line 4 of Fig-
ure 1. Our initial regular expression rules that account for
80% of the rules used in experiments were written by a post-
graduate student within a week. We have since improved
and grown our regular expression set.

(a) The extended AST

1 {

2 "String.prototype.substr": [{

3 "name": "start",

4 "type": "integer",

5 "values": [1, -1, "NaN", 0, "Infinity", "-
Infinity"],

6 "scopes": [0],

7 "conditions": ["start < 0"]

8 3 A{

9 "name": "length",

10 "type": "integer",

11 "values": ["undefined", "NaN", o, "Infinity", "-
Infinity"],

12 "scopes": [1],

13 "conditions": ["length === undefined"]

14 3]

15 }

(b) The JSON file of the AST in (a)
Figure 4. The AST (a) and its JSON format (b) for encoding
specifications of the substr function in Figure 1.

The extracted specification is organized in the form of
an abstract syntax tree (AST) where the root of a tree is
an ECMA-262 function, class, or object and the children
node is a rule defined for a specific object or function. We
tag boundary conditions with special attributes on the AST.
Figure 4(a) shows the extended AST for the specification
given in Figure 1 where the boundary conditions and literals
are tagged with unique attributes. We then store the AST
in the JSON format as illustrated in Figure 4(b) where the
boundary conditions and value ranges are recorded. Since
we primarily target JS APIs, the extracted rules are used to
generate boundary conditions for mutating test programs
related to JS APIs.

Note that there are other JS language specifications and
definitions described in the natural language form. We do
not extract rules from such definitions. Overall, our extracted
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rules cover around 82% of API and object specification rules
in ECMA-262 10th Edition (2019 version).

3.2 Test Program Generation

Language model. We employ a DNN-based language model
to generate JS test programs. Our JS code generator is built
by fine-training a pre-trained GPT-2 [46] (that was trained on
natural language documents by independent researchers) on
JS programs collected from open-source projects hosted on
GitHub. The model requires each training input (i.e., JS pro-
grams) to be represented as a sequence of numerical values.
To do so, we map every instruction, constant, and variable to
an integer by looking up the token in a vocabulary table. We
construct the vocabulary using the Byte Pair Encoding (BPE)
tokenization method [53], which is also used by GPT-2. This
scheme works by first counting each word’s frequency in
the training data. It then breaks each word into chunks (or
subwords) based on the word frequency. For example, com-
monly seen language keywords, e.g., var, for, and if, will
be tokenized as whole words, while rarer words like variable
names will be broken into smaller chunks (e.g., a few char-
acters) and can be used to create the rest of the words. The
algorithm tries to find a way to represent the training dataset
with the least amount of tokens and map each sub-word or
token to an integer to be stored in the vocabulary table. This
scheme allows us to deal with a potential infinite number of
words seen in real-life JS programs by reusing tokens from
a finite list of subwords.

Model training. To collect training data to port the pre-
trained GPT-2 for generating JS programs, we developed an
automated tool to collect 140,000 JS programs from 4,000
top-ranked (i.e., projects with the greatest numbers of stars)
GitHub projects with JS as the main programming language.
We use the collected JS programs to update the weights of
the last two fully-connected layers of the pre-trained GPT-
2 model while keeping weights of other layers unchanged.
The network is trained using the Adam optimizer [29] for
100 epochs (over 150,000 iterations) with an initial learning
rate of 0.0001 and decaying by 10% every epoch. Training
the GPT-2 model took around 30 hours using four NVIDIA
GTX 2080Ti desktop GPUs, which was a one-off cost. Note
that we provided the model with no prior knowledge of the
structure or syntax of JS.

JS program generation. We use the trained GPT-2 to gen-
erate JS test programs. Each of the test programs contains
a JS function (e.g., function foo at lines 1-4 in Figure 2),
which may invoke some standard JS APIs. To generate a
test program, we feed the network with a randomly chosen
seed generation header (e.g., “var a = function(assert)
{”). The seed generation header is chosen from a corpus of
2,000 function header samples, which were automatically
collected from our JS training dataset. We ask the network to
produce the next token based on the current text string, s.. To
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choose the next token, we employ a top-k sampling scheme,
by randomly choosing a token from the top-k tokens that
are predicted to have the highest possibilities by following
sc (we empirically set k to 10). We then append the chosen
character to the existing string, s. and feed the new string
to the network to repeat the process to generate the next
token. This generation process terminates when the brack-
ets (i.e., {" and }" ) are matched, or a dedicated termination
symbol “<EOF>" is produced by the language model, or the
number of words of the synthetic program is over 5,000. For
each generated test program, we use JSHint [3] to statically
check its syntax to remove test programs with syntax errors.
Our current implementation also randomly keeps 20% of the
syntactically-invalid test programs for test runs. A better
approach for choosing syntax-incorrect programs for testing
would consider program characteristics like API coverage
and code length. We leave this as our future work. Later in
the paper, we show that compared to DeepSmith [14], GPT-2
can model longer dependences among tokens in the source
code, which in turns leads to a high success rate in producing
syntactically correct test programs (see Section 5.3.3).

3.3 ECMA-262-guided Test Data Generation

Our test data is embedded into the JS code by assigning
values to variables that are passed to a JS function. In addi-
tion to generating variables, we also generate code to call
functions with supplied parameters and print out the results.
For example, lines 5-9 in Figure 2 show the test data and the
corresponding test-driven code produced by COMFORT.

Algorithm 1 presents our test data generation. Our ap-
proach takes in a JS test case program and outputs multiple
test cases. For each statement in the input JS test program,
we first check if the statement contains a function invoca-
tion, and then locate the JS API definitions and the potential
arguments of the API, by using the API name to look up our
ECMA-262 database (lines 1-7). As the training corpus for
our test program generation model contains human-written
programs with code and data of various API calling patterns,
the test programs generated by COMFORT may already con-
tain code and data to invoke a JS API in different ways. Our
approach keeps these test cases but will use the ECMA-262
rules to mutate the values assigned to function arguments to
generate additional test data samples. Specifically, it uses the
ECMA-262 rules extracted offline to determine how many
parameters should be passed to a function, and the type and
value for each parameter. For each parameter type, we mu-
tate the values based on (1) boundary conditions according to
the ECMA-262 specification (e.g., in Figure 1, arguments len
is set to undefined), and (2) normal conditions (using ran-
dom values). To mutate the variable values, we associate an
argument passed to a function with its definition by travers-
ing the JS program’s control and data flow graph (line 8).
These parameter values and the input JS test program are
then store in our list of test case programs (line 9).
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Algorithm 1 ECMA-262-guided Test Data Generation

Input:

tprog: A JS test case program

ecma: A supported edition of ECMA-262
Output:

Thew: A list of mutated test case programs

1: Specs « extractFuncSpecs(ecma)

2: Let Tyeqw be a list

3: for st € tproq do

4:  if isFunc(st) then

5 funcName « getFuncName(st)

6 if Specs.containsName(funcName) then
7: specrunc < getSpecs(Specs, st)
8
9

thew < mutate(tprog, func, specsync)
: Thew-append(tnew)
10: end if

11:  endif
12: end for

13: return Ty,

3.4 Differential Testing

We employ the established differential testing methodology
[12] to expose JS compiler defects by running a test case
across multiple JS engines (or Testbeds). We use a majority
voting scheme to determine which compiler’s behavior de-
viates from others by comparing the results of compilation
and execution. Differential testing typically requires the test
program to yield a deterministic, well-defined outcome [35].
The use of ECMA-262 specifications to generate test data
enable us to create test cases with expected deterministic be-
haviors. The test programs generated by our language model
may have non-deterministic outcomes like floating-point
rounding errors. However, we did not experience this prob-
lem in our test runs - if the behavior of a JS engine deviates
from others, it was typically due to a bug of the compiler
implementation during our test runs.

Executing a test case on a JS engine leads to one of seven
possible outcomes, illustrated in Figure 5. A consistent pars-
ing error occurs when the parsing results (both successful or
not successful) are inconsistent. We ignore test JS programs
that fail to be successfully parsed by all test engines. The
successfully parsed JS programs will be executed, which can
lead to five runtime outcomes. A wrong output occurs if the
execution results are inconsistent among JS engines when a
deterministic behavior is expected according to ECMA-262.
This often happens when a JS engine produces a result (e.g.,
throwing an exception when it should not) that is different
from the expected behavior defined in ECMA-262. A runtime
crash occurs if the JS engine crashes when executing a test
case. A runtime timeout happens if a JS test case fails to ter-
minate when it is running with a JS engine within a period
of 2t, where t is the longest time for all other JS engines
to return the result. Note that we ignore test cases where
all JS engines do not terminate within ten minutes because

] Nonconformance Test Case
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Runtime crash
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Normal behavior
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Figure 5. Possible outcomes when executing a test case.

this is likely to be due to a large or infinite loop in the test
program. Finally, we consider a test case to be a passing one
if all tested JS engines can successfully execute it, and the
executions lead to a consistent outcome.

When evaluating the outcomes of test cases, compile crash
and timeout outcomes are of immediate interest, indicative
of erroneous compiler behavior. For all other outcomes, we
use differential testing methodology to confirm anomalous
behavior. Specifically, we compare the results obtained for a
test case using multiple JS engines, including JS engines in
the same family but from different trunk builds. We look for
test cases where a JS compiler’s behavior deviates from all
others, which can then be investigated by developers.

3.5 Test Case Reduction

To help developers in examining bug-exposing test cases, we
develop a simple yet effective approach to reduce the size
of a test case that triggers an anomalous compiler behavior.
Our idea is to traverse the abstract syntax tree of the input
test program to iteratively remove code structures and test if
the resulted program can still trigger the same compilation
or execution outcome. We repeat this process until a fixpoint
where no additional reduction from can be done while still
reproducing the same anomalous behavior as the original test
case does. We note that there are other test case reduction
tools like HDD [44] and Perses [55] to be used for the same
purpose.
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Figure 6. Our tree-based identical bug filter.
3.6 Filtering Identical Miscompilation

Random program generation often produces test cases that
trigger the same compiler bugs. To reduce developer involve-
ment, we employ an automated scheme to filter out test cases
that are likely to cause identical miscompilation behaviors.
To do so, we construct a simple tree-based knowledge base
from historical bug-exposing test cases. Our tree-based clas-
sifier to identify identical bugs is inspired by prior work on
employing decision trees for predictive modeling [21, 62, 63].
We choose this technique because the model is interpretable.

Figure 6 presents a high-level overview of our tree-based
knowledge base, which provides three layers to predict if a
test case triggers a bug that was seen by an already analyzed
test case. Every decision node in the top layer corresponds
to a JS engine, which checks if the test case triggers the
same bug seen for a JS engine. Likewise, the API function
nodes in the second layer check if the test case triggers a
bug of a specific JS APL If the test case does not contain a
JS API function, it will be classified into the None leaf node
in the second layer. The leaf nodes in the last layer group the
differential results based on the miscompilation behaviors
(such as TypeError, TimeOut, Crash, etc.) that the tested JS
engine yields. If a test case triggers a buggy behaviour during
test runs as described in Section 3.4, we then traverse this
tree to see if there already exists a path that gives identical
information as exposed by the test case. If so, we consider a
previously identified bug is found. If not, we consider a new
bug is triggered for a given JS engine and JS APIL For the
latter case, we then add a new leaf node to the tree according
to the bug the test case triggers.

We have so far created a knowledge base consisting of
2,300 leaf decision nodes. In our current implementation, the
tree is realized as a set of rules written in Python. These
rules already helped us filter out over ten of thousands of
repeated miscompilation behaviors, significantly reducing
the overhead and human involvement of examining test
cases to confirm bugs.

4 Experimental Setup
4.1 JS Engines

Table 1 lists the JS engines and versions used in our evalua-
tion. We apply CoMFORT to ten JS engines and test several
trunk branches of each engine. All the tested JS engines
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Table 1. JS engines we have tested.

JSEngine Versions Build No.  Release Date  Supported ES Spec.
V8.5 d891c59 Jun. 2020
§ V8.5 €39¢701 Aug. 2019 ES2019
V8.5 Oe44fef Apr. 2019
o v1.11.19 5ed2985 May 2020
3 v1.11.16 eaaf7ac Nov. 2019
E v1.11.13 8fcbof1 Aug. 2019 ES2019
= v1.11.12 e1f5b03 Aug. 2019
O v1.11.8 dbfb5bd Apr. 2019
261782 dbae081 May 2020
&) 251631 b96bf75 Oct. 2019
2, 246135 d940b47 Jun. 2019 ES2019
244445 b3fadcs Apr. 2019
v78.0 C69.0a1 Jun. 2020
E‘ gecko-dev  2c619e2 May 2020
g gecko-dev  201255a Jun. 2019
% v60.1.1 mozjs60.1.1pre3  Jul. 2018 ES2018/2019
2 v52.9 mozjs52.9.1prel  Jul. 2018
& v38.3.0 mozjs38.3.0 Oct. 2017
v1.7.0 js-1.7.0 Sep. 2017
v1.7.12 d4021ee Jan. 2020
v1.7.11 foelc63 May 2019
o v1.7.10 1692f5f May 2019
E v1.7.9 3ee580e Mar. 2018 ES2015
~ v1.7R5 584e7ec Jan. 2015
v1.7R4 82ffb8f Jun. 2012
v1.7R3 d1a8338 Apr. 2011
v13.0.1 JDK13.0.1 Sep. 2019
§ v12.0.1 JDK12.0.1 Apr. 2019
< v11.0.3 JDK11.0.3 Mar. 2019 ES2011/2015
S v1.8.0_201  JDK8u201 Jan. 2019
v1.7.6 JDK7u65 May 2014
” v0.6.0 b6530ae May 2020
g v0.4.0 044cf4b Dec. 2019
g v0.3.0 3826084 Sep. 2019 S0t
T v0.1.1 3ed8340 Jul. 2019
v2.3.0 bd1c4df May 2020
v2.2.0 996bf76 Nov. 2019
- v2.2.0 7df87b7 Oct. 2019
£ v2.1.0 84a56ef Oct. 2019
<§ v2.1.0 9ab4872 Sep. 2019 ES2011/2015
E v2.0 351acdf Jun. 2019
= v2.0 béfcdel May 2019
v2.0 40f7b1c Apr. 2019
v2.0 e944cda Apr. 2019
2020-04-12 1722758 Apr. 2020
@ 2020-01-05  91459fb Jan. 2020
<2}
.._::) 2019-10-27  eb34626 Oct. 2019 ES2019
3 2019-09-18  6e76fd9 Sep. 2019
= 2019-09-01  3608b16 Sep. 2019
2019-07-09  9ccefbf Jul. 2019
Graaljs v20.1.0 299f61f May 2020 ES2020

were claimed to be compatible with a version of ECMA-262.
In evaluation, we ensure that we only test each JS engine
against the corresponding supported ECMA-262 edition. In
total, we have tested 51 JS engine-version configurations.

4.2 Testbeds

For each JS configuration, we create two testbeds. In the
first, the engine runs under the normal mode. In the second,
the engine runs under the strict mode. The “strict mode” is
introduced since ECMAScript 5, which allows one to run a
JS program in a “strict” operating context. Programs running
in the strict mode can have different semantics from normal
code. For example, the strict mode eliminates some JS silent
errors by forcing them to throw errors per the ECMA-262
standard. This testing mechanism gives us a total of 102
testbeds (51 JS engine version configurations X 2 testbeds
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Table 2. Bug statistics for each tested JS engine.

. . #Confirmed
JS Engine #Submitted FVerified #Fixed in #Verf. #Acc. by Test262
%] 4 4 3 1
ChakraCore 7 7 5 1
Jsc 12 11 11 3
SpiderMonkey 3 3 3 0
Rhino 44 29 29 4
Nashorn 18 12 2 1
Hermes 16 16 15 4
JerryScript 35 31 31 3
Quick]S 17 14 14 4
Graaljs 2 2 2 0
Total 158 129 115 21

per configuration) to evaluate. For the remainder of the paper,
unless state otherwise, the bugs are reported to be found
under both the normal and the strict modes.

4.3 Test Case Generation

We use COMFORT to produce a total of 300k synthetic test
cases. We use JSHint [3], a static JS parser to remove syn-
tactically incorrect test programs. However, we still keep a
small number (10k) of randomly chosen test cases that are
considered to have syntax errors to test the parser of a JS
engine. On average, we keep 250k test cases.

4.4 Competitive Baselines

We compare COMFORT against both generation- and mutation-
based fuzzers. Specifically, we compare ComrorT with Deep-
Smith [14], a closely related DNN-based program genera-

tor for compiler fuzzing. We also compare COMFORT to four

mutation-based JS fuzzers: Fuzzilli [22], CodeAlchemist [24],

DIE [49] and Montage [33], where the last three represent

the state-of-the-art JS compiler fuzzers.

4.5 Hardware Platforms

Our evaluation platform is a multi-core server with a 3.6GHz
8-core (16 threads) Intel Core i7 CPU, four NVIDIA GTX
2080Ti GPUs and 64GB of RAM, running Ubuntu 18.04 oper-
ating system with Linux kernel 4.15. All DNN models run
on the native hardware using the GPUs. For fuzzing tests,
we run each testbed in a Docker container (version 19.03.5)
so that we can run 16 fuzzing processes simultaneously.

5 Experimental Results

From May 2019, we have started experimenting with and
refining ComFoRrT to find bugs in Rhino and then gradually
extended our tests to other JS engines. From May 2020, we
started our extensive testing of all JS engines. In total, we test
each JS testbed through 200 hours automated runs on 250k
automatically generated test cases. Unless stated otherwise,
CoMFORT code listings are presented verbatim, with only
minor formatting changes applied to save space. No manual
test case reduction was performed.
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Table 3. The number of bugs found per JS engine version.

#Confirmed

JS Engine Versions #Submitted

#Verified #Fixed

H*
Z|
)
<

v8 V8.5
v1.11.16
v1.11.13
v1.11.12
v1.11.8
261782
251631
246135
244445
v52.9
SpiderMonkey  v38.3

v1.7

v1.7.12
Rhino v1.7.11
v1.7.10
v13.0.1
v12.0.1
v0.6.0
v0.4.0
v0.3.0
v0.1.1
v2.3.0
v2.2.0
JerryScript v2.1.0
v2.0
v1.0
2020-04-12
2020-01-05
2019-10-27
2019-09-18
2019-09-01
2019-07-09
Graaljs v20.1.0
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Highlights. As of November 2020, we have indentified® 158
unique bugs (of which 109 were found to be newly discovered
bugs by developers). So far, 129 have been verified, of which
115 have been fixed by the developers. For the remaining
29 unverified bugs, 9 were rejected by the developers as
the feature was either not clearly defined in ECMA-262 or
not supported by the compiler version; and others were
either under discussion or yet to be confirmed. Many of the
bugs discovered by COMFORT were not exposed by the state-
of-the-art compiler fuzzing methods. Moreover, 21 of the
CoMFORT-generated test cases have been added to Test262,
of which we submitted 18 test cases, and the JSC developers
submitted 3 ComFORT-generated test cases after we have
reported the bug.

5.1 Quantitative Results

This subsection presents various summary statistics on re-
sults from our JS compiler testing effort.

5.1.1 Bugcount. Table 2 gives the distribution of the Com-
FORT-exposing bugs across the tested JS engines. Each of
all the ten evaluated JS engines has at least one confor-
mance bug even though all of them claimed to adhere to the
ECMA-262 specification tested. This shows the prevalence

5 A list of our bug reports can be found at: https://github.com/NWU-NISL-
Fuzzing/ COMFORT/blob/main/artifact_evaluation/docs/Bug-List.md
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Table 4. Bug statistics for each group.
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Table 5. Statistics on top-10 buggy object types.

Category #Submitted #Confirmed #Fixed #Acc. by Test262
Test program 97 78 67 5
generation

ECMA-262

guided muta- 61 51 48 16
tion

of conformance bugs across different JS engines. Note that
when a bug is confirmed and triaged, it corresponds to a new
defect. Therefore, all confirmed bugs that we reported were
unique and independent. Although we have checked that all
reported bugs have different symptoms, some of them were
actually linked to the same root cause. A total of eight such
bug reports were later marked as duplicate by developers.

Note that not all confirmed bugs of Nashorn were fixed be-
cause their developers ceased maintaining this engine after
June 2020. It is not surprising that JS engines like V8 and Spi-
derMonkey with a long development and testing history and
a larger developer community have fewer bugs than some
newer open-source JS engines like JerryScript. We found
the SpiderMonkey implementation to be well-conformed to
ECMA-262, and we only found three conformance bugs in a
previous release.

Table 3 shows the number of unique bugs found per JS
engine version. Note that some of the bugs may exist across
different versions of the same JS engine. For clarity, we only
attribute the discovered bugs to the earliest bug-exposing
version used in our evaluation. In total, CoMFoORT discovered
38 new bugs from the latest versions listed in Table 3. Fur-
thermore, CoMFORT has also found a considerable number
of bugs in stable releases that had been latent for years.

It is worth mentioning that for Rhino version 1.7.12 and
JerryScipt version 2.2.0, ComrorT found over 15 confor-
mance bugs, far more than the number of bugs found in
other versions of these two engines. This is because Rhino
and JerryScipt initially supported ECMA-262 version 5 but
have recently added the support for ECMA-262 version 6 at
these two versions. This larger number of conformance bugs
introduced when switching to a new ECMA-262 edition is
expected as some of the API implementations in ECMA-262
version 6 are different from those in version 5.

5.1.2 Bug types. We distinguish two kinds of bugs: (1)
ones that manifest through our test program generation
(Section 3.2) and (2) ones that manifest by exploiting the
ECMA-262 specification to generate test data (Section 3.3).
Table 4 classifies the bugs found by ComFoRT into these
two groups. Our GPT-2 test program generator is effective
in generating bug-exposing test cases which contribute to
97 of the submitted bugs. By exploiting ECMA-262, Com-
FORT is able to discover further 61 bugs of which 51 have
been confirmed. All of the bugs discovered in this category
are standard conformance bugs. Furthermore, 16 of the au-
tomatically generated test cases under this category have

API Type #Submitted #Confirmed #Fixed
Object 23 21 18
String 22 20 19
Array 17 12 9
TypedArray 8 5 5
Number 5 4 4
eval function 4 4 4
DataView 4 2 2
JSON 3 3 2
RegExp 2 2 1
Date 2 1 1
Total 90 74 65

been added into Test262. This shows the usefulness and im-
portance in exploiting the language standard for exposing
compiler bugs.

5.1.3 API distribution. Table 5 groups the buggy JS API
implementations found by CoMFORT according to the object
type. To investigate the APIs that are more likely to contain
conformance bugs, we analyze the top-10 buggy object types.
Most of the bugs found by ComFORT are object and string
operations. This is due to the large number of standard JS
APIs provided for these two data types. For example, eight
of the confirmed and fixed bugs found by CoMFORT were
found for String.prototype.replace() due to improper
handling the type and number of the arguments. We have
also found four confirmed bugs for the eval function for
ChakraCore, Hermes and Quick]JS due to the inappropriate
implementations for expression parsing and evaluation. One
of such examples is given in Listing 7. This table shows that
conformance bugs can be found on a range of APIs.

5.1.4 Affected compiler components. We grouped the
ComrorT-discovered bugs according to the typical JS engine
components: code generation (CodeGen), API and library
implementation (Implementation), Parser, the regular expres-
sion engine (Regex Engine), and Optimizer. We also list bugs
found solely in the strict mode. Figure 7 shows the number
of bugs discovered by ComroRrT for each component. Most
of the bugs found were due to erroneous implementations in
the back-end code generator. Bugs due to the library and API
implementation are also common - 45 confirmed and 41 fixed
bugs belong to this category. According to the developer feed-
back, this is often due to an oversight or misunderstanding
of the ECMA-262 specification.

5.2 Bug Examples

CoMFoORT is capable of finding diverse types of JS engine
bugs. To provide a glimpse of the diversity of the uncovered
bugs, we highlight here several of the ComrorT-produced
test cases that expose a JS compiler bug.

defineProperty API. All versions of V8 tested fail to cor-
rectly compile the test case shown in Listing 1. This test case
contains a “type error” because the length property at line
3 is not configurable but the code tries to change it. Such an
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Figure 7. #CoMmroRrT-found bugs per compiler component.

attempt should lead to a TypeError exception, but V8 allows
the code to be successfully compiled. This bug is exposed
by generating a test data to manipulate a non-configurable
property of the array object according to ECMA-262. We
were the first to report this bug. This test case also exposes
a bug of Graaljs for the same reason.

1 var foo = function () {

2 var arrobj = [0, 1];

3 Object.defineProperty (arrobj, "length", {
4 value: 1, configurable: true

5 b

6

7 foo();

Listing 1. All versions of V8 tested fail to throw a
TypeError exception for this test case.

Performance bug. The test code in Listing 2 exposes a per-
formance issue of Hermes’s memory allocation policy. Her-
mes took more than half an hour to execute the code while
other JS engines use less than a second. Due to its mem-
ory allocation strategy, Hermes has to relocate the array
for every new element inserted on the left (when the array
elements are added in reverse order), leading to significant
runtime overhead with a large array. This test case was gen-
erated by our GPT-2 test program generator. This bug affects
all versions prior to V0.3.0, and we were the first to report
this. Our bug report was welcomed and quickly fixed by the
Hermes developers.

var foo = function(size) {
var array=new Array(size);
while (size —-){
array[size] = 0;

}s
var parameter = 904862;

1
2
3
4
5 }
6
7
8 foo(parameter);

Listing 2. Hermes took 30+ minutes to execute this
code while other engines took less than a second.

Uint32Array. SpiderMonkey prior to v52.9 incorrectly threw
a TypeError exception for the code shown in Listing 3. This
is because it does not convert the function argument to an
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integer type per ECMA-262 before calling the Uint32Array
API at line 2. A standard conforming implementation would
convert 3.14 to 3 to be used as the array length.

1 var foo = function(length){

2 var array = new Uint32Array(length);
3 print (array.length);

4}

5 var parameter = 3.14;

6 foo(parameter);

Listing 3. SpiderMonkey before v52.9 incorrectly
throws a TypeError exception.

Number . prototype. toFixed. Rhino compiled and executed
the test case in Listing 4 to produce an output of “-634619”,
when it should throw a RangeError exception. ECMA-262
states Number.prototype. toFixed only takes a value be-
tween 0 and 20. Hence, this is a conformance bug,.

1 var foo = function (num) {
2 var p = num. toFixed(-2);
3 print(p);

4}

5 var parameter = —-634619;
6 foo(parameter);

Listing 4. Rhino fails to throw a RangeError
exception for this test case.

%TypedArray%.prototype.set. The tested JSC trunk builds
prior to v261782 threw a TypeError exception when execut-
ing the test case in Listing 5. However, the expected output
is “1,2,3,0,0” per ECMA-262. The root cause of this bug is
because JSC does not convert the String object e at line 2 to
an Array object to be used at line 4. COMFORT can generate
a bug-exposing test case by exploiting the ECMA-262 rule
for %TypedArray%.prototype.set. This bug is confirmed
and fixed by JSC developers. This test case also triggered a
similar bug in Graaljs.

1 var foo = function () {
2 var e = '123";
3 A = new Uint8Array (5);
4 A.set(e);
5 print (A);
6 1}
7 foo();

Listing 5. JSC prior to v261782 throws a TypeError
while the code is correct per ECMA-262.

Array allocation bug. Listing 6 gives a bug-exposing test
case generated by CoMFoRT. When setting the object prop-
erty at line 4, Quick]S appended the right-hand-side value
to the end of the obj array (i.e., leading to an array of 4
elements rather than setting the object property). As a result,
when running this code with Quick]S, the program gives an
erroneous output of “1,2,5,10\n undefined”. This bug will
only be triggered if the property is set to true. By utilizing
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ECMA-262 to generate the test data, COMFORT is able to ex-
pose this implementation bug. This bug was verified by the
developer on the same day of submitting the bug report.

1 var foo = function () {
2 var property = true;
3 var obj = [1,2,5];

4 obj[property] = 10;
5 print (obj);

6 print (obj[property]);
7}

8 foo();

Listing 6. Quick]S incorrectly appends the property
value (line 4) as a new element of the array object.

eval function. When parsing the test case in Listing 7, a
JS compiler should throw a SyntaxError exception. This
is because according to ECMA-262, the for-loop expression
passed to eval should contain a loop body or end up with a
semicolon (i.e., an empty loop). However, ChakraCore allows
this code to successfully compile and run, which is thus
a conformance bug. COMFORT generates this test case by
exploiting the edge cases defined in ECMA-262. This bug
was confirmed and fixed by the ChakraCore developers, and
our test case was also added into Test262 later.

1 var foo = function(cmd) {
2 eval (cmd) ;

3 print ("Run_Here_1");
4}

5 wvar str = "for(;false;)";
6 foo(str);

Listing 7. ChakraCore fails to throw a SyntaxError
when parsing the expression passed to eval.

String.prototype.split. Listing 8 shows a test case that
triggered a conformance bug of JerryScript. The program
applies a regular expression to split a String object starting
with the capital letter ‘A’. In this case, the program should
produce “anA” as an output as the string does not match the
regular expression. JerryScript yields “an” as the output due
to the incorrect implementation of it regular expression pars-
ing engine. This test program was automatically generated
by our GPT-2 code synthesizer by learning from open-source
JS programs, and it was also added to Test262.

1 var foo = function () {

2 var a = "anA".split (/"A/);
3 print(a);

4}

5 foo();

Listing 8. This test program exposes a bug of the
JerryScript regular expression parser.

Crash. Quick]S crashed when compiling the test case in
Listing 9 when an empty string invokes normalize(). Com-
FORT generates this test data by learning from open-source
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Figure 8. The number of bugs found by different fuzzers
during 72 hours automated testing runs and a 3-month bug
confirmation and fixing window.

JS code. It was confirmed by the Quick]S developers that
this is a memory safety issue that could be exploitable to run
arbitrary code. Hence, this bug was quickly fixed.

var foo = function(str){
str.normalize (true);

IS

var parameter =

foo(parameter);

G W N =

Listing 9. Test case that leads to a QuickJS
compilation crash.

5.3 Compare to Prior Compiler Fuzzers

We compare COMFORT against five compiler fuzzers [14,
22, 24, 33, 49], of which four were specifically designed for
fuzzing JS compilers [22, 24, 33, 49]. We consider the capabil-
ity in exposing bugs (Sections 5.3.1 and 5.3.2) and the quality
of the generated test cases (Section 5.3.3).

5.3.1 Bug exposing capability. In this experiment, we
test each JS Testbed for 72 hours of consecutive testing runs,
using test cases generated by different fuzzers. An average
of 20k offline generated, syntactically correct test cases were
evaluated on each Testbed. Here, the testing time refers to
the engine execution runtime (by excluding test case gener-
ation time). To provide fair comparison, for mutation-based
fuzzers, we use the seed programs provided in the source
publications for test case generation; and we train Deep-
Smith [14] using the same training JS corpus as COMFORT.
In this experiment, we leave at least three months for the
relevant JS engine developers to confirm and fix a submitted
bug. Based on our experience, an important bug is usually
confirmed by the developers within two weeks and gets fixed
within three months. Test runs were conducted in May 2020,
and we ran the bug confirmation and fixing window until
October 2020. We exclude Nashorn in this experiment as it
was no longer under active development since June 2020.
As can be seen from Figure 8, CoMFORT discovered more
distinct bugs than any other individual fuzzer during the
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testing period of this experiment. In 200 hours of testing,
ComFoRT discovered a total of 60 unique bugs across all
Testbeds. It helped the vendors fixed over 95% of the con-
firmed bugs in the 3-month time frame. These numbers are
more than the sum of fixed bugs discovered by other fuzzers.
DeepSmith, the most closely related DNN-based generative
based fuzzer, discovered a total of six bugs from four tested
JS engines. By contrast, ComrorT discovered bugs in all
tested engines. Furthermore, COMFORT alone discovered 31
confirmed bugs that were not uncovered by other fuzzers.
By comparison, a total of 29 confirmed bugs discovered by
five other fuzzers all togehter were not exposed by COMFORT
during the test runs. This experiment shows that COMFORT
is effective in uncovering JS conformance bugs.

5.3.2 Test cases generated by other fuzzers. We now
discuss some bug-exposing test cases generated by other
fuzzers, which were not covered by CoMFoRT-generated test
cases during this experiment.

CodeAlChemist. The CodeAlChemist test case in Listing 10
exposes a conformance bug of Rhino. For this case, a Type-
Error exception should be thrown because a null argu-
ment is passed to String.prototype.big.call. CoMFORT
does not generate such a case because none of the train-
ing JS programs used to train our program generator uses
String.prototype.big.call and hence our program gen-
erator does not learn to generate test cases using this APIL

1 var v0 = (function () {

2 print (String . prototype.big.call(null));
31

4 vo();

Listing 10. CodeAlChemist generated test case.

Fuzzilli. For the Fuzzilli generated test case in Listing 11,
Rhino crashed when executing the seal function at line 3.
This is an implementation error that is not defined as a
ECMA-262 boundary case. Thus, CoMFORT does not gen-
erate a similar test case.

1 function main () {

2 var v2 = new String(2477);
3 var v4 = Object.seal(v2);
4}

5 main();

Listing 11. Fuzzilli generated test case.

DIE. The test case generated by DIE in Listing 12 exposes a
bug of Rhino and JerryScript. At lines 2-5, the JS code set the
lastIndex property of the regexp5 object (defined at line 1)
to be non-writable. The program later at line 5 compiles the
regular expression, which effectively will set the lastindex
to 0 per the ECMA-262 standard. For this case, a TypeError
exception should be thrown when executing the statement
at line 5, but Rhino and JerryScript permit such a change
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(which thus is a bug). This ECMA-262 definition was given
in the natural language form and hence is not captured by
our ECMA-262 parser (Section 3.1). COMFORT was able to
generate test case to trigger a similar type of bug in Listing
1 because that definition is written in the pseudo-code form.

1 var regexp5 = new RegExp(/abc/);

2 Object.defineProperty (regexp5, "lastIndex",
{

3 value: "\w?\B", writable: false

4 1)

5 regex5 = regexp5.compile("def");

6 print(regexp5.lastindex);

Listing 12. DIE generated test case.

Montage. The test code generated by Montage in Listing 13
is an immediately invoked function expression because the
function at line 1 and the variable name at line 2 are both
named v1. Hermes and Rhino produced an output of “false\n
number”, while other JS engines output “true\n function”.
This is an undefined behavior in ECMA-262 and hence is
not exposed by CoMFORT. After submitting the report, the
developers of Hermes and Rhino decided to label it as a bug.

1 (function v1(){

2 vl = 20;

3 print (vl !== 20);
4 print (typeof v1);
5 10);

Listing 13. Montage generated test case.

5.3.3 Quality of test cases generation. To evaluate the
quality of the generated test cases, we consider two metrics:

Syntax passing rate. This quantifies the ratio of the gen-
erated JS programs that are syntactically valid (judging by
JSHint - a static JS parser). We ask each fuzzer to generate
10,000 JS programs and compute the passing rate.

Coverage. We consider three widely-used coverage met-
rics of the generated test cases [30, 37]: statement coverage,
function coverage, and branch coverage. The three metrics
respectively measure the average ratio of statements, func-
tions and branches of a test JS program that get executed
during the test run. For fair comparison, we randomly select
9,000 syntactically valid test programs generated by each
fuzzer to compute the coverage. We use Istanbul [28],a JS
code coverage tool, to collect the information.

Results. As can be seen from Figure 9, COMFORT gives a pass-
ing rate of 80%, an improvement over the less than 60% pass-
ing rate given by all alternative methods. Note that among
the syntactically correct test cases generated by COMFORT,
about 18% of them triggered a runtime exception during
testing due to semantic errors. COMFORT also gives the best
statement and branch coverages by ensuring most of the
branches of a test program will be executed. Fuzzilli gives



Automated Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing

100%

I coMFORT [l DIE Fuzzilli Montage
DeepSmith CodeAlchemist

60% -
40%+
20%
0%+ T T T T

Passing Rate Statement Cov. Function Cov. Branch Cov.

Percentage

Different evaluation metrics

Figure 9. Compare to other fuzzers, COMFORT generates
larger and more syntactically corrected test programs with
a higher coverage of JS APIs and branches.

the best overall function coverage through hand-crafted func-
tion generation rules using seed programs, but it gives lower
statement and branch coverage rates compared to COMFORT.
While the test cases generated by Fuzzilli cover more func-
tions than CoMFoORT, many of the statements and branches
do not get executed during execution.

5.4 BugImportance

It is reasonable to ask that if the bugs we found matter. It
is not easy to provide a quantified answer to this question.
Here, we follow the discussion from the source publication of
CSmith [65]. Some of our reported bugs have been indepen-
dently discovered and reported by application developers.
This suggests we indeed report bugs that occurred in real-
world applications. As of November 2020, 21 of the test cases
generated by ComFoRT have been added to the ECMA-262
official test suite because they triggered bugs in mainstream
JS engines, of which 3 of the CoMFORT-generated test cases
were submitted by the relevant JS compiler vendor. This
shows that the standard body and JS compiler developers
appreciate the importance of the bugs triggered by COMFORT.
Finally, most of our reported bugs have been confirmed and
fixed by the developers, illustrating their relevance and im-
portance (as it often takes substantial effort to fix a compiler
defect); and the development teams of four tested JS engines
marked a total of 25 of our bugs as a release-blocking priority
for functional bugs. Furthermore, eight CoMFORT-exposing
bugs were welcomed and quickly fixed by the compiler de-
velopers in less than 48 hours.

5.5 Discussions and Future Work

Our study has been in the context of JS by utilizing the
well-structured ECMA-262 specification to generate test data.
We stress that COMFORT is not designed to replace existing
fuzzers. Instead, our experiment shows that COMFORT can
provide useful complementary test cases to discover confor-
mance bugs by exploiting the pseudo-code-like definitions in
ECMA-262. There are still some definitions were given in the
natural language form in ECMA-262. These are not covered
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by CoMFORT, and may still require expert involvement to
understand to manually create test-case generation rules or
write test cases to cover.

Like most supervised learning methods, our program syn-
thesizer can suffer from insufficient training data. In which
case, we expect the time in generating syntactically valid
programs would remain largely unchanged, but the gener-
ated programs will be less diverse and, therefore, will affect
test coverage and the ability for exposing bugs. However,
we believe this is not an issue for popular programming
languages like JS with a large open-source code base.

Our approach could be applied to other languages. Doing
so would require the API semantics and expected behavior
to be described in the pseudo-code form like ECMA-262.
Our current implementation cannot exploit language spec-
ification written in free-form natural languages like the C
standard. We view this as an exciting open challenge: can
we transfer the decades’ research in the natural language
comprehension to translate language specifications to a form
that can be exploited by a fuzzer? We have showcased that
Transformer-like natural language processing models (GPT-
2 used in this work) can be useful in generating validate test
programs. Our language model can generate syntax correct
test programs with a higher success rate than the state-of-
the-art DL-based program generator. This approach is read-
ily transferable to many other code generation tasks as the
language model infers the language syntax and semantics
directly from the training corpus. Like DeepSmith and many
other JS fuzzers, COMFORT does not generate floating-point
test programs. However, methods for testing floating-point
programs [36] are orthogonal to our work.

6 Related Work

Random test case generation, in general, falls into two cat-
egories: program generation and program mutation. The
former generates a test case from scratch while the later
modifies existing test cases to expose anomalous behavior.

Program generation. Program generation often relies on
stochastic context-free grammars. The fuzzer takes a gram-
mar describing the syntax of the language being tested to pro-
duce syntactically valid programs whose various expressions
conform to a given probability distribution of the grammar’s
productions. The Mozilla jsfunfuzz [52] was the first publicly
available JS fuzzer. It uses a set of hand-crafted generation
rules based on the JS grammars to generate test cases. Simi-
larly, Domato [17] employs pre-defined templates to generate
random web programs (include JS code) to test web browsers.
Other works also use customized grammar-based constraint
rules to generate test cases [7, 8, 18, 20, 32, 38, 40]. PHOG [8]
can generate programs with rich contexts features with prob-
abilistic context-free grammars. CSmith [65] is an effective
program generator for generating C test programs using pre-
defined grammar rules. Subsequent generators influenced
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by CSmith, like CLSmith [35], have extended random pro-
gram generation to other programming languages. These
approaches all require expert involvement and significant
engineering effort to create the generation rules, grammars
or templates. CoMFORT builds upon these past foundations
by combining random program generation and language
standard-guided test data generation to generate test cases
for JS engines. CoMFORT reduces human involvement by
leveraging deep learning to learn the language syntax and
semantics from real-world code.

Program mutation. Mutation-based fuzzing modifies a set
of seed programs to generate test cases [10, 27, 57, 64]. Equiv-
alence modulo input testing is a representative mutation-
based test case generation method [31]. Langfuzz [27] mu-
tates test cases by inserting code segments that previously ex-
posed bugs. SYMFUZZ [10] utilizes the white-box symbolic
analysis to search for useful program inputs by mutating a
seed program and a seed input together. IFuzzer [59] uses
evolutionary algorithms to generate unusual input code frag-
ments. AFL [67] and its subsequent works [9, 23, 34, 41, 51,
64] mutate the seed program to improve the test run coverage.
Such techniques can be useful for COMFORT in improving the
test run coverage. DIE [49] and CodeAlChemist [24] are two
mutation-based fuzzers for JS. DIE employs a stochastic pro-
cess to preserve properties which are likely to expose bugs
across mutations. CodeAlChemist breaks the seed programs
into fragments and uses the fragments to assemble new JS
test cases. By contrast, COMFORT is a generative approach
that does not require access to a set of seed program inputs. It
is a pure black-box approach, requiring no source code, seed
test programs, or other knowledge of the target compiler.
AutoTest [43] is a contract-based random testing tool. It uses
fuzzing techniques to test the conformance of the Eiffel pro-
gram against the given contracts. It can expose bugs in the
runtime system and the associated library implementation.
By contrast, COMFORT is designed to test compiler-specific
implementations of APIs, non-API features, and compiler
components like the parser, code generator, and optimizer.
Nonetheless, extending COMFORT to mutate bug-exposing
test cases could be valuable.

Deep learning for compiler testing. Recently, deep learn-
ing (DL) models have been used for code modeling [5, 6,
15, 60, 66], random program generation [16, 56] and input
fuzzing [19]. DeepSmith [14] and DeepFuzz [37] are two
closely related works. Both approaches use the recurrent neu-
ral network (RNN), e.g., LSTM, to generate test programs.
Montage [33] is a mutational JS fuzzer. It produces test cases
by replacing the code snippets of the seed program’s abstract
syntax tree with a new code fragment generated by a LSTM
model. Due to the limitation of RNN in capturing the long-
term dependence of source code, they often generate many
syntactically invalid programs that are rejected by the JS
engines in the parsing stage. Our approach replaces the RNN
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generation model with a more advanced neural network,
significantly improving the number of syntactically valid
generated programs. None of the existing DL-based fuzzers
has exploited the language specification to assist test case
generation. COMFORT is the first in doing so.

Conformance testing for JS. Our work was conducting
concurrently with JEST [47] that also leverages differential
testing and JS specifications to expose conformance bugs in
JS compiler implementations. JEST utilizes JISET [48], a JS
semantics extraction tool, to extract specification from the
ECMA-262 document. Unlike ComFORT, JEST is a program
mutation approach that relies on a set of seed programs to
create the JS test cases. COMFORT thus has the advantages of
not depending on the quality of the seed programs. Nonethe-
less, it would be interesting to extend COMFORT to use the
semantics extracted by JISET to perform differential testing.

7 Conclusions

We have presented COMFORT, a novel compiler fuzzing frame-
work for testing standard conformance bugs for JS compilers.
CoMFoORT leverages the recent advance in the deep-learning-
based language model to automatically generate test JS pro-
grams without hand-crafted grammar or generation rules.
It then augments the test programs with code and variables
derived from the JS standard rules as test data to expose JS
compiler bugs. We evaluate COMFORT by applying it to test
ten mainstream JS engines. In 200 hours of automated con-
current test runs, we found bugs in all the JS compilers we
tested. At the time of submission, CoMFORT has discovered
129 unique, confirmed bugs, of which 115 bugs have been
fixed by the developers, and 21 of the CoMFORT-generated
test cases have been added into the official JS conformance
test suite. Our work showcases a new way to leverage a
structured language specification to produce bug-exposing
test data to detect standard conformance bugs in compiler
implementations, opening up an exciting research avenue.
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